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In a design based on the Charm++ parallel programming 
framework, an adaptive runtime system dynamically interacts 
with a datacenter’s resource manager to control power by 
intelligently scheduling jobs, reallocating resources, and 
reconfiguring hardware. It simultaneously manages reliability 
by cooling the system to the running application’s optimal 
level and maintains performance through load balancing.

High-performance computing (HPC) data-
centers and applications are facing major 
challenges in reliability, power management, 
and thermal variations that will require dis-

ruptive solutions to optimize performance. A unified 
system design with a smart runtime system that inter-
acts with the system resource manager will be impera-
tive in addressing these challenges. The system would be 
part of each job, but interact with an adaptive resource 

manager for the whole machine. Studies have shown that 
a smart, adaptive runtime system can improve efficiency 
in a power-constrained environment,1 increase perfor-
mance with load-balancing algorithms,2 better control 
the reliability of supercomputers with substantial ther-
mal variations,3 and configure hardware components to 
operate within power constraints to save energy.4,5

Although smart runtime systems are a promising 
way to overcome exascale computing barriers, there is 

Power, Reliability,
and Performance: One 
System to Rule Them All

Previous Page | Contents  | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

Previous Page | Contents  | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND



O C T O B E R  2 0 1 6 31

no integrated solution that combines 
past research into a single system for 
optimizing performance across mul-
tiple dimensions, such as load balanc-
ing and power use. To fill that need, 
we have developed a comprehensive 
design based on Charm++, a parallel 
programming framework in C++ that 
has been in use since 2001. Our design 

› lets the datacenter resource 
manager dynamically interact 
with the individual job’s run-
time system, 

› optimizes for both performance 
and power consumption, and 

› enables operation in an environ-
ment with system failures under 
constraints supplied by users or 
administrators. 

At Charm++’s core is an adap-
tive runtime system that enables the 
dynamic collection of performance 
data, dynamic task migration (load 
balancing), and temperature restraint 
and power capping with optimal per-
formance. The ability to migrate tasks 
and data from one processor to any 
other available processor is critical to 
solving conflicting requirements, such 
as application load imbalances across 
processors, high fault rates, power and 

energy constraints, and thermal varia-
tions. Balance is essential in address-
ing these concerns because of potential 
conflicts among them—for example, 
applying power and temperature con-
straints can compromise performance 
and lead to a load imbalance.

Research has shown that Charm++ 
enhances user productivity and allows 
programs to run portably from small 
multicore computers (laptops, phones) 
to the largest supercomputers.6 Users 
can easily expose and express much 
of the parallelism in their algorithms 
while automating many of the require-
ments for high performance and scal-
ability. Because of these strengths, 
Charm++ has thousands of users across 
a wide variety of computing disciplines 
with multiple large-scale applications, 
including simulation programs such 
as Nanoscale Molecular Dynamics—
formerly Not (just) Another Molecular 
Dynamics program—for molecular 
dynamics, ChaNGa for cosmology, and 
OpenAtom for quantum chemistry.6

In our design, the Charm++ adap-
tive runtime system intelligently 
schedules jobs and reallocates job 
resources when utilization changes, 
controls reliability by a temperature-
aware module that cools the system 
to an application-based optimal level, 

and reconfigures the hardware with-
out sacrificing performance.

To evaluate our solution, we con-
ducted several efficiency tests. Our 
results show that the adaptive run-
time system’s capabilities result in 
greater power efficiency for common 
HPC applications.

INTERACTION FLOW
Figure 1 shows how Charm++’s adap-
tive runtime system interacts with 
the resource manager to address 
power, reliability, and performance 
issues. Datacenter users are focused 
on job performance. System admin-
istrators are tasked with guarantee-
ing good performance to individual 
jobs, yet ensuring that total power 
consumption does not exceed the cen-
ter’s allocated budget and that overall 
job throughput remains high despite 
node failures and thermal variations. 
Charm++ addresses both concerns. The 
job scheduler strives to allocate system 
resources to jobs optimally according 
to their power and performance char-
acteristics, and the runtime system 
implements the scheduler’s decision 
by shrinking or expanding the num-
ber of nodes assigned and dynamically 
balancing load as needed. The runtime 
system can turn on or off or reconfigure 

