
www.computer.org/computer

10.16

OCTOBER 2016
FEATURES 20

Using Performance-
Power Modeling

to Improve Energy
Effi ciency of HPC

Applications
XINGFU WU, VALERIE TAYLOR,

JEANINE COOK, AND PHILIP J. MUCCI

30
Power, Reliability,

and Performance:
One System

to Rule Them All
BILGE ACUN, AKHIL LANGER,

ESTEBAN MENESES,
HARSHITHA MENON,

OSMAN SAROOD, EHSAN TOTONI,
AND LAXMIKANT V. KALÉ

38
Standardizing

Power Monitoring
and Control at

Exascale
RYAN E. GRANT,

MICHAEL LEVENHAGEN,
STEPHEN L. OLIVIER,

DAVID DEBONIS,
KEVIN T. PEDRETTI,

AND JAMES H. LAROS III

14
GUEST EDITORS’ INTRODUCTION
New Frontiers in Energy-Effi cient Computing
VLADIMIR GETOV, ADOLFY HOISIE, AND PRADIP BOSE

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

M
U

LT
IM

E
D

IA

MULTIMEDIA from Computer’s October 2016 Issue X

pg. 12

pg. 12

pg. 14

pg. 112

Author Charles Severance goes behind the scenes at the Living Computer
Museum. View the full-resolution video at https://youtu.be/
ZHU4nzIsaIM. Subscribe to the Computing Conversations podcast on
iTunes at https://itunes.apple.com/us/podcast/computing-
conversations/id731495760.

Author Charles Severance provides an audio recording of his Computing
Conversations column in which he recounts his visit to the Living
Computer Museum. Subscribe to the Computing Conversations podcast
on iTunes at https://itunes.apple.com/us/podcast/computing-
conversations/id731495760.

In this video at https://youtu.be/35PaR65EYa8, Karlheinz Meier from
Ruprecht-Karls University in Heidelberg speaks about neuromorphic
computing's concepts, achievements, and challenges at the 2016
International Supercomputing Conference.

Author David Alan Grier reads his Errant Hashtag column, in which he
traces the influence of the American industrial experience on Silicon
Valley's innovation system. Subscribe to the Errant Hashtag podcast on
iTunes at https://itunes.apple.com/us/podcast/errant-hashtag/
id893229126.

30 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E

COVER FEATURE ENERGY-EFFICIENT COMPUTING

Bilge Acun, University of Illinois at Urbana–Champaign

Akhil Langer, Intel

Esteban Meneses, Costa Rica Institute of Technology and Costa Rica National High Technology Center

Harshitha Menon, University of Illinois at Urbana–Champaign

Osman Sarood, Yelp

Ehsan Totoni, Intel Labs

Laxmikant V. Kalé, University of Illinois at Urbana–Champaign

In a design based on the Charm++ parallel programming
framework, an adaptive runtime system dynamically interacts
with a datacenter’s resource manager to control power by
intelligently scheduling jobs, reallocating resources, and
reconfiguring hardware. It simultaneously manages reliability
by cooling the system to the running application’s optimal
level and maintains performance through load balancing.

High-performance computing (HPC) data-
centers and applications are facing major
challenges in reliability, power management,
and thermal variations that will require dis-

ruptive solutions to optimize performance. A unified
system design with a smart runtime system that inter-
acts with the system resource manager will be impera-
tive in addressing these challenges. The system would be
part of each job, but interact with an adaptive resource

manager for the whole machine. Studies have shown that
a smart, adaptive runtime system can improve efficiency
in a power-constrained environment,1 increase perfor-
mance with load-balancing algorithms,2 better control
the reliability of supercomputers with substantial ther-
mal variations,3 and configure hardware components to
operate within power constraints to save energy.4,5

Although smart runtime systems are a promising
way to overcome exascale computing barriers, there is

Power, Reliability,
and Performance: One
System to Rule Them All

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

O C T O B E R 2 0 1 6 31

no integrated solution that combines
past research into a single system for
optimizing performance across mul-
tiple dimensions, such as load balanc-
ing and power use. To fill that need,
we have developed a comprehensive
design based on Charm++, a parallel
programming framework in C++ that
has been in use since 2001. Our design

› lets the datacenter resource
manager dynamically interact
with the individual job’s run-
time system,

› optimizes for both performance
and power consumption, and

› enables operation in an environ-
ment with system failures under
constraints supplied by users or
administrators.

