
Energy-optimal Configuration Selection for Manycore Chips with Variation

Akhil Langer†, Ehsan Totoni†, Udatta Palekar‡ and Laxmikant V. Kalé∗

†Intel Corporation
{akhil.langer, ehsan.totoni}@intel.com

‡College of Business, ∗Department of Computer Science
University of Illinois at Urbana-Champaign

{palekar, kale}@illinois.edu

Abstract

Operating chips at high energy-efficiency is one of the major challenges for modern large scale supercomput-
ers. Low voltage operation of transistors increases the energy efficiency but leads to frequency and power
variation across cores on the same chip. Finding energy-optimal configurations for such chips is a hard
problem. In this work, we study how integer linear programming techniques can be used to obtain energy
efficient configurations of chips that have heterogeneous cores. Our proposed methodologies give optimal
configurations as compared to competent but sub-optimal heuristics while having negligible timing overhead.
The proposed ParSearch method gives up to 13.2% and 7% savings in energy while causing only 2% in-
crease in execution time of two HPC applications - miniMD and Jacobi, respectively. Our results show that
integer linear programming can be a very powerful online method to obtain energy-optimal configurations.

Keywords: Energy, Power, Optimization, Multicore chips, Low Voltage Computing, Near Threshold
Voltage Computing, Process Variation, Heterogeneity, Integer Programming, Quadratic Integer
Programming

1. Introduction

Future microprocessor chips are expected to have variations across the many cores because of the variation
in the CMOS manufacturing process. The variation across the chip is expected to further increase with low
voltage operation. Chips with low voltage operation have high energy efficiency that is required to build
an exascale machine with a power budget of 20MW set by the U.S. Department of Energy. Therefore, it
is accepted in the High Performance Computing (HPC) community that there will be heterogeneity across
cores of the future generation chips [3]. Frequency and static power consumption of the cores on the same
chip can be very different. Low voltage operation can cause up to 50% variation in frequency across the
cores of the same chip. Variation across multiple cores on the same chip can also be obtained on the recent
Intelr Haswell chip which allows independent core-frequency scaling, that is, various cores on the same
chip can be controlled by the user to run at different frequencies. However, unlike the Intelr Haswell chip,
heterogeneity across the cores in a chip with low voltage operation will be forced on to the user (unless all
the cores are made to run at a minimum frequency, which will be a very inefficient design).

Energy is one of the biggest challenges faced by the HPC community. Data centers worldwide consumed
energy equivalent to 235 billion KWh in 2010, which is 2% of total US electricity consumption. CPU
accounts for about 65% of the total power consumption of a supercomputer [55]. Therefore, minimizing
CPU energy consumption is critical for overall savings in the energy costs of a data center. In this work,
we focus on intelligent selection of the cores on a chip with variation for running parallel HPC applications
such that the energy consumption of the chip is minimized given execution time constraints. To provide the
necessary background, we discuss the variation in future chips, the programming systems that can mitigate
the impact of heterogeneity on application performance, and performance modeling of the chip in the wake

Report May 20, 2016

of heterogeneity. We formulate the energy minimization problem with constraints on execution time as
a constrained optimization problem. The problem is a cubic integer programming problem and is hard to
solve. This paper extends the material presented in our previous publication [35] by developing new methods
that give competitive configurations with very high accuracy while taking magnitudes of order lesser time
to obtain the solution. We propose two methods namely the TransformedQP [35] and the ParSearch
method to solve this problem. We show that while the former method gives optimal configurations, it takes
more time to obtain the solution. On the other hand, ParSearch method gives near-optimal configurations
(that are within 99.8% of the optimal configuration in energy efficiency) and has very small overhead as
compared to TransformedQP method. We also propose a very fast GoodCores heuristic that gives
competitive configurations in cases when the allowed execution time penalty on the application is high. Our
results show that intelligent selection of cores using integer programming can lead to significant savings in
energy costs with very small increase in execution time, while incurring negligible overhead to obtain the
solution.

The paper is divided into 7 sections. In Section 2, we perform a survey of literature on energy optimiza-
tions for HPC workloads. In Section 3, we discuss process variation that leads to heterogeneity across the
cores on a chip, and performance modeling for such chips. The proposed methods, TransformedQP and
ParSearch, for energy minimization are discussed in Section 4. The evaluation setup is given in Section 5,
which is followed by results and their analysis in Section 6. Finally, we conclude the paper with conclusions
and future work in Section 7.

2. Related Work

In the past, the emphasis has been on minimizing the completion times of the HPC applications. How-
ever, such solutions could have excessive energy consumption and hence high energy costs for the data
centers. Consequently, minimizing energy consumption has become a major challenge for high performance
computing data centers, especially with the increase in the size of the data centers. Hence, minimizing
energy consumption has been a subject of intensive research over the past several years.

Dynamic power consumption of a chip is known to be a function of the frequency of the chip [23].
Applications do not yield proportionate improvement in performance with the increase in frequency of the
chip, and therefore frequency is scaled down to reduce the power consumption of the chip while having
tolerable impact on the completion time of the application. Modern processor architectures allow users to
control the frequency of the chip through DVFS modules. There have been many studies on the use of DVFS
for energy efficient computing for HPC [44, 38, 48, 27] and multicore [8] workloads. Rizvandi et al [42] make
some observations on optimal frequency selection in DVFS-based energy consumption minimization. Etinski
et al [20] present a model that predicts the upper bound on performance loss due to frequency scaling. They
study how sensitivity of the application to frequency scaling together with cluster characteristics determines
the effectiveness of DVFS for energy consumption optimization. Wang et al [56] propose an energy aware
scheduling heuristic that studies the slack time of non-critical tasks, and extends their execution time (by
using DVFS) to save energy without affecting the overall execution time of the job. Alonso et al [9] propose
methods of improving power efficiency of dense linear algebra algorithms on multi-core processors using
slack control. Vishnu et al [54] leverage DVFS to use the slack in one-sided communication primitives of
PGAS for energy efficiency.

Lower core frequency also leads to lower core temperatures. DVFS has also been used for controlling the
temperature of the chips, which reduces the temperature of the hot spots, that is, the nodes with highest
temperature in the data center. Lower temperature of the hot spots means reduction in the cooling energy
required to keep the temperatures of the hot spots at the room temperature, thereby reducing the cooling
energy costs of the data center. There has been a significant amount of work on various strategies for
reducing the cooling energy of HPC and non-HPC data centers [10, 50, 41, 11, 57, 58, 49].

Energy efficiency has been studied extensively in the context of large scale cloud computing as well [59,
52]. The richness of the literature on energy optimization for data centers establishes the importance of this
work.

2

Recent processor architectures, such as IBM Power6 [13], IBM Power7 [15], AMD Bulldozer [4], Intelr

Sandybridge [43], provide the user with the ability to control the power consumption of CPU, DRAM,
etc. The ability to constrain the power consumption of nodes provides the flexibility to add more nodes
to the data center while remaining within the same power budget. This is also called overprovisioning. In
our previous work ([45, 46]), we have shown significant improvement in performance of a data center by
using overprovisioning under a strict power budget. We have also shown the benefit of using integer linear
programming methods for improving the performance of applications on chips with low voltage operation
under a strict power budget [51]. In contrast, the focus of this work is on minimizing the energy consumption
of the chips, which is an even harder problem to solve because of the cubic and quadratic terms involved in
the formulation of the problem.

