
Runtime Coordinated Heterogeneous Tasks in
Charm++

Michael P. Robson, Ronak Buch, Laxmikant V. Kale
University of Illinois at Urbana-Champaign
{mprobson, rabuch2, kale}@illinois.edu

Abstract— Effective utilization of the increasingly hetero-
geneous hardware in modern supercomputers is a significant
challenge. Many applications have seen performance gains by
using GPUs, but many implementations leave CPUs sitting idle.

In this paper, we describe a runtime managed system for
coordinating heterogeneous execution. This system manages data
transfers to and from GPU devices and schedules work across
the computational resources of the system. The programmer
need only tag methods and parameters to enable heterogeneous
execution.

Using this system, we observe improvements in programmer
productivity and application performance. For selected bench-
marks, when using heterogeneous execution we observe speedups
of up to 3.09x relative to using only the host cores or only the
device.

Index Terms—Accelerator architectures, Parallel program-
ming, High performance computing, Runtime

I. INTRODUCTION

Many current supercomputers derive a majority of their
compute power from accelerator devices. Nvidia GPUs and
Intel Xeon Phis have already seen widespread adoption in
many Top 500 machines. As the march to exascale continues,
several new machines will derive a sizable portion of their
overall FLOPS from GPUs. These include both the Summit
system at ORNL and the Sierra system at LLNL. However,
programming models and systems have been slow to adapt
to this changing environment. In this paper, we examine
an extension to the CHARM++ parallel programming library
that enables coordinated execution of heterogeneous tasks.
We focus on compute kernels developed for Nvidia GPUs
using CUDA. Our framework automatically generates tasks
from user-annotated functions that can be executed on either
the host or device. This strategy ensures full utilization of
available hardware and reduces computation time. In this
paper we examine the heterogeneous performance of two mini
applications, stencil2d and md.

II. BACKGROUND AND RELATED WORK

CHARM++ [6] is a task based, asynchronous parallel pro-
gramming framework with an adaptive runtime system (RTS).
In CHARM++ programs, data is decomposed into logical
units (chares) which are then mapped to hardware resources
(PEs). Chares communicate and exchange data via messages
that invoke asynchronous methods. The parallel structure and
methods of CHARM++ programs are described in a charm in-
terface file, which is parsed by the charm translator charmxi

to generate code for the runtime. In this paper, we modify
charmxi to generate both host and CUDA versions of the
entry methods tagged for execution on different devices. It can
be extended to generate code for any hardware platform, but
these two targets are sufficient for our tests. We also augment
the CHARM++ runtime, adding the capability to schedule
heterogeneous work across the host and device based on a
provided heuristic.

Graphical processing units (GPUs) are becoming prevalent
in the HPC community, as is evident from their number over
time in the Top 500. Originally intended as special purpose
accelerators for graphics applications, they are now user pro-
grammable and often referred to as the “device” (as opposed
to the CPU or “host” cores) due to their supplementary use
in a system. A variety of languages and tools for GPU
programming exist ([10], [7], etc.), but GPUs remain more
difficult to program for than traditional host cores. Unlike
CPUs, GPUs are made up of hundreds of lightweight cores
grouped together into streaming multiprocessors (SMs). These
SMs share critical resources, such as registers and shared
memory. Collections of threads, called warps, are launched on
these SMs and execute in lockstep. This unique design can lead
to strong performance for some highly parallel applications,
e.g. graphics, but can be hampered by its strict SIMD nature
(for instance when encountering branch divergence in code).
Data movement is also a concern since the GPU cannot
directly access host memory. Therefore, data must be copied to
the device before being used, which often limits performance
due to the latency and bandwidth constraints associated with
transferring data across the PCIe bus.

A similar approach to using runtimes in heterogeneous envi-
ronments can be found in the StarPU programming library[1].
They also schedule tasks, called codelets, and automate data
transfer dynamically across different hardware targets. How-
ever, StarPU does not have a mechanism to automatically
generate kernels for different platforms as our work does. We
distinguish ourselves from other task based run times such
as OmpSs[5] by offering more generality, not requiring entire
programs to be explicitly constructed as a DAG. Similar work
has also been carried out in the context of OpenCL[9], [3]
with great success, but we can extend our work to multiple
nodes.

The authors of [4] propose a solution that divides work into
fine grain tasks and enqueues them in a single location. This
potentially allows for heterogeneous execution and dynamic

978-1-5090-3858-9/16/$31.00 c© 2016 IEEE ESPM2 2016; Salt Lake City, Utah, USA; November 2016

load balancing. However, they use a work stealing approach
with a persistent device kernel, instead of a central manager,
and they do not show results for mixed CPU-GPU execution
as presented in this paper. The Legion programming model [2]
can also execute in heterogeneous environments using similar
techniques to our approach.