At Charm++’s core is an adap-
tive runtime system that enables the
dynamic collection of performance
data, dynamic task migration (load
balancing), and temperature restraint
and power capping with optimal per-
formance. The ability to migrate tasks
and data from one processor to any
other available processor is critical to
solving conflicting requirements, such
as application load imbalances across
processors, high fault rates, power and

energy constraints, and thermal varia-
tions. Balance is essential in address-
ing these concerns because of potential
conflicts among them—for example,
applying power and temperature con-
straints can compromise performance
and lead to a load imbalance.

Research has shown that Charm++
enhances user productivity and allows
programs to run portably from small
multicore computers (laptops, phones)
to the largest supercomputers.6 Users
can easily expose and express much
of the parallelism in their algorithms
while automating many of the require-
ments for high performance and scal-
ability. Because of these strengths,
Charm++ has thousands of users across
a wide variety of computing disciplines
with multiple large-scale applications,
including simulation programs such
as Nanoscale Molecular Dynamics—
formerly Not (just) Another Molecular
Dynamics program—for molecular
dynamics, ChaNGa for cosmology, and
OpenAtom for quantum chemistry.6

In our design, the Charm++ adap-
tive runtime system intelligently
schedules jobs and reallocates job
resources when utilization changes,
controls reliability by a temperature-
aware module that cools the system
to an application-based optimal level,

and reconfigures the hardware with-
out sacrificing performance.

To evaluate our solution, we con-
ducted several efficiency tests. Our
results show that the adaptive run-
time system’s capabilities result in
greater power efficiency for common
HPC applications.

INTERACTION FLOW
Figure 1 shows how Charm++’s adap-
tive runtime system interacts with
the resource manager to address
power, reliability, and performance
issues. Datacenter users are focused
on job performance. System admin-
istrators are tasked with guarantee-
ing good performance to individual
jobs, yet ensuring that total power
consumption does not exceed the cen-
ter’s allocated budget and that overall
job throughput remains high despite
node failures and thermal variations.
Charm++ addresses both concerns. The
job scheduler strives to allocate system
resources to jobs optimally according
to their power and performance char-
acteristics, and the runtime system
implements the scheduler’s decision
by shrinking or expanding the num-
ber of nodes assigned and dynamically
balancing load as needed. The runtime
system can turn on or off or reconfigure

Users

Runtime system

Processors

Runtime systemJob
submission

Resource manager

Execution framework
• Launches jobs
• Shrinks or expands jobs
• Cleans up jobs
• Applies power caps
• Configures hardware

System-level constraint
Job allocation and termination decisions

System administrator

Job profiler Scheduler
• Models power-aware
 performance
• Selects hardware
 configuration

• Selects jobs
• Allocates
 resources

FIGURE 1. Interacting components in our design based on the Charm++ framework. The two major interacting components are the
resource manager and an adaptive runtime system. Our design achieves the objectives of both datacenter users and system administra-
tors by allowing dynamic interaction between the system resource manager or scheduler and the job runtime system to meet system-
level constraints such as power caps and hardware configurations.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

32 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

ENERGY-EFFICIENT COMPUTING

hardware components without impact-
ing application performance, as long as
vendors provide adequate hardware
control.

CHARM++ ATTRIBUTES
Charm++ has three main attributes.
The first is overdecomposition, in which
the programmer divides an applica-
tion’s computation requirements into
small work and data units so that
the number of units greatly exceeds
the number of processors. The sec-
ond attribute is message-driven execu-
tion, which involves scheduling work
units on the basis of when a message
is received for them. The third attri-
bute, migratability, is the ability to
move data and work units among pro-
cessors. These three attributes enable
Charm++ to provide many useful fea-
tures including dynamic load balanc-
ing, fault tolerance, and job mallea-
bility (shrinking or expanding the
number of processors the application
is running on).

The framework collects informa-
tion about the application and system
in a distributed database including
processor loads, each object’s load,
communication patterns, and core

temperatures. With a large number of
processors, centralized data collection
becomes a performance bottleneck, so
data collection and decision making
are hierarchical. The adaptive runtime
system’s modules use this information
to make decisions such as improv-
ing load balance, handling faults, and
enforcing power constraints.