Previous work (e.g. [33]) has proposed heterogeneous chip designs that have custom designed cores for
a given set of target workloads. Different cores are designed to cater to different classes of applications.
On the contrary, heterogeneity in the low voltage chips is inherent in the manufacturing process. Integer
linear programming has been used in the past in the context of homogeneous multiprocessor chips. Kadayif
et al [28] use integer linear programming for determining the optimal number of cores that will be used in
executing each nest in the code of array-intensive applications under energy and performance constraints.
Power Aware Resource Manager, PARM, proposed by Sarood et al [45] uses Integer Linear Program (ILP)
to schedule and determine the optimal allocation of power and compute nodes to jobs submitted to a data
center. Venugopalan et al [53] propose the use of ILP for optimal task scheduling on multiprocessors. To
the best extent of our knowledge, energy efficiency in the context of chips with low voltage operation has
not been addressed before.

3. Preliminaries

In this section, we review the causes of heterogeneity for future generation chips, and its impact on
performance of parallel applications, such as load imbalance. We then briefly study some of the program-
ming systems that can overcome the impact on applications performance by performing load balancing
of over-decomposed tasks. Finally we discuss some performance models that can predict an application’s
performance in such a heterogeneous environment. The performance models will be used in the next sec-
tion (Section 4) for optimal selection of cores for energy-efficient computing. More details about these
preliminaries can be found in previous work [51].

3.1. Process Variation

Operating at low voltage leads to increase in energy-efficiency of the chip. High energy efficiency of
operation at low voltages has been established for 65, 45, 32, 22 nm technologies [32, 7, 25, 31]. Kaul et
al [32, 30] show that as the supply voltage of the transistor is reduced, the energy efficiency increases, and
is maximum near the threshold voltage of the transistor. At threshold voltage, energy efficiency is 10×
as compared to at the nominal supply voltage. However, as the supply voltage reaches near the threshold
voltage, even a small change in the supply voltage leads to large spread in the frequency of operation.
Therefore, different cores will be operating at different frequencies in a manycore chip. Leakage power also
varies significantly across chips. More challenges associated with low voltage operation can be found in [30].
Nearest frequency of operation is assigned to these cores as shown in Figure 1.

3.2. Programming Systems

HPC applications are highly synchronized applications. For example, in many applications all the pro-
cessors synchronize after every iteration (or every few iterations) to exchange neighbor boundaries. Hence,
the speed of execution of a parallel HPC application is only as fast as the speed of the slowest processor. Of
course, this is true only if the workload is distributed equally to the processors. When the processors have
different speeds, the work load assigned to a core should be proportionate to its speed of operation. In order
to do so, the total work has to be over-decomposed into many small tasks (more than the number of cores),
such that it can be evenly distributed to the cores in proportion to their frequencies. It is not always possible

3

0.8f	 f	 0.5f	 0.6f	

0.7f	 0.8f	 f	 0.8f	

f	 0.7f	 0.6f	 0.9f	

0.5f	 0.8f	 0.5f	 f	

Figure 1: An example of core frequencies in a manycore chip with variation across cores.

to ensure load balance in such a situation. For example, if there are two processors with frequencies f and
0.75f, and there are three equal sized tasks, then it is impossible to achieve perfect load balance. However,
as the total number of tasks increases, the load imbalance decreases (provided an intelligent algorithm for
load distribution is being used). Previous work [51] has shown that with an over-decomposition level of 16
(that is, the number of tasks to number of cores ratio is 16), the load imbalance can be contained to within
2-6% of the total execution time of the application. There are many parallel programming languages that
over-decompose the total work into many small tasks. Some examples of such distributed parallel program-
ming languages are Charm++ [6], AMPI [26], etc. For shared memory machines, Cilk [14], OpenMP [19],
etc. are some examples of programming models in which the work is divided into chunks (for example,
iterations in for loops in OpenMP) that can be dynamically assigned to processors during runtime.

For our proposed method, no changes are required either in the programming language or in the code
(except possibly the addition/use of a variation aware load balancer).

3.3. Performance Modeling

In this section, we discuss the models to predict the performance (execution time or instructions per
cycle) of a parallel HPC application on any configuration of a heterogeneous manycore chip. A configuration
is a subset of the cores on the chip on which the parallel application will be executed. Other cores on the chip
are turned-off so that they do not consume any static power. A good configuration of the chip for a given
HPC application minimizes the total energy consumption during the execution period of the application.
It is practically infeasible to evaluate all possible configurations of the chip for every application because
the total number of configurations is combinatorially large. For example, when the number of cores on the
chip is 36, the total number of possible configurations is 236 − 1 ≈ 6.87e10. Therefore, performance models
are required that can predict the performance of an application for any configuration. The model should
require minimal profiling information of the application to be collected, so that the overhead of developing
the performance models is negligible.

We now review the performance models for manycore heterogeneous chips from previous work [51]:
Model 1: All the cores can be individually profiled for the application, and the performance for a given
configuration could be modeled as the sum of the performance of the individual cores in the configuration
(c).

S =
∑
i∈c

si (1)

where, si is the performance (instructions per cycle) of core i for the focal application when the application
was run only on core i, and S is the predicted performance (instructions per cycle) for configuration c for
the focal application. This model will predict performance accurately only for computationally intensive
applications in which there is no memory contention. For memory-intensive applications, this performance
model will fail to predict the performance for a configuration because it just adds the core performance
which was obtained when they were running individually, and does not model the contention for the shared
resources, e.g. memory, when multiple cores are running simultaneously.

4

Model 2: The application execution time is divided into two components: Tcpu corresponding to CPU
time and Tmem corresponding to memory time (as in [24, 18, 17, 47]). And the performance is modeled as

T =
Tcpu∑
i∈c

fi
+ Tmem (2)

where, fi is the frequency of core i, and T is the predicted execution time of the application. The weakness
of this model is that it fails to incorporate the number of cores that are accessing the memory, and treats
the memory time as constant irrespective of the cores that are accessing the memory.

Model 3: In this model, we construct as many model functions as there are number of cores on the
chip. There is one model for all the configurations with the same number of cores. For instance, if there are
36 cores on a chip, 36 functions are developed. In this way, this model incorporates the number of active
cores in performance prediction. Each of these functions is a linear function of the sum of frequencies of the
cores in the configuration. The performance (instructions per cycle) function for all the configurations with
k cores is modeled as:

S = ak(
∑
i∈c

fi) + bk (3)

where, ak, bk are line constants for all configurations with k cores, and S is the instructions per cycle of
the configuration. Only two performance data samples are required to get the value of the constants, ak
and bk, for this function. These samples correspond to instructions per cycle for any two configurations
with k cores. Since there are n functions, 2n samples are sufficient to develop the complete model for an
application (although more samples can increase the accuracy of the model). The overhead of sampling
the data to generate the model is negligible as compared to the execution time of HPC applications, which
can be from hours to days. In previous work [51], it is shown that the prediction accuracy of Model 3 is
very high. The average prediction error in performance is less than 1.6%, and 0.7% for a computationally
intensive and a memory intensive application, respectively. Simulated performance was obtained using the
Sniper simulator, discussed in detail in Section 5. Similar to performance, the dynamic power consumption
of a configuration could be modeled accurately using Model 3, that is,

P = Ak(
∑
i∈c

fi) +Bk

where P is the dynamic power of configuration c, Ak and Bk are line constants. It has been shown in
previous work [51] that the maximum prediction error of Model 3 for dynamic power is less than 2%.