III. METHODOLOGY

Our execution model builds upon the earlier work of GPU
Manager [11], which handles the delegation and execution of
CUDA kernels in the context of the asynchronous message-
driven runtime of CHARM++ . This allows us to focus our
work on higher-level concerns, such as code generation and
dynamic target selection in our framework.

A. Charm++ GPU Manager

The GPU Manager operates by registering GPU kernels to
be managed with the runtime system. By having the runtime
asynchronously invoke kernels when data is available on
the device, we automate the overlap of data movement and
execution as seen in Figure 1. Due to inherent asynchrony of
CHARM++ , it is important to ensure that blocking operations,
such as cudaHostMalloc, are handled by the system and
do not block in user code. GPU Manager also automates some
tedious CUDA-related tasks, namely copying data to and from
the device before and after kernel execution.

When using GPU Manager directly, the user must write an
explicit CUDA kernel and denote buffers which need to be
moved to and from the device. The programmer must also
register a callback with the runtime, which is called when the
kernel is finished and data has been copied back to the host.
This step is necessary since the call to GPU Manager returns
once the runtime has copied the CUDA buffers; it does not
block until the kernel has finished. GPU manager coordinates
data movement and kernel invocations through a FIFO queue.
When a PE goes idle and enough time has passed, the runtime
invokes a progress function to issue new requests to the GPU.
At this time, GPU Manager attempts to offload data for a new
kernel, launch a kernel with complete data on the device, and
move data for the completed kernel back to the host. Finally,
when the data for the completed kernel is fully copied back,
GPU Manager invokes the user supplied callback to continue
execution.

Fig. 1: GPU Manager

B. Accel Framework
The Accel Framework[8], or ACCEL, extends GPU Manager

by automatically generating CUDA kernels from host code
and dynamically deciding where entry methods should be
executed.

ACCEL alleviates many of the programmer productivity
problems associated with using GPUs effectively in parallel
applications by virtue of its automatic kernel generation. This
generation occurs only for entry methods annotated with the
accel keyword. To improve performance, additional tags can
be applied to methods, such as splittable, which allows
methods to be split into several independent tasks, which can
more fully utilize the many processors on a GPU. Inside
splittable methods, splitIndex and numSplits
variables are defined, analogous to the threadIdx and
blockDim variables in CUDA. This differs from CUDA in
that the code can be targeted to a variety of platforms. A full
listing of other annotations can be found in [8].

ACCEL has a variety of strategies to determine where
to execute particular entry methods. The strategy is
passed to as a runtime argument. Example strategies
include +accelHostOnly, +accelDeviceOnly,
+accelPercentDevice, which specify a static division
of work between the computing resources. In this paper, we
manually sweep through different static divisions to observe
the performance behavior of the various configurations.
However, there are several available automated methods to
find the best split, such as greedy strategies and hill climbing.
Further description is outside the scope of this paper and is
detailed in [8].

In order to maximize GPU utilization and avoid serializa-
tion, ACCEL tries to batch multiple device method calls into
a single kernel launch. This batching occurs when a specified
count is reached or a certain amount of time elapses. The
triggered keyword informs the runtime system that the
accelerated entry method (AEM) will be invoked on every
chare and that all chares will invoke said entry method before
any chare invokes it a second time. Programmers can also
specify the number of threads to be used per block in a kernel
launch instead of having the runtime automatically determine
one.

It is beneficial for the RTS to minimize data movement and
overlap it with computation when possible. Data movement
is automatically overlapped with computation as described in
Section III-A. Method parameters are automatically copied
to the device, but are not copied back since the CHARM++
model dictates that entry method parameters have no lifetime
beyond the entry method. However, object data used in an
accel annotated method must be marked as readonly,
writeonly, or readwrite to indicate whether it should
be copied in, out, or both. Additional annotations such as
shared and persistent allow the user to control the
lifetime of the data on the device. With these annotations,
charmxi automatically generates code to move data to and
from the device. The implObj variable seen in the code is
required due to the lack of a proper CHARM++ compiler since
we require a handle to the chare object and its data.