Load balancing
One critical Charm++ feature is a
measurement-based mechanism for
load balancing that relies on the
principle-of-persistence heuristic.
This principle states that, for over-
decomposed iterative applications, the
task’s or object’s computation load and
communication pattern tend to persist
over time. The heuristic uses the appli-
cation’s load statistics collected by the
runtime system, which provides an
automatic, application-independent
way of obtaining load statistics with-
out any user input.

If desired, the user can specify pre-
dicted loads and thus override system
predictions. Using the collected load
statistics, Charm++ executes a cho-
sen load-balancing strategy to deter-
mine a possible objects-to-processors

mapping and then carries out migra-
tions on the basis of this mapping.
A suite of load balancers includes
several centralized, distributed, and
hierarchical strategies.

Charm++ can also automate the
decision of when to call the load bal-
ancer,7 predict future load, and make
load-balancing decisions. Load bal-
ancing is automatically triggered
when Charm++ detects an imbalance
and load-balancing benefits are likely
to exceed its overhead.

Fault tolerance
Charm++ implements both proactive
and reactive techniques for ensur-
ing reliability.8 In a proactive strat-
egy, the runtime system evacuates all
objects from a node that a monitor-
ing system predicts will soon crash.
Because failure prediction is not com-
pletely accurate, reactive techniques
recover the information lost after a
failure brings down a system node.
Because recovery techniques are
based primarily on checkpoint and
restart, Charm++ routinely stores
the application’s global state so that
it can retrieve a prior global state
during recovery.

Job malleability
The ability of Charm++ objects to
migrate enables job malleability, in
which a job can shrink (decrease) or
expand (increase) the number of nodes
it is running on. Job malleability does
not require any additional code from
the application developer;9 rather, an
external command or internal deci-
sion by the runtime system can trigger
shrink or expand operations.

During a shrink operation, the run-
time system moves objects from pro-
cessors that will no longer be used and
returns them to the resource manager.

Processor 2

Local
manager

Power cap

Temperature

Objects

Shrink or expand
decision

Power caps

Resource
manager

Migration and
load-balancing

module

Power-resiliency
module

Processor 1

Local
manager

Power cap

Temperature

Objects

Processor load information

Processor temperatures
Migration decisions

FIGURE 2. Components of the adaptive runtime system and their interaction with the
resource manager. Charm++ has three main components: the local manager and the
load-balancing and power-resiliency modules.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

O C T O B E R 2 0 1 6 33

In an expand operation, the runtime
system launches new processes on the
additional processors and distributes
objects from current processors to the
newly allocated ones. In addition to
moving objects, the runtime system
must adjust its distributed data struc-
tures, such as spanning trees and loca-
tion managers.

Figure 2 shows Charm++’s inter-
nal components and functions. Each
processor has a local manager (LM)
that controls objects residing on that
processor and interaction with other
Charm++ components. The LM sends
its total computational load and the
computational load of each of its
objects to the load-balancing module
(LBM) and sends the CPU tempera-
ture to the power-resiliency module
(PRM). The LBM makes load-balancing
decisions and redistributes load in
response to shrink or expand com-
mands from the resource manager. It
also communicates object-migration
decisions to the respective LMs.

The PRM ensures that the CPU tem-
peratures remain below the tempera-
ture threshold specific to that job, con-
trolling temperature by adjusting the
CPU’s power cap. When a processor’s
temperature is above the threshold,
the PRM lowers its power cap; when
the temperature is well below the
desired threshold, it increases the cap,
thus ensuring that the total power the
job consumes remains below that job’s
allocated power budget. Jobs do not
have administrator rights to constrain
their CPUs’ power consumption, so
the PRM must communicate any new
power caps to the resource manager,
which then applies them to the CPUs.

HANDLING POWER LIMITS
The US Department of Energy has
set a power limit of 20 MW for an

exascale supercomputer that it is
willing to purchase and deploy.10

Such a limit underlines the need for
power-aware resource management
along with job malleability.

With recent advances in processor
hardware design, users can employ soft-
ware such as Intel’s Running Average
Power Limit (RAPL) driver to control the
power the processor consumes. Power
capping forces the processors to run
below their thermal design power (TDP)—
the maximum power a processor can
consume. A node’s TDP also determines
the maximum number of nodes that a
datacenter with a power budget can use.

