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Motivation 
•  Main challenge for applications: variability 
–  Hardware variation 

•  Static/dynamic, heterogeneity, failures, power, etc. 
–  Dynamic program behavior 

•  AMR, particle movements, subscale simulations, … 
 
 

•  To deal with this: 
–  Rewrite applications in new languages … 
–  Or, implement existing APIs on different runtime 

systems 
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Adaptive MPI 
•  MPI-2.2 implementation on top of Charm++ 
–  MPI ranks are lightweight, migratable user-level 

threads associated with Charm++ objects 
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Adaptive MPI 
•  Q: What can Charm++ and its runtime 

system offer MPI programmers? 
 

•  A: Application-independent features for MPI 
codes: 
–  Process virtualization 
–  Automatic overlap of comm. & comp. 
–  Static and dynamic mapping 
–  Automatic fault tolerance 
–  OpenMP runtime integration 
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Overdecomposition 
•  MPI programmers already decompose to MPI 

ranks: 
–  One rank per node/core/… 
 

•  AMPI virtualizes MPI ranks, allowing multiple 
ranks to execute per node/core/… 
–  Benefits: cache usage, comm. overlap, etc. 
–  Issue: multiple ranks in same OS process now 

share all their global/static variables 

5 



Overdecomposition 
•  MPI programmers already decompose to MPI 

ranks: 
–  One rank per node/core/… 
 

•  AMPI virtualizes MPI ranks, allowing multiple 
ranks to execute per node/core/… 
–  Benefits: cache usage, comm. overlap, etc. 
–  Issue: multiple ranks in same OS process now 

share all their global/static variables 
•  AMPI programs are MPI programs without mutable 

global/static variables 
•  Compiler support for automating this privatization 
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Asynchrony 
•  With multiple MPI ranks per core, how do we 

schedule them? 
 

•  Message-driven execution: 
–  Let the work-unit that happens to have data (a 

matching message) available for it execute next 
–  Let the RTS select among ready work units 

P0 
 

P1 
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Migratability 
•  AMPI ranks are migratable at runtime 
–  Thread stack + heap 
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Migratability 
•  AMPI ranks are migratable at runtime 
–  Thread stack + heap 
 

•  Isomalloc makes migration automatic 
–  No application Pack-UnPack (PUP) code needed 
–  Productive, easy to experiment with 

•  PUP routines are only an optimization 
–  Portability: no need for 64-bit VM 
–  Performance: only migrate the data that will be 

needed after migration 
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Dynamic Load Balancing 
•  AMPI ranks can be dynamically load 

balanced between nodes/cores 
–  Based on measured idle time, or user-level 

information 
–  Suite of built-in Charm++ strategies available 
–  Application developers can write their own 

strategies too 
 

•  User code needs to call AMPI_Migrate() and 
choose balancer at runtime: 
–  srun –n 100 ./pgm +vp 1000 +balancer RefineLB 

10 



Fault Tolerance 
•  Basic ideas: 
–  Checkpoints are just migrations to storage 
–  Underlying storage can be various things 
–  Can be used in concert with load balancing 
 

•  Four approaches available: 
–  Disk-based checkpoint/restart 
–  In-memory double checkpoint w/ auto restart 
–  Proactive object migration 
–  Message-logging 
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PlasComCM 
•  The Center for Exascale Simulation of 

Plasma-Coupled Combustion (XPACC) 
–  PSAAPII center at UIUC 
–  Collaboration of experimentalists, computational 

scientists, and computer scientists 
 

•  Main simulation code: PlasComCM 
–  150K lines of Fortran90/MPI: runs on AMPI 

•  Benefits from overdecomposition 
•  Fault tolerance demonstrated 
•  Dynamic load imbalance coming in future 
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PlasComCM Strong Scaling 
•  Virtualization benefits (V=ranks/core) 
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Fault Tolerance 
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Fault Tolerance 
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Fault Tolerance 
•  Double in-memory checkpoint is scalable 
 
 
 
 
 
 

•  Minimal changes needed to PlasComCM 
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Kripke 
•  LLNL ASC proxy app for deterministic particle 

transport codes 
–  Solves the Boltzmann transport equation using 

parallel sweeps over a 3D domain space 
 

•  Given: 
–  3D domain of known materials 
–  Initial flow of particles through domain 
–  Particle-generating sources inside the domain 
–  Boundary conditions 
 

•  Solution: 
–  Particle flux at every point inside the domain at a later 

time 
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Kripke 
•  Key communication pattern: parallel sweep 
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Kripke 
•  Key communication pattern: parallel sweep 
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Mapping 
•  Blocked mapping of subdomains to ranks is 

efficient within-node 
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Mapping 
•  Scattered mapping increases concurrency 
–  5-10% improvement at scale 
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OpenMP Integration 
•  Charm++ version of GNU OpenMP 4.0  

works with AMPI 
–  (A)MPI+OpenMP configurations on P cores/node: 

 
 
 
 
 

 
–  AMPI+OpenMP can do P:P without 

oversubscription of system resources 
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Notation Ranks/Node Threads/Rank MPI(+OpenMP) AMPI(+OpenMP) 

P:1 P 1 ✔ ✔ 
1:P 1 P ✔ ✔ 
P:P P P ✔ 



Kripke Weak Scaling 
•  (A)MPI-only suffers from transient load 

imbalance during the sweep 
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OpenMP Interoperation 
•  (A)MPI+OpenMP (1:P) loses out on the 

sweep’s pipeline parallelism 
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OpenMP Integration 
•  Kripke benefits from AMPI+OpenMP (P:P) 
–  Pipeline parallelism + within-node load balancing 
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Recent Progress 
•  Charm++ 6.7.1 is a feature release for AMPI 
–  AMPI extensions now prefixed with ‘AMPI_’ 
–  MPI-2.2 compliance 
–  MPI-3.1 nonblocking & neighborhood collectives 
–  Improved performance for test, wait routines 
–  ampicc is more compatible with autoconf/cmake 
 

•  Ongoing work: 
–  Conformance to MPI-3.1 
–  True RDMA for MPI’s RMA routines 
–  Optimization of AMPI+OpenMP integration 
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Summary 
•  Adaptive MPI provides Charm++’s high-level 

features to pre-existing MPI applications 
–  Overdecomposition 
–  Overlap of communication and computation 
–  Configurable static mapping 
–  Dynamic load balancing 
–  Automatic fault tolerance 
–  OpenMP runtime integration 
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Thank you 