The last token in Listing 1 specifies a callback invoked when
the accel entry method is finished executing. It is used in the
same way as in GPU Manager but is listed here instead of as
an input or member variable due to parsing constraints. The
callback is used to send messages to invoke other methods
since CHARM++ messages cannot be sent from accelerator
devices.

e n t r y [t r i g g e r e d s p l i t t a b l e (NUM ROWS) a c c e l]
void d o C a l c u l a t i o n () [

r e a d o n l y : f l o a t m a t r i x [DATA BUFFER SIZE]
<imp lob j−>mat r ix > ,

w r i t e o n l y : f l o a t matrixTmp [DATA BUFFER SIZE]
<imp lob j−>matrixTmp>

] { . . . } d o C a l c u l a t i o n p o s t ;

Listing 1: Accelerated Entry Method Annotations

IV. RESULTS

We analyze performance for varying distributions of work
between the host and device for two different applications,
stencil2d, which implements a two dimensional stencil,
and the more complex md, which simulates electrostatic
molecular dynamics. In both applications, the main compute
methods have been annotated with accel and other tuning
parameters. Our tests vary the percentage of work allocated
to the device from 0% to 100% in increments of 5%. Theo-
retically, hybrid computation will improve performance, since
more hardware can be used, but data transfer and batching
costs create performance impediments.

The experimental results were gathered on the Stampede
supercomputer. In particular, we used the visualization nodes
of the system, which each feature an NVIDIA K20 GPU and
two Intel Xeon E5-2680 processors. All runs were performed
on a single node of the system with 16 CHARM++ processing
elements, matching the 16 cores in the node. We measured
elapsed time from the start of the calculation to the end of
the last error calculation for both applications. This does not
include startup or other fixed costs.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Percent Device

0

5

10

15

20

25

30

Ti
m

e
(s

ec
on

ds
)

Fig. 2: Timing for stencil2d

A. Stencil 2D

stencil2d performs a single-precision weighted five
point stencil. Given results use a 6144x6096 2D array decom-
posed into 24 tiles per dimension, a 254x254 section per ele-
ment. For work performed on the GPU, the algorithm performs
approximately 1.25 single-precision FLOP per transferred byte
(10 FLOP/(1 float in + 1 float out)). As shown in Figure 2,
this low FLOP/byte ratio causes the host only case to beat
the device only case. Optimal performance occurs in the 30%
device case.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Percent Device

0

2

4

6

8

10

12

14

16

18

Ti
m

e
(s

ec
on

ds
)

Fig. 3: Timing for md

B. Molecular Dynamics

md executes much faster in the device only case than in
the host only case. Given results use a 5x5x5 3D array with
256 molecules per array element, a total of 32k molecules. The
FLOP per byte ratio for md is higher than that of stencil2d
since each particle has a relatively complex interaction with
every other particle in the simulation, requiring distance,
electrostatic force, position, and acceleration calculation and
normalization. Optimal performance occurs in the 65% device
case.

C. Analysis

For both selected applications, we observe an increase in
performance when using both the host and the device as
compared to using only the host or only the device.

There are some clear discontinuities in the performance
of the chosen applications; see the jumps at 60% and 85%
device in Figure 2. These are likely a performance artifact of
the batching used in the Accel Framework. Since the GPU
is a throughput-oriented device, launching an additional batch
takes much longer than adding some work to an existing batch.
This behavior is not seen for smaller allocations of work to
the device because the host was spending more time on the
work than the device, so it was the dominant term.

The timing data follows a “bathtub plot”, so termed
because it is low in the middle and high on both sides.
When performance follows this pattern, the goal is to set the
parameters such that execution happens in the “floor” region.

As shown in Table I, the best configurations achieve speedups
of between 1.46x and 3.09x relative to host only and device
only configurations.

Best Split Host Only Device Only
stencil2d 30% device 1.58x 3.09x

md 65% device 3.02x 1.46x

TABLE I: Speedup of Best Configuration Relative to
Host/Device Only

D. Caveats
All applications do not benefit from a heterogeneous execu-

tion system. Even applications that are amenable to heteroge-
neous execution may not see benefit in all configurations. The
most significant reason for this is data movement. Just as HPC
applications can slow down when run on two nodes versus one
node due to the effects of adding network communication,
using a GPU can degrade performance unless the application
amortizes the costs of data movement. Additionally, not all
algorithms are well suited to run on the GPU. In particular,
programs that make heavy use of branching, that cannot
expose enough parallelism to fully utilize the GPU, or that
are composed of a variety of disparate tasks do not perform
well on GPU hardware.

However, large HPC applications often feature a variety of
different kinds of work, so it is likely that some portion will
improve when executed on heterogeneously.