Overprovisioning
With power capping, the datacenter
can control the nodes’ power consump-
tion and thus have additional nodes
while remaining within the power
budget—a practice referred to as over-
provisioning.11 Research shows that an
increase in the power allocated to a
processor does not yield a proportional
increase in job performance because
jobs react differently to an increase in

power allocated to the CPU.1 The idio-
syncrasies in a job’s performance based
on allocated CPU power points to the
possibility of running different appli-
cations at different power levels. Over-
provisioned systems can significantly
improve the performance of appli-
cations that are not sensitive to CPU
power by capping CPU power to values
well below their TDP and adding more
nodes to get the scaling benefits.

Power-aware speedup
An application’s response to a CPU
power limit can be captured by the
application’s power-aware speedup12—
the ratio of the job’s execution time on
a CPU capped at a certain power level
compared to the execution time of the
same job when running on the lowest
power level the CPU allows.1 The higher
the power-aware speedup, the more the
sensitive the application is to changes
in the power allocated to the CPU.

Figure 3 shows the power-aware
speedups for four HPC applications
with different characteristics running
under different CPU power caps.1

30 35 40 45 50 55 60

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

CPU power (W)

LeanMD
Lulesh
Wave2D
Jacobi2D

Po
w

er
-a

w
ar

e
sp

ee
du

p

FIGURE 3. Power-aware speedups of four applications running on 20 nodes. LeanMD,
a molecular dynamics application, has the highest power-aware speedup because it
is the most CPU-intensive application. Jacobi2D, a stencil application, has the lowest
speedup because it is memory intensive. The many minor deviations from monotonic
behavior (lack of a smooth curve) are likely due to external factors such as OS jitter and
network delays.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

34 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

ENERGY-EFFICIENT COMPUTING

Power-Aware Resource Manager
The Power-Aware Resource Manager
(PARM),1 developed at the Parallel Pro-
gramming Laboratory of the Univer-
sity of Illinois at Urbana–Champaign,
is an essential part of our Charm++-
based design. PARM makes schedul-
ing decisions by selecting jobs and
their resource configurations (power
budget and compute nodes) such that
the total power-aware speedup of run-
ning jobs is maximized. It dynamically
interacts with the runtime system,
hardware, user, and system admin-
istrator to optimally distribute avail-
able resources to the jobs while stay-
ing under the datacenter’s total power
budget and not exceeding the allow-
able number of computational nodes.
Similar to the resource manager in
Figure 1, PARM has three components.

Job profiler. Before a job is added to
the scheduler queue, PARM profiles it
to develop a power-aware model with
strong scaling that is the basis for cal-
culating power-aware speedups. This

profiling mechanism has negligible
overhead; the application needs to run
only for a few iterations for PARM to
get the necessary data points.

Scheduler. PARM implements its
strategy for optimizing resource
allocation as an integer linear pro-
gram (ILP) that aims to maximize
the power-aware speedup of jobs run-
ning under power constraints. The
arrival of a new job or termination of
a running job triggers PARM’s sched-
uler and reoptimizes scheduling and
resource-allocation decisions. The ILP
is fast enough to run frequently with
negligible overhead.1

Execution framework. This com-
ponent implements the scheduler
decisions by launching jobs, sending
shrink/expand decisions to the run-
time system of the jobs, and by apply-
ing power caps on compute nodes. Job
runtime systems interact with the exe-
cution framework to convey job termi-
nation, completion of shrink/expand

operations, and any changes to CPU
power caps as determined by the run-
time system’s PRM module.

Comparison with other resource
managers. As Figure 4 shows,
PARM outperforms the Simple Linux
Utility for Resource Management
(SLURM; now the Slurm Workload
Manager)—an open source power-
unaware utility that many super-
computers use. The malleable ver-
sion of PARM (PARM-M) reduced
average job completion time by up to
41 percent relative to SLURM. PARM
gives less performance benefit over
SLURM with SetH as compared to
SetL because reducing CPU power
greatly affects performance for jobs
with high power sensitivity (SetH).

IMPROVING RELIABILITY
Checkpoint and restart is the most
popular mechanism for providing
fault tolerance in high-performance
computers and is used to recover work
from the stored checkpoint before the
failure. An application’s total execu-
tion time T on an unreliable system is
given by

T = Tsolve + Tcheckpoint + Trecover + Trestart,

where Tsolve represents the total
effort required to solve the problem,
Tcheckpoint accumulates all the time
spent on saving the system check-
points, Trecover represents the total
lost work from system failures that
must be recovered, and Trestart rep-
resents the amount of time required
to resume execution after a crash
(usually a constant value).