Users

Runtime system

Processors

Runtime systemJob
submission

Resource manager

Execution framework
• Launches jobs
• Shrinks or expands jobs
• Cleans up jobs
• Applies power caps
• Configures hardware

System-level constraint
Job allocation and termination decisions

System administrator

Job profiler Scheduler
• Models power-aware 
   performance
• Selects hardware 
   configuration

• Selects jobs
• Allocates 
   resources

FIGURE 1. Interacting components in our design based on the Charm++ framework. The two major interacting components are the 
resource manager and an adaptive runtime system. Our design achieves the objectives of both datacenter users and system administra-
tors by allowing dynamic interaction between the system resource manager or scheduler and the job runtime system to meet system-
level constraints such as power caps and hardware configurations.
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hardware components without impact-
ing application performance, as long as 
vendors provide adequate hardware 
control.

CHARM++ ATTRIBUTES
Charm++ has three main attributes. 
The first is overdecomposition, in which 
the programmer divides an applica-
tion’s computation requirements into 
small work and data units so that 
the number of units greatly exceeds 
the number of processors. The sec-
ond attribute is message-driven execu-
tion, which involves scheduling work 
units on the basis of when a message 
is received for them. The third attri-
bute, migratability, is the ability to 
move data and work units among pro-
cessors. These three attributes enable 
Charm++ to provide many useful fea-
tures including dynamic load balanc-
ing, fault tolerance, and job mallea-
bility (shrinking or expanding the 
number of processors the application 
is running on).

The framework collects informa-
tion about the application and system 
in a distributed database including 
processor loads, each object’s load, 
communication patterns, and core 

temperatures. With a large number of 
processors, centralized data collection 
becomes a performance bottleneck, so 
data collection and decision making 
are hierarchical. The adaptive runtime 
system’s modules use this information 
to make decisions such as improv-
ing load balance, handling faults, and 
enforcing power constraints.

Load balancing
One critical Charm++ feature is a 
measurement-based mechanism for 
load balancing that relies on the 
principle-of-persistence heuristic. 
This principle states that, for over-
decomposed iterative applications, the 
task’s or object’s computation load and 
communication pattern tend to persist 
over time. The heuristic uses the appli-
cation’s load statistics collected by the 
runtime system, which provides an 
automatic, application-independent 
way of obtaining load statistics with-
out any user input. 

If desired, the user can  specify pre-
dicted loads and thus override system 
predictions. Using the collected load 
statistics, Charm++ executes a cho-
sen load-balancing strategy to deter-
mine a possible objects-to-processors 

mapping and then carries out migra-
tions on the basis of this mapping. 
A suite of load balancers includes 
several centralized, distributed, and 
hierarchical strategies. 

Charm++ can also automate the 
decision of when to call the load bal-
ancer,7 predict future load, and make 
load-balancing decisions. Load bal-
ancing is automatically triggered 
when Charm++ detects an imbalance 
and load-balancing benefits are likely 
to exceed its overhead.

Fault tolerance
Charm++ implements both proactive 
and reactive techniques for ensur-
ing reliability.8 In a proactive strat-
egy, the runtime system evacuates all 
objects from a node that a monitor-
ing system predicts will soon crash. 
Because failure prediction is not com-
pletely accurate, reactive techniques 
recover the information lost after a 
failure brings down a system node. 
Because recovery techniques are 
based primarily on checkpoint and 
restart, Charm++ routinely stores 
the application’s global state so that 
it can retrieve a prior global state 
during recovery.

Job malleability
The ability of Charm++ objects to 
migrate enables job malleability, in 
which a job can shrink (decrease) or 
expand (increase) the number of nodes 
it is running on. Job malleability does 
not require any additional code from 
the application developer;9 rather, an 
external command or internal deci-
sion by the runtime system can trigger 
shrink or expand operations. 

During a shrink operation, the run-
time system moves objects from pro-
cessors that will no longer be used and 
returns them to the resource manager. 

Processor 2

Local
manager

Power cap

Temperature

Objects

Shrink or expand
decision

Power caps

Resource
manager

Migration and
load-balancing

module

Power-resiliency
module

Processor 1

Local
manager

Power cap

Temperature

Objects

Processor load information

Processor temperatures
Migration decisions

FIGURE 2. Components of the adaptive runtime system and their interaction with the 
resource manager. Charm++ has three main components: the local manager and the 
load-balancing and power-resiliency modules.