4. Energy Optimization Approach

In this section, we describe our approach for optimizing the energy consumption during application ex-
ecution. The total energy is computed as the power consumption integrated over the duration of execution
of the application, that is, power consumption multiplied by the execution time of the application. We use
Model 3, described in the previous section, to model the execution time and dynamic power consumption
of any configuration. According to Model 3, the linear function for performance and dynamic power con-
sumption of a configuration depends on the number of cores in the configuration. Therefore, the energy
consumption can be defined as

N∑
k=1

(nk ∗ (apk

∑
i

xifi + bpk +
∑
i

sixi) ∗ (atk
∑
i

xifi + btk))

where, nk is a binary variable indicating whether the selected configuration has k cores (nk can be 1 only

for one value of k) , xi is a binary variable indicating whether ith core is selected, apk

∑
i

xifi + bpk is the

5

Table 1: Constrained Optimization Program Terminology

Symbol Description

n total number of cores on the chip
c a configuration
k an index variable used to represent number of cores in a configuration
nk binary variable indicating whether the selected configuration has k cores
xi a binary variable indicating whether core i is selected or not in a configuration
fi frequency of core i
f a variable that equals the sum of the frequencies of the cores in the selected configuration,

that is, f =
∑
i

xifi

si static power consumption of core i
atk, b

t
k line constants for performance model of configurations with k cores

apk, b
p
k line constants for dynamic power model of configurations with k cores

tmin minimum execution time of the application across all the configurations on the chip
tp penalty in execution time, maximum allowed execution time is (1 + tp

100)× tmin

dynamic power consumption of the configuration, si is the static power consumption of core i,
∑
i

sixi is

the total static power consumption, and atk
∑
i

xifi +btk is the execution time of the application. The energy

minimization problem can then be formulated as a constrained optimization problem. The formulation is
given in Equations (4)-(8) (Program 1). Terminology used in this section is defined in Table 1.

Objective Function

min

n∑
k=1

nk ∗ (apk

n−1∑
i=0

xifi + bpk +

n−1∑
i=0

sixi) ∗ (atk

n−1∑
i=0

xifi + btk) (4)

Select One Value of k

n∑
k=1

nk = 1 (5)

Total Number of Cores Equals k

n−1∑
i=0

xi =

n∑
k=1

nkk (6)

Variables Range

∀i ∈ [0, n), xi ∈ {0, 1} (7)

∀k ∈ (0, n], nk ∈ {0, 1} (8)

Program 1: Original optimization program for minimizing energy consumption. The
objective function has cubic terms.

Constraints in the above formulation are linear constraints that ensure that a valid configuration is

6

selected. However, the objective function has a cubic expression. This constrained optimization problem can
be readily solved by solving n quadratic integer programs. Each of these quadratic integer programs chooses
the best configuration amongst all the configurations with the same number of cores. The best performing
configuration is then chosen from amongst the optimal configurations returned by the n quadratic integer
program optimizations. In this way, the global optimal configuration can be found by optimizing n quadratic
programs (Algorithm 1). The quadratic program that selects the best configuration from amongst all the
configurations with k cores is given below in Equations (9)-(11) (Program 2).

Algorithm 1 Algorithm for obtaining the globally optimal configuration by solving n quadratic programs

1 for k ∈ [1, n]:
2 //Obtain the best configuration amongst all configurations with k cores
3 Ck = EnergyQP(k)
4

5 //energy(CK) is the total energy consumption of configuration Ck

6 Optimal Configuration = {Ck|energy(Ck) is minimum for k ∈ [1, n]}

Objective Function

min (apK

n−1∑
i=0

xifi + bpK +

n−1∑
i=0

sixi) ∗ (atK

n−1∑
i=0

xifi + btK) (9)

Total Number of Cores Equals K

n−1∑
i=0

xi = K (10)

Variables Range

∀i ∈ [0, n), xi ∈ {0, 1} (11)

Program 2: Program for finding the minimum energy configuration from amongst all
configurations with K cores. The objective function has quadratic terms.

Quadratic programs must have positive semi-definite matrices to be solved using convex optimization.
The resulting quadratic programs above are not positive semi-definite and hence can be computationally very
hard to solve using non-linear optimization methodologies. We now describe two different methods, namely
the TransformedQP and the ParSearch method for solving this constrained optimization problem.

4.1. TransformedQP Method

In order to reduce the quadratic objective function to a linear expression, we use the scheme proposed by
Glover and Woosley [22]. In this scheme, the cross-product terms in the objective function are replaced by
adding new continuous variables. The value of these new variables are determined by adding new constraints.
For example, a quadratic product term x1x2, where x1, x2 are binary variables, can be replaced by a new
variable y12 such that y12 ≤ x1, y12 ≤ x2, and y12 ≥ x1 + x2 − 1. We multiply the terms in the objective
function (Equation 9) and replace the product terms of the form xixj with new continuous variables yij .
The resulting ILP is given below in Equations (12)-(15) (Program 3).

This transformation from the quadratic program to linear program increases the number of variables

from v to v(v+1)
2 , and the number of constraints from 1 to 3v(v−1)

2 . Since the value of v is small for the focal
problem, the size of the resulting integer linear program remains tractable.

7

Objective Function

min

n−1∑
i=0

n−1∑
j=0

(apKfi + si)(a
t
Kfj)yij + btK

n−1∑
i=0

(apKfi + si)xi

+bpKa
t
K

n−1∑
j=0

fjxj + bpKb
t
K (12)

Total Number of Cores Equals K

n−1∑
i=0

xi = K (13)

New variable constraints

yij ≤ xi, ∀i, j ∈ [0, n), j ≤ i
yij ≤ xj , ∀i, j ∈ [0, n), j ≤ i

yij ≥ xi + xj − 1, ∀i, j ∈ [0, n), j ≤ i (14)

Variables Range

∀i ∈ [0, n), xi ∈ {0, 1} (15)

Program 3: Quadratic program in Program 2 transformed into an integer linear program
by introducing new variables and constraints. We call this as TransformedQP.

It is possible that the configuration with minimum energy consumption has a very large execution time
as compared to the best execution time. In order to constrain the increase in execution time, the following
time constraint is added to the linear programs, where tp is the allowed percentage increase in execution
time.

atK(

n−1∑
i=0

xifi) + btK ≤ (1 +
tp

100
) ∗ tmin (16)

This proposed ILP methodology is evaluated in Section 6.

4.2. ParSearch method

In the previous section (TransformedQP method), we proposed a methodology to transform the
quadratic program (Equation 9-11, Program 2) into an integer program by introducing additional variables
and constraints. This leads to increase in the number of variables and constraints to O(v2), where v is the
number of variables in the original quadratic program. In this section, we propose an alternative approach
in which we rewrite the quadratic objective function of Program 2 as

min (apKf + bpK +

n−1∑
i=0

sixi) ∗ αtmin

subject to atKf + btK = αtmin, α ≥ 1. The resulting problem is a linear program for a fixed value of α. Since
α is fixed, the resulting linear program has the same solution if the objective function, which represents

8

energy used is replaced with the power function

min apKf + bpK +

n−1∑
i=0

sixi

As the value of α is parametrically varied, the resulting minimum power can be shown to be a non-increasing
piecewise linear function of α [12]. Determining the breakpoints of this piecewise linear function can be done
by using parametric linear programming.

To obtain the minimum energy consumption however, we are interested in α∗ tmin ∗power. While power
is a decreasing linear function of α between breakpoints, it is easy to see that energy, which is a quadratic
function of α, is concave. If we relax the integrality restrictions, the concavity of the energy function
between every pair of breakpoints implies that the minimum will occur at one of the breakpoints. Because
of the integrality requirements, however, only some discrete values of α can have feasible solutions. Suppose
α1, α2,, αm are the feasible discrete values of α between the pair of breakpoints, then the concavity of
the energy function means that the minimum energy can only occur at either α1 or αm. Program 4 is
the basic program for optimization in this approach, and the problem is to search for the optimal value
of α (1 ≤ α ≤ 1 + 0.01 ∗ tp), such that the energy consumption is minimized. Selecting the minimum
energy consumption between each pair of break points and subsequently selecting the minimum amongst
these solutions guarantees an optimal solution. However, this can be time consuming and so we consider an
alternative simpler sampling method for determining the optimal values of alpha. In Section 6, we describe
the method we used for finding the optimal value of α.