A system using checkpoint and
restart must choose an appropriate
checkpoint period, denoted by . The
value of has a delicate balance. A

SetL

300

250

200

150

100

50

0

Av
er

ag
e

co
m

pl
et

io
n

tim
e

(m
in

)

SetH

SLURM
PARM-R
PARM-M

FIGURE 4. Comparison of average job-completion times with the Simple Linux Util-
ity for Resource Management (SLURM; now the Slurm Workload Manager) and the
Power-Aware Resource Manager (PARM) in rigid (R) and malleable (M) versions. Each
bar represents average completion time as a percentage of the average completion time
using SLURM. In PARM-R, the node allocation decision cannot be changed once the job
starts running. With PARM-M, in contrast, the nodes allocated to a running job can either
decrease or increase (shrink or expand). SetL has jobs with low sensitivity to CPU power,
and SetH has jobs with high sensitivity.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

O C T O B E R 2 0 1 6 35

long value (low checkpoint frequency)
decreases Tcheckpoint, but might increase
Trecover. Conversely, a short value (high
checkpoint frequency) could reduce
Trecover, but might enlarge Tcheckpoint.
The optimum value of strongly depends
on the system’s mean time between fail-
ures (MTBF).

An electronic component’s MTBF is
directly affected by the component’s
temperature. That relation is usu-
ally exponential, and there is some
experimental evidence that a 10 C
increase in a processor’s temperature
decreases its MTBF by half.3 There-
fore, system reliability can be con-
trolled by restraining the temperature
of its components. The cooler the sys-
tem runs, the more reliable it is, but
the slower it runs because CPU power
is constrained to keep temperature
down. This interplay between power
management and reliability has been
studied in other contexts.13

The runtime system allows each
core to consume the maximum allow-
able power as long as it is within the
maximum temperature threshold. If the
temperature any core exceeds the max-
imum threshold, power is decreased,
causing the core’s temperature to fall.
However, this can degrade the perfor-
mance of tightly coupled applications
because of thermal variations. The
LBM will automatically detect any
load imbalance and make the load-
balancing decisions.2

The runtime system must strike
a balance in the temperature at
which each component should be
restrained. Moreover, that balance
depends on the application. Different
codes generate different thermal pro-
files on the system at different stages
of the application. Some codes are
more compute intensive and tend to
heat up the processors more quickly.

Appropriate, application-based tem-
perature thresholds are stored as
part of the job profiler in Figure 1. In
the end, the runtime system aims to
reduce the application’s total execu-
tion time in light of the system’s MTBF
and power limitations.3

Figure 5 shows the percentage
reduction in execution time after con-
straining core temperatures to dif-
ferent thresholds for two different
applications. The reduction is calcu-
lated relative to the baseline case in
which processor temperature is uncon-
strained. Figure 5 also shows the ratio
of MTBF for the machine with our
design versus the MTBF for the base-
line case. For example, by restraining core
temperatures to 42 C for Jacobi2D, the
machine’s MTBF increased 2.3 times
while the execution time decreased
by 12 percent relative to the baseline
case. The inverted U shape of both
curves strongly suggests a tradeoff
between reliability (MTBF) and the
slowdown induced by the tempera-
ture restraint.

The resource manager sends the
runtime system’s PRM the upper
bounds of the temperatures that
honor the system’s power envelope (as
shown in Figure 2). These tempera-
ture values are input to an internal

resilience component in PRM and
are changed according to algorithms
that optimize performance and con-
sider the system’s MTBF and the run-
ning application’s characteristics.
The output will be propagated to
additional PRM components, which
will consolidate the final power lim-
its and communicate them back to
the resource manager.

As this interaction sequence
implies, a dynamic runtime system
is fundamental to controlling sys-
tem reliability while simultaneously
adhering to power limits. Because
thermal variations are dynamic, a
reactive runtime system efficiently
responds to those changes and pro-
vides a healthy balance between sys-
tem performance and reliability. It
also allows users to address a broader
range of reliability concerns, includ-
ing how to correct soft errors (such as
bit flips caused by high-energy parti-
cles) in tandem with hard errors.14 Cir-
cuits using near-threshold voltage will
introduce a more complex scenario
with higher performance variability
and a higher transient-failure rate.