___________________
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In an expand operation, the runtime 
system launches new processes on the 
additional processors and distributes 
objects from current processors to the 
newly allocated ones. In addition to 
moving objects, the runtime system 
must adjust its distributed data struc-
tures, such as spanning trees and loca-
tion managers.

Figure 2 shows Charm++’s inter-
nal components and functions. Each 
processor has a local manager (LM) 
that controls objects residing on that 
processor and interaction with other 
Charm++ components. The LM sends 
its total computational load and the 
computational load of each of its 
objects to the load-balancing module 
(LBM) and sends the CPU tempera-
ture to the power-resiliency module 
(PRM). The LBM makes load-balancing 
decisions and redistributes load in 
response to shrink or expand com-
mands from the resource manager. It 
also communicates object-migration 
decisions to the respective LMs. 

The PRM ensures that the CPU tem-
peratures remain below the tempera-
ture threshold specific to that job, con-
trolling temperature by adjusting the 
CPU’s power cap. When a processor’s 
temperature is above the threshold, 
the PRM lowers its power cap; when 
the temperature is well below the 
desired threshold, it increases the cap, 
thus ensuring that the total power the 
job consumes remains below that job’s 
allocated power budget. Jobs do not 
have administrator rights to constrain 
their CPUs’ power consumption, so 
the PRM must communicate any new 
power caps to the resource manager, 
which then applies them to the CPUs.

HANDLING POWER LIMITS
The US Department of Energy has 
set a power limit of 20 MW for an 

exascale supercomputer that it is 
willing to purchase and deploy.10

Such a limit underlines the need for 
power-aware resource management 
along with job malleability.

With recent advances in processor 
hardware design, users can employ soft-
ware such as Intel’s Running Average 
Power Limit (RAPL) driver to control the 
power the processor consumes. Power 
capping forces the processors to run 
below their thermal design power (TDP)—
the maximum power a processor can 
consume. A node’s TDP also determines 
the maximum number of nodes that a 
datacenter with a power budget can use. 

Overprovisioning
With power capping, the datacenter 
can control the nodes’ power consump-
tion and thus have additional nodes 
while remaining within the power 
budget—a practice referred to as over-
provisioning.11 Research shows that an 
increase in the power allocated to a 
processor does not yield a proportional 
increase in job performance because 
jobs react differently to an increase in 

power allocated to the CPU.1 The idio-
syncrasies in a job’s performance based 
on allocated CPU power points to the 
possibility of running different appli-
cations at different power levels. Over-
provisioned systems can significantly 
improve the performance of appli-
cations that are not sensitive to CPU 
power by capping CPU power to values 
well below their TDP and adding more 
nodes to get the scaling benefits. 

Power-aware speedup
An application’s response to a CPU 
power limit can be captured by the 
application’s power-aware speedup12—
the ratio of the job’s execution time on 
a CPU capped at a certain power level 
compared to the execution time of the 
same job when running on the lowest 
power level the CPU allows.1 The higher 
the power-aware speedup, the more the 
sensitive the application is to changes 
in the power allocated to the CPU.

Figure 3 shows the power-aware 
speedups for four HPC applications 
with different characteristics running 
under different CPU power caps.1
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FIGURE 3. Power-aware speedups of four applications running on 20 nodes. LeanMD, 
a molecular dynamics application, has the highest power-aware speedup because it 
is the most CPU-intensive application. Jacobi2D, a stencil application, has the lowest 
speedup because it is memory intensive. The many minor deviations from monotonic 
behavior (lack of a smooth curve) are likely due to external factors such as OS jitter and 
network delays.
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Power-Aware Resource Manager
The Power-Aware Resource Manager 
(PARM),1 developed at the Parallel Pro-
gramming Laboratory of the Univer-
sity of Illinois at Urbana–Champaign, 
is an essential part of our Charm++-
based design. PARM makes schedul-
ing decisions by selecting jobs and 
their resource configurations (power 
budget and compute nodes) such that 
the total power-aware speedup of run-
ning jobs is maximized. It dynamically 
interacts with the runtime system, 
hardware, user, and system admin-
istrator to optimally distribute avail-
able resources to the jobs while stay-
ing under the datacenter’s total power 
budget and not exceeding the allow-
able number of computational nodes. 
Similar to the resource manager in 
Figure 1, PARM has three components. 