Objective Function

min apK

n−1∑
i=0

xifi + bpK +

n−1∑
i=0

sixi (17)

Total Number of Cores Equals K

n−1∑
i=0

xi = K (18)

Bounding the execution time

atK

n−1∑
i=0

xifi + btK ≤ αtmin (19)

Variables Range

∀i ∈ [0, n), xi ∈ {0, 1} (20)

Program 4: Basic linear program for optimization in ParSearch method. This integer
linear program minimizes power consumption given execution time constraint.

5. The Setup

We use the Sniper Multi-core Simulator [16] for simulating chips with heterogeneity. We use the de-
fault core model of Sniper. The default core model is similar to Intelr Gainestown model and has been
validated [16]. We simulate chips with 36 cores. Each chip has x86 cores with 4-wide out-of-order issues.
Each core has a private 4-way L1 Instruction cache of size 32 KB, and a private 8-way L2 cache of size 256

9

0 5 10 15 20 25 30 35
cores

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Fr
e
q
u
e
n
ci

e
s

(G
H

z)

frequency
static power

0

1

2

3

4

5

6

7

8

S
ta

ti
c

P
o
w

e
r

P
e
r

C
o
re

 (
W

)

Figure 2: Frequencies and static powers of various cores on a manycore chip with variation.

KB. There is a shared 4-way L1 Instruction cache of size 32KB. The memory latency is 75ns, when there
is no memory contention. We use 11-nm technology, with average frequency of 2.6GHz, and Vdd of 0.765V.
McPAT (Multicore Power, Area, and Timing) [37] framework was integrated with Sniper for dynamic power
modeling of manycore applications. Our experimental results in this paper are for chips with 36 cores.
For modeling process variation at micro-architectural level and for static power modeling of cores, we use
VariusNTV [29]. 25 chips were generated with different core frequencies and static power consumption. The
frequencies and the corresponding static power consumption of various cores for one of the chips is shown
in Figure 2.

5.1. Applications

Two HPC applications are used for benchmarking the performance:

• miniMD: It is a simple, parallel molecular dynamics code that is a micro-application in the Mantevo
project at Sandia National Laboratories 1. miniMD is written in MPI and performs parallel molecular
dynamics simulation of a Lennard-Jones system. miniMD is a computationally intensive application.

• Jacobi: Jacobi is a 3D stencil computation code. It is a memory intensive application. We use a
Charm++ implementation of Jacobi.

Most other HPC applications fall in between miniMD and Jacobi in terms of their computation and memory
sensitivity. For developing the performance and dynamic power consumption models of these applications,
we obtained 2n samples from each application, where n is the number of cores on the chip. For each value
of k ∈ [1, n], 2 samples are required to build the linear model for all configurations with k cores. We
chose the configurations with k minimum, and k maximum frequency chips, and obtained their simulated
performance on the Sniper simulator. The simulated performance was used to compute the line constants
for the performance and power consumption models.

We use the reference energy consumption (refenergy) as the energy consumption corresponding to the
configuration with the best possible execution time (tmin), computed using Algorithm 2. Our results are
compared against refenergy.

1http://software.sandia.gov/mantevo/

10

Algorithm 2 Algorithm for computing the best possible execution
time (tmin) for an application on the chip

1 tmin = 0
2 for k ∈ [1, n] :
3 Ck = {cores with k largest frequencies}
4 tmin = min(tmin, atk

∑
i∈Ck

fi + btk)

5 return tmin

5.2. Heuristics for Configuration Selection

The proposed integer linear programming approach for energy minimization is compared against three
heuristics, called the MinFreq, MaxFreq heuristics, and GoodCores heuristic as described below:

• MinFreq heuristic: The cores are sorted in the increasing order of their frequencies, such that,
f0 < f1 < f2... < fn−1. The heuristic selects the value of k such that the configuration with k
consecutive cores, starting from core0 has the minimum energy consumption and the execution time
is within the desirable threshold (tp). The MinFreq heuristic algorithm is given in Algorithm 3.

Algorithm 3 Algorithm for MinFreq heuristic

1 sort frequencies such that f0 < f1... < fn−1

2 energymin = refenergy
3 for k ∈ [1, n]:
4 Ck ={corei for i ∈ [0, k − 1]}
5 time = atk

∑
i∈Ck

fi + btk

6 if energy(Ck) < energymin and time < (1 + tp
100

)tmin:

7 energymin = energy(Ck)
8 return energymin

• MaxFreq heuristic: The cores are sorted in the decreasing order of their frequencies, such that,
f0 > f1..... > fn−1. The heuristic selects the value of k such that the configuration with k consecutive
cores, starting from core0 has the minimum energy consumption and the execution time is within the
desirable threshold (tp). The MaxFreq heuristic algorithm is given in Algorithm 4.

Algorithm 4 Algorithm for MaxFreq heuristic

1 sort frequencies such that f0 > f1... > fn−1

2 energymin = refenergy
3 for k ∈ [1, n]:
4 Ck ={corei for i ∈ [0, k − 1]}
5 time = atk

∑
i∈Ck

fi + btk

6 if energy(Ck) < energymin and time < (1 + tp
100

)tmin:

7 energymin = energy(Ck)
8 return energymin

11

• GoodCores heuristic: A core that has high frequency for low static power consumption is a good
candidate core for selection. Therefore, in this heuristic, the cores are sorted by their value of fi

si
,

such that, f0
s0
> f1

s1
..... > fn−1

sn−1
. The heuristic selects the value of k such that the configuration with k

consecutive cores, starting from core0 has the minimum energy consumption and the execution time
is within the desirable threshold (tp). The GoodCores heuristic algorithm is given in Algorithm 5.

Algorithm 5 Algorithm for GoodCores heuristic

1 sort frequencies such that f0
s0
> f1

s1
..... >

fn−1

sn−1

2 energymin = refenergy
3 for k ∈ [1, n]:
4 Ck ={corei for i ∈ [0, k − 1]}
5 time = atk

∑
i∈Ck

fi + btk

6 if energy(Ck) < energymin and time < (1 + tp
100

)tmin:

7 energymin = energy(Ck)
8 return energymin

5.3. ILP Solver

There are several solvers available for integer linear program optimization, such as, Gurobi [1], CPLEX [2],
GLPK [40], CBC [21], SCIP [5], Xpress [36]. We use the commercial state-of-the-art solver, Gurobi, for
solving the Integer Linear Programs (ILPs). ILPs are NP-hard problems and are solved by using variants
and extensions of Branch-and-Bound (BnB) method. In BnB method, the corresponding linear program,
obtained by relaxing the integrality constraints on integer variables, is first solved by using the simplex or
the interior point method. This gives a fractional solution. Branching is done on the fractional values, which
gives more linear programs. Linear program optimizations are done and the branching is continued until
an integer solution is found. The integer solution with the best cost acts as an incumbent solution and is
used to prune other vertices of the BnB tree that can provably be shown to not have better cost than the
current incumbent. Commercial state-of-the art solvers like Gurobi have highly optimized implementations
for solving ILPs. They fully exploit the latest mathematical and engineering improvements in the underlying
methodologies to provide very fast solutions to linear/mixed-integer programs. Solvers like Gurobi are used
for variety of cost and quality optimization purposes in various fields of optimization.