DYNAMIC CONFIGURATION
The runtime system can exploit avail-
able hardware controls for power

42 44

1.74×

1.52×

1.32×
1.86× 1.62×

1.42× 1.15×

1.23×

2.00×

2.30×

2.46×

2.14×

46 48 50 52

16

14

12

10

8

6

4

2

0

Maximum allowable temperature (°C)

Ex
ec

ut
io

n
tim

e
re

du
ct

io
n

(%
)

Jacobi2D
Lulesh

FIGURE 5. Reduction in execution time and change in mean time between failures
(MTBF) for different temperature thresholds. Comparison is relative to a baseline case
in which core temperature is unconstrained.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

36 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

ENERGY-EFFICIENT COMPUTING

management, such as frequency scal-
ing and power capping. However,
greater power savings are possible with
more runtime control over hardware
components. By taking advantage of
the running application’s properties,
the runtime system can turn off or
reconfigure many components with-
out a significant performance penalty.

Ideally, high-performance com-
puting systems should be energy pro-
portional; the hardware components
should consume power and energy
only when their functionality is being
used. However, network links are
always on, whether or not they are
actually being used. Moreover, pro-
cessor caches consume large amounts
of power, even when they are not
improving the application’s perfor-
mance. The runtime system approach
can save this wasted energy by dynam-
ically reconfiguring hardware as the
application requires.

Caches consume up to 40 percent of
a processor’s power.4 Much of that con-
sumption can be avoided by turning
off some cache banks when doing so
would not degrade application perfor-
mance. Many common HPC applica-
tions do not use caches effectively. For
example, molecular dynamics appli-
cations typically have small working
data sets and do not need the large
last-level caches. Grid-based physical
simulation applications typically have
very large data sets that do not fit in
caches, and the data reuse in cache is
minimal. The hardware cannot pre-
dict this application behavior.

To address this concern, we devel-
oped an approach in which the run-
time system uses profiling data to
reconfigure the cache to save power
without significant performance loss.
Using a set of representative HPC
applications, we demonstrated that,

ABOUT THE AUTHORS
BILGE ACUN is a doctoral student in the Department of Computer Science at
the University of Illinois at Urbana–Champaign (UIUC). Her research interests
include power-aware software design, malleability, and variability in large-scale
applications. Acun received a BS in computer science from Bilkent University.
She is a member of ACM. Contact her at acun2@illinois.edu.

AKHIL LANGER is a software engineer at Intel. His research interests include
scalable distributed algorithms and power and communication optimizations
in high-performance computing (HPC). Langer received a PhD in computer sci-
ence from UIUC. Contact him at akhil.langer@intel.com.

ESTEBAN MENESES is an assistant professor in the School of Computing
at the Costa Rica Institute of Technology and the Costa Rica National High
Technology Center. His research interests include reliability in HPC systems,
parallel-objects application design, and accelerator programming. Meneses
received a PhD in computer science from UIUC. He is a member of ACM. Contact
him at esmeneses@tec.ac.cr.

HARSHITHA MENON is a doctoral student in the Department of Computer
Science at UIUC. Her research interests include scalable load-balancing algo-
rithms and adaptive runtime techniques to improve large-scale application per-
formance. Menon received an MS in computer science from UIUC. Contact her at
gplkrsh2@illinois.edu.

OSMAN SAROOD is a software engineer at Yelp. His research interests include
performance optimization for parallel and distributed computing under power
and energy constraints. Sarood received a PhD in computer science from UIUC.
Contact him at osarood@yelp.com.

EHSAN TOTONI is a research scientist at Intel Labs. His research interests
include programming systems for HPC and big-data analytics. Totoni received
a PhD in computer science from UIUC. He is a member of IEEE and ACM. Contact
him at ehsan.totoni@intel.com.

LAXMIKANT V. KALÉ is a professor in the Department of Computer Science at
UIUC. His research interests include aspects of parallel computing, with a focus
on enhancing performance and productivity through adaptive runtime systems.
Kalé received a PhD in computer science from Stony Brook University. He is a
Fellow of IEEE and a member of ACM. Contact him at kale@illinois.edu.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