Job profiler. Before a job is added to 
the scheduler queue, PARM profiles it 
to develop a power-aware model with 
strong scaling that is the basis for cal-
culating power-aware speedups. This 

profiling mechanism has negligible 
overhead; the application needs to run 
only for a few iterations for PARM to 
get the necessary data points.

Scheduler. PARM implements its 
strategy for optimizing resource 
allocation as an integer linear pro-
gram (ILP) that aims to maximize 
the power-aware speedup of jobs run-
ning under power constraints. The 
arrival of a new job or termination of 
a running job triggers PARM’s sched-
uler and reoptimizes scheduling and 
resource-allocation decisions. The ILP 
is fast enough to run frequently with 
negligible overhead.1

Execution framework. This com-
ponent implements the scheduler 
decisions by launching jobs, sending 
shrink/expand decisions to the run-
time system of the jobs, and by apply-
ing power caps on compute nodes. Job 
runtime systems interact with the exe-
cution framework to convey job termi-
nation, completion of shrink/expand 

operations, and any changes to CPU 
power caps as determined by the run-
time system’s PRM module. 

Comparison with other resource 
managers. As Figure 4 shows, 
PARM outperforms the Simple Linux 
Utility for Resource Management 
(SLURM; now the Slurm Workload 
Manager)—an open source power-
unaware utility that many super-
computers use. The malleable ver-
sion of PARM (PARM-M) reduced 
average job completion time by up to 
41 percent relative to SLURM. PARM 
gives less performance benefit over 
SLURM with SetH as compared to 
SetL because reducing CPU power 
greatly affects performance for jobs 
with high power sensitivity (SetH). 

IMPROVING RELIABILITY
Checkpoint and restart is the most 
popular mechanism for providing 
fault tolerance in high-performance 
computers and is used to recover work 
from the stored checkpoint before the 
failure. An application’s total execu-
tion time T on an unreliable system is 
given by 

T = Tsolve + Tcheckpoint + Trecover  + Trestart,

where Tsolve represents the total 
effort required to solve the problem,  
Tcheckpoint accumulates all the time 
spent on saving the system check-
points, Trecover represents the total 
lost work from system failures that 
must be recovered, and  Trestart rep-
resents the amount of time required 
to resume execution after a crash 
(usually a constant value). 

A system using checkpoint and 
restart must choose an appropriate 
checkpoint period, denoted by . The 
value of  has a delicate balance. A 
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FIGURE 4. Comparison of average job-completion times with the Simple Linux Util-
ity for Resource Management (SLURM; now the Slurm Workload Manager) and the 
Power-Aware Resource Manager (PARM) in rigid (R) and malleable (M) versions. Each 
bar represents average completion time as a percentage of the average completion time 
using SLURM. In PARM-R, the node allocation decision cannot be changed once the job 
starts running. With PARM-M, in contrast, the nodes allocated to a running job can either 
decrease or increase (shrink or expand). SetL has jobs with low sensitivity to CPU power, 
and SetH has jobs with high sensitivity. 

___________________
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long value (low checkpoint frequency) 
decreases Tcheckpoint, but might increase 
Trecover. Conversely, a short value (high 
checkpoint frequency) could reduce 
Trecover, but might enlarge Tcheckpoint.
The optimum value of  strongly depends 
on the system’s mean time between fail-
ures (MTBF). 

An electronic component’s MTBF is 
directly affected by the component’s 
temperature. That relation is usu-
ally exponential, and there is some 
experimental evidence that a 10 C
increase in a processor’s temperature 
decreases its MTBF by half.3 There-
fore, system reliability can be con-
trolled by restraining the temperature 
of its components. The cooler the sys-
tem runs, the more reliable it is, but 
the slower it runs because CPU power 
is constrained to keep temperature 
down. This interplay between power 
management and reliability has been 
studied in other contexts.13

The runtime system allows each 
core to consume the maximum allow-
able power  as long as it is within the 
maximum temperature threshold. If the 
temperature any core exceeds the max-
imum threshold, power is decreased, 
causing the core’s temperature to fall. 
However, this can degrade the perfor-
mance of tightly coupled applications 
because of thermal variations. The 
LBM will automatically detect any 
load imbalance and make the load-
balancing decisions.2

The runtime system must strike 
a balance in the temperature at 
which each component should be 
restrained. Moreover, that balance 
depends on the application. Different 
codes generate different thermal pro-
files on the system at different stages 
of the application. Some codes are 
more compute intensive and tend to 
heat up the processors more quickly. 