6. Results

In this section, we first discuss the energy savings obtained using the ILP methodology (the Trans-
formedQP method), and compare it with heuristics. We then compare the ParSearch method with
the TransformedQP method in terms of the solution quality and the optimization times to obtain the
solution.

6.1. Energy-efficiency

Figure 3 shows the savings in energy consumption by using configurations selected by the MinFreq
heuristic, MaxFreq heuristic, GoodCores heuristic and the TransformedQP integer linear program-
ming method when compared to the configuration with best execution time (energyref). The results are
summary of benefits across 25 different chips. We consider four cases, corresponding to Figure 3a, 3b, 3c,
respectively.

12

miniMD Jacobi3d
0

5

10

15

20

25

30

35

40

P
e
rc

e
n
ta

g
e
 b

e
n
e
fi
t

in
 e

n
e
rg

y MinFreq heuristic
MaxFreq heuristic
GoodCores heuristic
ILP

(a) Maximum 15% time penalty

miniMD Jacobi3d
0

5

10

15

20

25

30

35

40

P
e
rc

e
n
ta

g
e
 b

e
n
e
fi
t

in
 e

n
e
rg

y MinFreq heuristic
MaxFreq heuristic
GoodCores heuristic
ILP

(b) Maximum 5% time penalty

miniMD Jacobi3d
0

5

10

15

20

25

30

35

40

P
e
rc

e
n
ta

g
e
 b

e
n
e
fi
t

in
 e

n
e
rg

y MinFreq heuristic
MaxFreq heuristic
GoodCores heuristic
ILP

(c) Maximum 2% time penalty

miniMD Jacobi3d
0

5

10

15

20

25

30

35

40

P
e
rc

e
n
ta

g
e
 b

e
n
e
fi
t

in
 e

n
e
rg

y MinFreq heuristic
MaxFreq heuristic
GoodCores heuristic
ILP

(d) Maximum 1% time penalty

Figure 3: Percentage savings in energy with MinFreq, MaxFreq, GoodCores heuristics, and the TransformedQP ILP
method for the two applications, miniMD and Jacobi3d, with respect to the configuration with best execution time. The bars
correspond to the average benefits, while the vertical lines correspond to the minimum and maximum benefits obtained from
the corresponding method across the 25 chips. In (a), (b), (c), and (d) configuration that minimizes energy consumption while
the execution time penalty is less than 15%, 5%, 2%, 1%, respectively, is sought using the various heuristics and the proposed
TransformedQP ILP method. While the GoodCores heuristic gives competitive configurations when the time penalty is
high, the ILP method performs significantly better when the time penalty is low.

13

1. In this case, configuration with minimum energy consumption is sought with 15% as the allowed
increase in execution time (i.e. tp = 15%).

• miniMD The ILP method gives an average of 18.4% in energy savings, while the savings were
4.9%, 4.4%, and 18% from MinFreq, MaxFreq, and GoodCores heuristics, respectively.

• Jacobi We obtain an average of 8.6% savings in energy consumption using the ILP method. On
the other hand, MinFreq, MaxFreq, and GoodCores heuristics give energy savings of 2.94%,
1.5%, and 8.25%, respectively.

Although we get significant savings in energy by choosing the right configurations, 15% can sometimes
considered to a large increase in execution time. Therefore, we consider the following three cases in
which there is a very small increase in execution time.

2. When the execution time is less than 1.05×tmin, that is, tp = 5%

• miniMD We obtain an average of 0.18%, 3.55%, 11.6%, 13.4% savings in energy with MinFreq,
MaxFreq, GoodCores heuristic, ILP, respectively.

• Jacobi An average of 1.5%, 1.25%, 6.07%, 6.4% savings in energy with MinFreq, MaxFreq,
GoodCores heuristic, ILP, respectively is obtained.

3. When the execution time is less than 1.02×tmin, that is, tp = 2%

• miniMD We obtain an average of 0%, 2.76%, 1.8%, 7.8% savings in energy with MinFreq,
MaxFreq, GoodCores heuristic, ILP, respectively.

• Jacobi An average of 0%, 1.12%, 2.6%, 4.6% savings in energy with MinFreq, MaxFreq,
GoodCores heuristic, ILP, respectively is achieved.

4. When the execution time is less than 1.01×tmin, that is, tp = 1%

• miniMD We obtain an average of 0%, 1.5%, 0.13%, 5.04% savings in energy with MinFreq,
MaxFreq, GoodCores heuristic, ILP, respectively.

• Jacobi An average of 0%, 0.78%, 0.4%, 3.43% savings in energy with MinFreq, MaxFreq,
GoodCores heuristic, ILP, respectively is achieved.

When the timing penalty is high (for example, when tp=15%), the GoodCores heuristic gives compa-
rable results as the ILP. On the other hand for lower timing penalties, the ILP method performs significantly
better than any of the sub-optimal heuristics.

Since miniMD is a computationally intensive application, the number of cores in the optimal configuration
selected for miniMD are more than the number of cores in the optimal configuration for Jacobi. In Jacobi,
large number of cores lead to increase in the memory contention and hence are sub-optimal. Figure 4 shows
an example solution obtained from ILP optimization, MinFreq heuristic, and MaxFreq heuristic.

6.2. Evaluating ParSearch Method

In this section, we present the evaluation of the ParSearch method and compare it with the Trans-
formedQP method. Figure 5 shows the energy value obtained by optimizing the ParSearch ILP for
different values of α and K in Program 4. 1000 values of α were sampled between 1 and 1.9. For each K,
there is threshold value of α below which no valid configuration can be obtained that satisfies Program 4 and
hence there are missing dots in the figure for different values of K. The overall pattern of energy value for all
the values of K is that it first decreases (with small aberrations) and then becomes stable with increase in
the value of α. Therefore, instead of using the more complicated methods of parametric linear programming,
we show that a good value of α can be obtained in a simpler manner through sampling and that value of α
gives near-optimal configurations. Fixed number of values of α are obtained by uniform sampling between
1 and the allowed maximum time penalty (tp%), that is,

α = {1 +
i ∗ 0.01tp

nsamples
, ∀i ∈ [1, nsamples]},

14

0 5 10 15 20 25 30 35
cores

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Fr
e
q
u
e
n
ci

e
s

(G
H

z)

Cores selected by Min Heuristic

frequency
static power

0

1

2

3

4

5

6

7

8

S
ta

ti
c

P
o
w

e
r

P
e
r

C
o
re

 (
W

)

(a) MinFreq heuristic

0 5 10 15 20 25 30 35
cores

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Fr
e
q
u
e
n
ci

e
s

(G
H

z)

Cores selected by Max Heuristic

frequency
static power

0

1

2

3

4

5

6

7

8

S
ta

ti
c

P
o
w

e
r

P
e
r

C
o
re

 (
W

)

(b) MaxFreq heuristic

0 5 10 15 20 25 30 35
cores

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Fr
e
q
u
e
n
ci

e
s

(G
H

z)

frequency
static power

0

1

2

3

4

5

6

7

8

S
ta

ti
c

P
o
w

e
r

P
e
r

C
o
re

 (
W

)

(c) GoodCores heuristic

0 5 10 15 20 25 30 35
cores

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Fr
e
q
u
e
n
ci

e
s

(G
H

z)

frequency
static power

0

1

2

3

4

5

6

7

8

S
ta

ti
c

P
o
w

e
r

P
e
r

C
o
re

 (
W

)

(d) ILP

Figure 4: An example of a configuration selected by the heuristics and the ILP optimization method for Jacobi application.
Circle markers correspond to the cores selected by the corresponding method. MinFreq heuristic and ILP selected 29 cores
each while MaxFreq heuristic and GoodCores heuristic selected 29 and 31 cores, respectively.