V. FUTURE WORK

This work is a small survey of the initial implementation of
CHARM++ support for heterogeneous compute environments.
Our current solution to generating CUDA kernels, copying
the entry method body directly into the kernel body with a
few extensions, can be vastly improved. Using splittable
allows performance to be greatly improved, but does not allow
the user to make platform specific optimizations. One potential
extension is to allow the user to explicitly provide optimized
kernels for different platforms, as other runtimes, such as
OmpSs, allow. We could also extend GPU manager to observe
utilization and launch multiple kernels.

ACCEL currently provides mechanisms for the programmer
to control data movement to and from the device (or in the
case of persistence, residence). However, there is more work
to be done here. For instance, adding support for GPU Direct,
which would allow GPUs to directly communicate with each
other, and reducing the number of copies of data made inside
CHARM++ when transferring to and from the device. We also
plan on taking into account data location and movement cost
when making scheduling decisions to further minimize data
movement. We anticipate that NVLink will partially alleviate
some of these problems.

Finally, we plan on applying this work to automatically
load balance heterogeneous applications at large scale. By
extending the CHARM++ load balancing framework to support
heterogeneous load balancing, we will balance work both
across nodes and across the hardware resources in a node. This
would enable CHARM++ programs to adapt to arbitrary hard-
ware platforms of arbitrary size with minimal code changes.

VI. CONCLUSIONS

The use of accelerators in HPC has grown in recent years
and will likely continue for the foreseeable future. While many
HPC applications make use of accelerators to improve their
performance, it remains difficult to fully utilize all hardware
resources available on a machine.

In this paper, we describe a runtime for managing execution
in heterogeneous environments. In contrast to common ways
of using accelerators, in this scheme, the system handles
data allocation, transfers, scheduling, and coordination across
the heterogeneous hardware. This system requires minimal
additional work from developers and is not tied to any specific
accelerator platform.

We demonstrate the efficacy of this system for GPU exe-
cution using two CHARM++ applications. We achieve up to a
3.09x speedup relative to running the main computation solely
on the host or device.

VII. ACKNOWLEDGMENTS

We gratefully acknowledge the support of NVIDIA Corpo-
ration with the donation of GPUs used for this research.

This work used the Extreme Science and Engineering Dis-
covery Environment (XSEDE), which is supported by National
Science Foundation grant number OCI-1053575.

REFERENCES

[1] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. Starpu:
A unified platform for task scheduling on heterogeneous multicore
architectures. In European Conference on Parallel Processing, pages
863–874. Springer, 2009.

[2] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion: expressing
locality and independence with logical regions. In Proceedings of the
international conference on high performance computing, networking,
storage and analysis, page 66. IEEE Computer Society Press, 2012.

[3] M. Boyer, K. Skadron, S. Che, and N. Jayasena. Load balancing in a
changing world: Dealing with heterogeneity and performance variability.
In Proceedings of the ACM International Conference on Computing
Frontiers, CF ’13, pages 21:1–21:10, New York, NY, USA, 2013. ACM.

[4] L. Chen, O. Villa, S. Krishnamoorthy, and G. R. Gao. Dynamic load
balancing on single-and multi-gpu systems. In Parallel & Distributed
Processing (IPDPS), 2010 IEEE International Symposium on, pages 1–
12. IEEE, 2010.

[5] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Mar-
torell, and J. Planas. Ompss: a proposal for programming heterogeneous
multi-core architectures. Parallel Processing Letters, 21(02):173–193,
2011.

[6] L. V. Kale and S. Krishnan. Charm++: a portable concurrent object
oriented system based on c++. In ACM Sigplan Notices, volume 28,
pages 91–108. ACM, 1993.

[7] D. Kirk et al. Nvidia cuda software and gpu parallel computing
architecture.

[8] D. Kunzman. Runtime support for object-based message-driven parallel
applications on heterogeneous clusters. PhD thesis, Dept. of Computer
Science, University of Illinois, 2012. http://charm.cs.uiuc.edu/media/12-
45/.

[9] P. Pandit and R. Govindarajan. Fluidic kernels: Cooperative execution of
opencl programs on multiple heterogeneous devices. In Proceedings of
Annual IEEE/ACM International Symposium on Code Generation and
Optimization, CGO ’14, pages 273:273–273:283, New York, NY, USA,
2014. ACM.

[10] J. E. Stone, D. Gohara, and G. Shi. Opencl: A parallel programming
standard for heterogeneous computing systems. Computing in science
& engineering, 12(1-3):66–73, 2010.

[11] L. Wesolowski. An application programming interface for general
purpose graphics processing units in an asynchronous runtime system.
Master’s thesis, Dept. of Computer Science, University of Illinois, 2008.
http://charm.cs.uiuc.edu/papers/LukaszMSThesis08.shtml.