Appropriate, application-based tem-
perature thresholds are stored as 
part of the job profiler in Figure 1. In 
the end, the runtime system aims to 
reduce the application’s total execu-
tion time in light of the system’s MTBF 
and power limitations.3

Figure 5 shows the percentage 
reduction in execution time after con-
straining core temperatures to dif-
ferent thresholds for two different 
applications. The reduction is calcu-
lated relative to the baseline case in 
which processor temperature is uncon-
strained. Figure 5 also shows the ratio 
of MTBF for the machine with our 
design versus the MTBF for the base-
line case. For example, by restraining core 
temperatures to 42 C for Jacobi2D, the 
machine’s MTBF increased 2.3 times 
while the execution time decreased 
by 12 percent relative to the baseline 
case. The inverted U shape of both 
curves strongly suggests a tradeoff 
between reliability (MTBF) and the 
slowdown induced by the tempera-
ture restraint.

The resource manager sends the 
runtime system’s PRM the upper 
bounds of the temperatures that 
honor the system’s power envelope (as 
shown in Figure 2). These tempera-
ture values are input to an internal 

resilience component in PRM and 
are changed according to algorithms 
that optimize performance and con-
sider the system’s MTBF and the run-
ning application’s characteristics. 
The output will be propagated to 
additional PRM components, which 
will consolidate the final power lim-
its and communicate them back to 
the resource manager. 

As this interaction sequence 
implies, a dynamic runtime system 
is fundamental to controlling sys-
tem reliability while simultaneously 
adhering to power limits. Because 
thermal variations are dynamic, a 
reactive runtime system efficiently 
responds to those changes and pro-
vides a healthy balance between sys-
tem performance and reliability. It 
also allows users to address a broader 
range of reliability concerns, includ-
ing how to correct soft errors (such as 
bit flips caused by high-energy parti-
cles) in tandem with hard errors.14 Cir-
cuits using near-threshold voltage will 
introduce a more complex scenario 
with higher performance variability 
and a higher transient-failure rate. 

DYNAMIC CONFIGURATION
The runtime system can exploit avail-
able hardware controls for power 
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FIGURE 5. Reduction in execution time and change in mean time between failures 
(MTBF) for different temperature thresholds. Comparison is relative to a baseline case  
in which core temperature is unconstrained.

Previous Page | Contents  | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

Previous Page | Contents  | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND



36 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

ENERGY-EFFICIENT COMPUTING

management, such as frequency scal-
ing and power capping. However, 
greater power savings are possible with 
more runtime control over hardware 
components. By taking advantage of 
the running application’s properties, 
the runtime system can turn off or 
reconfigure many components with-
out a significant performance penalty.

Ideally, high-performance com-
puting systems should be energy pro-
portional; the hardware components 
should consume power and energy 
only when their functionality is being 
used. However, network links are 
always on, whether or not they are 
actually being used. Moreover, pro-
cessor caches consume large amounts 
of power, even when they are not 
improving the application’s perfor-
mance. The runtime system approach 
can save this wasted energy by dynam-
ically reconfiguring hardware as the 
application requires.

Caches consume up to 40 percent of 
a processor’s power.4 Much of that con-
sumption can be avoided by turning 
off some cache banks when doing so 
would not degrade application perfor-
mance. Many common HPC applica-
tions do not use caches effectively. For 
example, molecular dynamics appli-
cations typically have small working 
data sets and do not need the large 
last-level caches. Grid-based physical 
simulation applications typically have 
very large data sets that do not fit in 
caches, and the data reuse in cache is 
minimal. The hardware cannot pre-
dict this application behavior.

To address this concern, we devel-
oped an approach in which the run-
time system uses profiling data to 
reconfigure the cache to save power 
without significant performance loss. 
Using a set of representative HPC 
applications, we demonstrated that, 
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