15

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
α

7

8

9
E
n
e
rg

y
 (

W
h
)

19 cores
21 cores
23 cores
25 cores

Figure 5: Energy value for 1000 values of α between 1 and 1.9 obtained by optimizing Program 4 of the ParSearch method
for various values of K.

where nsamples is the number of samples. The integer linear program (Equation 17-20, Program 4) is
then optimized for all these values of α, and the value of α that gives the minimum energy configu-
ration is selected. Table 2 shows the accuracy of this method with different number of samples of α,
nsamples ∈ {4, 8, 12, 16, 20}. We evaluate ParSearch method for different execution time penalties,
tp ∈ {150%, 125%, 100%, 75%, 50%, 25%, 15%, 5%}. Each entry in the table gives the value of

Energyoptimal

EnergyParSearch

× 100,

where, Energyoptimal is the optimal energy value obtained from the TransformedQP method, and EnergyParSearch

is the best energy value obtained from the ParSearch method. As the table shows, ParSearch is very
accurate even for small number of samples of α. In summary, ParSearch method selects the minimum
energy value obtained by optimizing the ILPs for different values of α and all the values of K ∈ [1, n].

As the number of samples increase, the accuracy increases in general but it is not necessary that it will
increase because the samples may be different for different values of nsamples. Given the very high accuracy
of the method, especially when time penalties are small, this method is a very good candidate for finding
near-optimal configurations. In the following section, we show that the time to find the solution with this
method is significantly smaller than the TransformedQP method, and hence this method is the desirable
method for finding energy-optimal configurations.

6.3. Solution Time

In this section, we compare the solution times for the TransformedQP method, the ParSearch
method, and the exhaustive evaluation of all the configurations. For the experiments, we use a Dell 2.67
GHz Dual Westmere Xeon E5640 processor with a total of 8 cores and 16 SMT threads. The exhaustive
evaluation of all the configurations for their energy consumption can be done in parallel. The total number
of configurations to be evaluated for a 36 core chip is 236− 1, which is equal to 68719476736 configurations.
Exhaustive evaluation of all these configurations in parallel on 8 cores takes 74 hours, which makes this
infeasible for online purposes.

The TransformedQP method requires optimizing n − 2 proper ILPs, where n is the total number of
cores on the chip. Each ILP has 702 variables, and 2000 constraints. The ILP optimizations are independent

16

Table 2: Accuracy of ParSearch for different execution time penalties and number of samples of α

Application Time Penalty (%)
Number of Samples

4 8 12 16 20

Jacobi3d

150 99.72 99.77 99.81 99.81 99.82
125 99.67 99.77 99.82 99.84 99.86
100 99.76 99.83 99.82 99.86 99.88
75 99.74 99.81 99.83 99.87 99.87
50 99.7 99.73 99.84 99.88 99.9
25 99.94 99.94 99.96 99.96 99.97
15 99.82 99.87 99.91 99.94 99.93
5 99.95 99.96 99.97 99.98 99.99

miniMD

150 99.73 99.79 99.75 99.8 99.79
125 99.69 99.75 99.81 99.77 99.85
100 99.54 99.55 99.73 99.77 99.84
75 99.49 99.51 99.75 99.72 99.82
50 99.63 99.68 99.78 99.87 99.91
25 99.85 99.88 99.88 99.9 99.92
15 99.92 99.94 99.96 99.97 99.97
5 99.97 99.98 99.99 99.99 99.99

15 5 2 1
Time Penalty(%)

100

101

102

S
o
lu

ti
o
n
 t

im
e
 i
n
 s

e
co

n
d
s

(l
o
g
 s

ca
le

) TransformedQP

ParSearch

(a) Jacobi3d

15 5 2 1
Time Penalty(%)

100

101

102

S
o
lu

ti
o
n
 t

im
e
 i
n
 s

e
co

n
d
s

(l
o
g
 s

ca
le

) TransformedQP

ParSearch

(b) miniMD

Figure 6: Time to find the solution by TransformedQP method and ParSearch method with 20 samples of α

17

Table 3: Solution Time in seconds (average across 25 chips) for TransformedQP and ParSearch methods

Application Time Penalty (%) TransformedQP
ParSearch nsamples

4 12 20

Jacobi3d

15 146 0.41 0.89 1.44
5 44.9 0.4 0.88 1.42
2 24.8 0.37 0.77 1.22
1 11.1 0.34 0.66 1.04

miniMD

15 71.4 0.46 0.98 1.57
5 38.4 0.44 0.97 1.56
2 15.26 0.38 0.79 1.18
1 7.1 0.31 0.59 0.93

of each other and can therefore be very easily parallelized by launching them in parallel on multiple cores
of a compute node and/or on multiple compute nodes. The ILP optimizations required for a given chip
and an application were launched in parallel on the machine. The ParSearch method requires optimizing
(n− 2)× nsamples ILPs, where nsamples is the number of samples of α. Each of the ILP in this method
has 36 variables and just 2 constraints. As in the TransformedQP method, ILPs in the ParSearch
method can also be optimized in parallel. Table 3 compares the total time to obtain the solution for the
two methods.

We now consider the solution time for the TransformedQP and the ParSearch method with 20
samples of α, for each of the four cases presented in Section 6.1. These are also demonstrated in Figure 6.

1. When the execution time penalty is 15%, it took an average of 146, 1.44 seconds for obtaining the
optimal result for Jacobi with TransformedQP, ParSearch method and 71.4, 1.57 seconds for
miniMD, respectively.

2. When the maximum execution time penalty of 5% is enforced, the configuration search space for ILP
optimization is reduced significantly as fewer configurations are feasible. It took an average of 44.9s,
1.42s to find the optimal solution for Jacobi, and 38.4, 1.56s for miniMD with TransformedQP,
ParSearch method, respectively.

3. With the maximum execution time penalty of 2%, the search space is further reduced, and it took
only 24.8s, 1.22s for Jacobi and 15.26s, 1.18s for miniMD to find the optimal solution using Trans-
formedQP, ParSearch method, respectively.

4. Finally, with the maximum execution time penalty of just 1%, the search space is reduced to a very
small number, and it took only 11.1s, 1.04s for Jacobi and 7.1s, 0.93s for miniMD to find the optimal
solution using TransformedQP, ParSearch method, respectively.

Since HPC simulations run for several hours, the overhead of finding the optimal configuration is negli-
gible as compared to the execution time of the jobs, which can be from hours to days. The results clearly
show that the ParSearch method is significantly faster than the TransformedQP method, and hence is
the method of choice as it also gives very accurate configurations (Section 6.2).

7. Conclusion and Future Work

Finding energy-optimal configurations for chips that have variation across cores is a hard problem because
of billions of possible configurations that are available. We proposed a very fast GoodCores heuristic that
gives significant energy savings when the allowed execution time penalty on the application is high. We then
show how integer linear programming techniques can be used to obtain energy-optimal configurations for any
execution time constraints with negligible overhead to obtain the solution. We proposed the ParSearch
method to solve the constrained optimization problem that minimizes the energy consumption given any
execution time constraint. We show that up to 13% savings in energy can be obtained with only 2% increase
in the execution time. Whenever a job is scheduled for execution on selected chips, the ILP optimizer can

18

be executed on the chip itself to determine the optimal configuration for the job, prior to actual execution
of the job on that chip. In this way, no extra compute resources are required for optimal configuration
selection.

This work shows the applicability of integer linear programming techniques to solve hard problems like
this. There is a significant future work that follows from this work. The proposed methods can be evaluated
for chips with very large number of cores. We also plan to improve the accuracy of the performance and
power models used in this work, for chips with the large number of cores. Finally, we would like to evaluate
the proposed methodologies for other HPC applications that are both computationally and memory intensive
such as Adaptive Mesh Refinement [34], Lulesh [39], etc.

References

[1] Gurobi Optimization Inc. Software, 2014. http://www.gurobi.com/.
[2] IBM CPLEX Optimization Studio. Software, 2012. http://www-01.ibm.com/software/integration/optimization/

cplex-optimization-studio/.
[3] The Department of Energy Report on Top Ten Exascale Research Challenges. http://science.energy.gov/~/media/

ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf.
[4] Advanced Micro Devices. BIOS and Kernel Developer’s guide (BKDG) for AMD Family 15h Models 00h-0fh Processors.

January 2012.
[5] T. Achterberg. SCIP: Solving Constraint Integer Programs. Mathematical Programming Computation, 1(1):1–41, 2009.
[6] B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon, E. Mikida, X. Ni, M. Robson, Y. Sun, E. Totoni, L. Wesolowski, and

L. Kale. Parallel Programming with Migratable Objects: Charm++ in Practice. SC, 2014.
[7] A. Agarwal, S. K. Mathew, S. K. Hsu, M. A. Anders, H. Kaul, F. Sheikh, R. Ramanarayanan, S. Srinivasan, R. Krish-

namurthy, and S. Borkar. A 320mV-to-1.2 V On-die Fine-grained Reconfigurable Fabric For DSP/media Accelerators in
32nm CMOS. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International, pages
328–329. IEEE, 2010.

[8] P. Alonso, M. F. Dolz, F. D. Igual, R. Mayo, and E. S. Quintana-Ort́ı. Dvfs-control techniques for dense linear algebra
operations on multi-core processors. Computer Science-Research and Development, 27(4):289–298, 2012.

[9] P. Alonso, M. F. Dolz, R. Mayo, and E. S. Quintana-Ort́ı. Improving power efficiency of dense linear algebra algorithms
on multi-core processors via slack control. In High Performance Computing and Simulation (HPCS), 2011 International
Conference on, pages 463–470. IEEE, 2011.

[10] A. Banerjee, T. Mukherjee, G. Varsamopoulos, and S. Gupta. Cooling-aware and thermal-aware workload placement for
green HPC data centers. In 2010 International Green Computing Conference, pages 245–256, August 2010.

[11] C. Bash and G. Forman. Cool job allocation: measuring the power savings of placing jobs at cooling-efficient locations in
the data center. In Proceedings of the USENIX Annual Technical Conference, pages 29:1–29:6, Berkeley, CA, USA, 2007.
USENIX Association.

[12] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali. Linear programming and network flows. John Wiley & Sons, 2011.
[13] B. Behle, N. Bofferding, M. Broyles, C. Eide, M. Floyd, C. Francois, A. Geissler, M. Hollinger, H.-Y. McCreary, C. Rath,

et al. IBM Energyscale for POWER6 Processor-based Systems. IBM White Paper, 2009.
[14] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou. Cilk: An efficient multithreaded

runtime system. Journal of Parallel and Distributed Computing, 37(1):55–69, 1996.
[15] M. Broyles, C. Francois, A. Geissler, M. Hollinger, T. Rosedahl, G. Silva, J. Van Heuklon, and B. Veale. IBM Energyscale

for POWER7 Processor-based Systems. white paper, IBM, 2010.
[16] T. E. Carlson, W. Heirman, and L. Eeckhout. Sniper: exploring the level of abstraction for scalable and accurate parallel

multi-core simulation. In Proceedings of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis, page 52. ACM, 2011.

[17] K. Choi, R. Soma, and M. Pedram. Dynamic Voltage and Frequency Scaling based on Workload Decomposition. In
Proceedings of the 2004 international symposium on Low power electronics and design, pages 174–179. ACM, 2004.

[18] K. Choi, R. Soma, and M. Pedram. Fine-grained Dynamic Voltage and Frequency Scaling for Precise Energy and Per-
formance Tradeoff based on the Ratio of Off-chip Access to On-chip Computation Times. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 24(1):18–28, 2005.

[19] L. Dagum and R. Menon. OpenMP: an industry standard API for shared-memory programming. Computational Science
& Engineering, IEEE, 5(1):46–55, 1998.

[20] M. Etinski, J. Corbalan, J. Labarta, and M. Valero. Understanding the Future of Energy-performance Trade-off via DVFS
in HPC Environments. Journal of Parallel and Distributed Computing, 72(4):579–590, 2012.

[21] J. Forrest. CBC (Coin-or Branch and Cut) Open-source Mixed Integer Programming Solver, 2012. URL
https://projects.coin-or.org/Cbc.

[22] F. Glover and E. Woolsey. Converting the 0-1 Polynomial Programming Problem to a 0-1 Linear Program. Operations
Research, 22(1):pp. 180–182, 1974.

[23] R. Graybill and R. Melhem. Power aware computing. Kluwer Academic Publishers, 2002.
[24] C.-H. Hsu and W.-c. Feng. Effective dynamic voltage scaling through cpu-boundedness detection. In Power-Aware

Computer Systems, pages 135–149. Springer, 2005.

19

[25] S. Hsu, A. Agarwal, M. Anders, H. Kaul, S. Mathew, F. Sheikh, R. Krishnamurthy, and S. Borkar. A 2.8 GHz 128-entry×
152b 3-read/2-write Multi-precision Floating-point Register File and Shuffler in 32nm CMOS. In VLSI Circuits (VLSIC),
2012 Symposium on, pages 118–119. IEEE, 2012.

[26] C. Huang, G. Zheng, S. Kumar, and L. V. Kalé. Performance Evaluation of Adaptive MPI. In Proceedings of ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming 2006, March 2006.

[27] S. Huang and W. Feng. Energy-efficient cluster computing via accurate workload characterization. In Proceedings of
the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, CCGRID ’09, pages 68–75,
Washington, DC, USA, 2009. IEEE Computer Society.

[28] I. Kadayif, M. Kandemir, and U. Sezer. An integer linear programming based approach for parallelizing applications in
on-chip multiprocessors. In Proceedings of the 39th annual Design Automation Conference, pages 703–706. ACM, 2002.

[29] U. R. Karpuzcu, K. B. Kolluru, N. S. Kim, and J. Torrellas. VARIUS-NTV: A microarchitectural model to capture the
increased sensitivity of manycores to process variations at near-threshold voltages. In Dependable Systems and Networks
(DSN), 2012 42nd Annual IEEE/IFIP International Conference on, pages 1–11. IEEE, 2012.

[30] H. Kaul, M. Anders, S. Hsu, A. Agarwal, R. Krishnamurthy, and S. Borkar. Near-threshold Voltage (NTV) Design:
Opportunities and Challenges. In Proceedings of the 49th Annual Design Automation Conference, pages 1153–1158.
ACM, 2012.

[31] H. Kaul, M. Anders, S. Mathew, S. Hsu, A. Agarwal, R. Krishnamurthy, and S. Borkar. A 300mV 494GOPS/W Recon-
figurable Dual-supply 4-Way SIMD Vector Processing Accelerator in 45nm CMOS. In IEEE International Solid-State
Circuits Conference, ISSCC 2009, Digest of Technical Papers, San Francisco, CA, USA, 8-12 February, 2009, pages
260–261, 2009.

[32] H. Kaul, M. A. Anders, S. K. Mathew, S. K. Hsu, A. Agarwal, R. K. Krishnamurthy, and S. Borkar. A 320 mv 56 µw
411 gops/watt Ultra-low Voltage Motion Estimation Accelerator in 65 nm CMOS. Solid-State Circuits, IEEE Journal of,
44(1):107–114, 2009.

[33] R. Kumar, D. M. Tullsen, and N. P. Jouppi. Core architecture optimization for heterogeneous chip multiprocessors. In
Proceedings of the 15th international conference on Parallel architectures and compilation techniques, pages 23–32. ACM,
2006.

[34] A. Langer, J. Lifflander, P. Miller, K.-C. Pan, , L. V. Kale, and P. Ricker. Scalable Algorithms for Distributed-Memory
Adaptive Mesh Refinement. In Proceedings of the 24th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD 2012), New York, USA, October 2012.

[35] A. Langer, E. Totoni, U. S. Palekar, and L. V. Kalé. Energy-efficient computing for hpc workloads on heterogeneous
manycore chips. In Proceedings of the Sixth International Workshop on Programming Models and Applications for
Multicores and Manycores, PMAM ’15, pages 11–19, New York, NY, USA, 2015. ACM.

[36] R. Laundy, M. Perregaard, G. Tavares, H. Tipi, and A. Vazacopoulos. Solving Hard Mixed-integer Programming Problems
with Xpress-MP: A MIPLIB 2003 Case Study. INFORMS Journal on Computing, 21(2):304–313, 2009.

[37] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi. Mcpat: an integrated power, area,
and timing modeling framework for multicore and manycore architectures. In Microarchitecture, 2009. MICRO-42. 42nd
Annual IEEE/ACM International Symposium on, pages 469–480. IEEE, 2009.

[38] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal. Adaptive, transparent CPU scaling algorithms leveraging inter-node MPI
communication regions. Parallel Computing, 37(10-11):667–683, 2011.

[39] Lulesh. http://computation.llnl.gov/casc/ShockHydro/.
[40] A. Makhorin. The GNU Linear Programming Kit (GLPK). GNU Software Foundation, 2000. http://www.gnu.org/

software/glpk/glpk.html.
[41] A. Merkel and F. Bellosa. Balancing power consumption in multiprocessor systems. In Proceedings of the 1st ACM

SIGOPS/EuroSys European Conference on Computer Systems, EuroSys ’06, pages 403–414, New York, NY, USA, 2006.
ACM.

[42] N. B. Rizvandi, J. Taheri, and A. Y. Zomaya. Some Observations on Optimal Frequency Selection in DVFS-based Energy
Consumption Minimization. Journal of Parallel and Distributed Computing, 71(8):1154–1164, 2011.

[43] B. Rountree, D. H. Ahn, B. R. de Supinski, D. K. Lowenthal, and M. Schulz. Beyond DVFS: A First Look at Performance
Under a Hardware-enforced Power Bound. In IEEE 26th International Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW), 2012.

[44] B. Rountree, D. K. Lowenthal, S. Funk, V. W. Freeh, B. R. de Supinski, and M. Schulz. Bounding Energy Consumption
in Large-scale MPI Programs. In Proceedings of the ACM/IEEE conference on Supercomputing, pages 49:1–49:9, 2007.

[45] O. Sarood, A. Langer, A. Gupta, and L. V. Kale. Maximizing throughput of overprovisioned hpc data centers under
a strict power budget. In Proceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis, SC ’14, New York, NY, USA, 2014. ACM.

[46] O. Sarood, A. Langer, L. V. Kale, B. Rountree, and B. de Supinski. Optimizing Power Allocation to CPU and Memory
Subsystems in Overprovisioned HPC Systems. In Proceedings of IEEE Cluster 2013, Indianapolis, IN, USA, September
2013.

[47] K. Seth, A. Anantaraman, F. Mueller, and E. Rotenberg. Fast: Frequency-aware Static Timing Analysis. ACM Transac-
tions on Embedded Computing Systems (TECS), 5(1):200–224, 2006.

[48] R. Springer, D. K. Lowenthal, B. Rountree, and V. W. Freeh. Minimizing execution time in MPI programs on an energy-
constrained, power-scalable cluster. In Proceedings of the eleventh ACM SIGPLAN symposium on Principles and practice
of parallel programming, PPoPP ’06, pages 230–238, New York, NY, USA, 2006. ACM.

[49] Q. Tang, S. Gupta, D. Stanzione, and P. Cayton. Thermal-aware task scheduling to minimize energy usage of blade server
based datacenters. In 2nd IEEE International Symposium on Dependable, Autonomic and Secure Computing, 2006.

20

[50] Q. Tang, S. Gupta, and G. Varsamopoulos. Energy-efficient thermal-aware task scheduling for homogeneous high-
performance computing data centers: A cyber-physical approach. IEEE Transactions on Parallel and Distributed Systems,
(11):1458–1472, November 2008.

[51] E. Totoni. Power and Energy Management of Modern Architectures in Adaptive HPC Runtime Systems. PhD thesis,
Dept. of Computer Science, University of Illinois, 2014.

[52] G. L. Valentini, W. Lassonde, S. U. Khan, N. Min-Allah, S. A. Madani, J. Li, L. Zhang, L. Wang, N. Ghani, J. Kolodziej,
et al. An overview of energy efficiency techniques in cluster computing systems. Cluster Computing, 16(1):3–15, 2013.

[53] S. Venugopalan and O. Sinnen. Optimal linear programming solutions for multiprocessor scheduling with communication
delays. In Y. Xiang, I. Stojmenovic, B. Apduhan, G. Wang, K. Nakano, and A. Zomaya, editors, Algorithms and
Architectures for Parallel Processing, volume 7439 of Lecture Notes in Computer Science, pages 129–138. Springer Berlin
Heidelberg, 2012.

[54] A. Vishnu, S. Song, A. Marquez, K. Barker, D. Kerbyson, K. Cameron, and P. Balaji. Designing energy efficient commu-
nication runtime systems: a view from pgas models. The Journal of Supercomputing, 63(3):691–709, 2013.

[55] S. Wallace, V. Vishwanath, S. Coghlan, Z. Lan, and M. E. Papka. Measuring Power Consumption on IBM Blue Gene/Q.
In Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th International,
pages 853–859. IEEE, 2013.

[56] L. Wang, S. U. Khan, D. Chen, J. Ko lodziej, R. Ranjan, C.-z. Xu, and A. Zomaya. Energy-aware Parallel Task Scheduling
in a Cluster. Future Generation Computer Systems, 29(7):1661–1670, 2013.

[57] L. Wang, G. von Laszewski, J. Dayal, and T. Furlani. Thermal aware workload scheduling with backfilling for green data
centers. In Proceedings of the 2009 IEEE 28th International Performance Computing and Communications Conference
(IPCCC), December 2009.

[58] L. Wang, G. von Laszewski, J. Dayal, X. He, A. Younge, and T. Furlani. Towards thermal aware workload scheduling in
a data center. In International Symposium on Pervasive Systems, Algorithms, and Networks (ISPAN), December 2009.

[59] G. Wen, J. Hong, C. Xu, P. Balaji, S. Feng, and P. Jiang. Energy-aware Hierarchical Scheduling of Applications in Large
Scale Data Centers. In Cloud and Service Computing (CSC), 2011 International Conference on, pages 158–165. IEEE,
2011.

21

