
Adaptive MPI:  
Overview & Recent Work

Sam White

PPL, UIUC

Motivation
•  Main challenge for applications: variability
–  Hardware variation

•  Static/dynamic, heterogeneity, failures, power, etc.
–  Dynamic program behavior

•  AMR, particle movements, subscale simulations, …

•  To deal with this:
–  Rewrite applications in new languages …
–  Or, implement existing APIs on different runtime

systems

2

Adaptive MPI
•  MPI-2.2 implementation on top of Charm++
–  MPI ranks are lightweight, migratable user-level

threads associated with Charm++ objects

3

Node 0

... ...

Rank 0

Processor 0

Rank 1

Rank 2 Rank 3

Rank 4

Processor 1

Rank 5

Rank 6

Adaptive MPI
•  Q: What can Charm++ and its runtime

system offer MPI programmers?

•  A: Application-independent features for MPI
codes:
–  Process virtualization
–  Automatic overlap of comm. & comp.
–  Static and dynamic mapping
–  Automatic fault tolerance
–  OpenMP runtime integration

4

Overdecomposition
•  MPI programmers already decompose to MPI

ranks:
–  One rank per node/core/…

•  AMPI virtualizes MPI ranks, allowing multiple
ranks to execute per node/core/…
–  Benefits: cache usage, comm. overlap, etc.
–  Issue: multiple ranks in same OS process now

share all their global/static variables

5

Overdecomposition
•  MPI programmers already decompose to MPI

ranks:
–  One rank per node/core/…

•  AMPI virtualizes MPI ranks, allowing multiple
ranks to execute per node/core/…
–  Benefits: cache usage, comm. overlap, etc.
–  Issue: multiple ranks in same OS process now

share all their global/static variables
•  AMPI programs are MPI programs without mutable

global/static variables
•  Compiler support for automating this privatization

5

Asynchrony
•  With multiple MPI ranks per core, how do we

schedule them?

•  Message-driven execution:
–  Let the work-unit that happens to have data (a

matching message) available for it execute next
–  Let the RTS select among ready work units

P0

P1

6

Process 0

Scheduler

Message Queue

Process 1

Scheduler

Message Queue

Message-driven Execution

MPI_Send()

7

Migratability
•  AMPI ranks are migratable at runtime
–  Thread stack + heap

8

text

data
bss

thread 3 stack
thread 2 stack

thread 0 stack

text

data
bss

thread 4 stack

thread 1 stack

0xFFFFFFFF 0xFFFFFFFF

0x00000000 0x00000000

thread 0 heap

thread 2 heap
thread 3 heap

thread 1 heap

thread 4 heap

Migratability
•  AMPI ranks are migratable at runtime
–  Thread stack + heap

•  Isomalloc makes migration automatic
–  No application Pack-UnPack (PUP) code needed
–  Productive, easy to experiment with

•  PUP routines are only an optimization
–  Portability: no need for 64-bit VM
–  Performance: only migrate the data that will be

needed after migration

9

Dynamic Load Balancing
•  AMPI ranks can be dynamically load

balanced between nodes/cores
–  Based on measured idle time, or user-level

information
–  Suite of built-in Charm++ strategies available
–  Application developers can write their own

strategies too

•  User code needs to call AMPI_Migrate() and
choose balancer at runtime:
–  srun –n 100 ./pgm +vp 1000 +balancer RefineLB

10

Fault Tolerance
•  Basic ideas:
–  Checkpoints are just migrations to storage
–  Underlying storage can be various things
–  Can be used in concert with load balancing

•  Four approaches available:
–  Disk-based checkpoint/restart
–  In-memory double checkpoint w/ auto restart
–  Proactive object migration
–  Message-logging

11

PlasComCM
•  The Center for Exascale Simulation of

Plasma-Coupled Combustion (XPACC)
–  PSAAPII center at UIUC
–  Collaboration of experimentalists, computational

scientists, and computer scientists

•  Main simulation code: PlasComCM
–  150K lines of Fortran90/MPI: runs on AMPI

•  Benefits from overdecomposition
•  Fault tolerance demonstrated
•  Dynamic load imbalance coming in future

12

PlasComCM Strong Scaling
•  Virtualization benefits (V=ranks/core)

13

�

�

�

�

��

��

�� ��� ��� ���

�
��
�
��
�
��
��
��
��
�
��
�

������ �� ����� ���������

���
���� �����
���� �����

���� �����
���� ������

Fault Tolerance

14

1. Checkpoint

Fault Tolerance

14

1. Checkpoint

2. Failure

Fault Tolerance

14

1. Checkpoint

2. Failure

3. Recover

Fault Tolerance

14

1. Checkpoint

4. Resume execution

2. Failure

3. Recover

Fault Tolerance

14

1. Checkpoint

4. Resume execution

2. Failure

3. Recover

5. Load balance

Fault Tolerance
•  Double in-memory checkpoint is scalable

•  Minimal changes needed to PlasComCM

15

���

�

���

�

���

��� ��� ��� ����

�
��
�
��
�

������ �� ����� ����� �����

����������
�������

Kripke
•  LLNL ASC proxy app for deterministic particle

transport codes
–  Solves the Boltzmann transport equation using

parallel sweeps over a 3D domain space

•  Given:
–  3D domain of known materials
–  Initial flow of particles through domain
–  Particle-generating sources inside the domain
–  Boundary conditions

•  Solution:
–  Particle flux at every point inside the domain at a later

time

16

Kripke
•  Key communication pattern: parallel sweep

17

Kripke
•  Key communication pattern: parallel sweep

17

Kripke
•  Key communication pattern: parallel sweep

17

Mapping
•  Blocked mapping of subdomains to ranks is

efficient within-node

18

Mapping
•  Scattered mapping increases concurrency
–  5-10% improvement at scale

19

OpenMP Integration
•  Charm++ version of GNU OpenMP 4.0

works with AMPI
–  (A)MPI+OpenMP configurations on P cores/node:

–  AMPI+OpenMP can do P:P without

oversubscription of system resources

20

Notation Ranks/Node Threads/Rank MPI(+OpenMP) AMPI(+OpenMP)

P:1 P 1 ✔ ✔
1:P 1 P ✔ ✔
P:P P P ✔

Kripke Weak Scaling
•  (A)MPI-only suffers from transient load

imbalance during the sweep

21

�

�

��

��

��

���

���

�� �� ��� ��� ��� ���� ����

�
��
�
��
�
��
��
��
��
�
��
�

������ �� ����� ����� �������

��� ������
���� ������

OpenMP Interoperation
•  (A)MPI+OpenMP (1:P) loses out on the

sweep’s pipeline parallelism

22

�

�

��

��

��

���

���

�� �� ��� ��� ��� ���� ����

�
��
�
��
�
��
��
��
��
�
��
�

������ �� ����� ����� �������

��� ������
���� ������

���������� ������
����������� ������

OpenMP Integration
•  Kripke benefits from AMPI+OpenMP (P:P)
–  Pipeline parallelism + within-node load balancing

23

�

�

��

��

��

���

���

�� �� ��� ��� ��� ���� ����

�
��
�
��
�
��
��
��
��
�
��
�

������ �� ����� ����� �������

��� ������
���������� ������
���������� ������

���� ������
����������� ������

����������� �������

Recent Progress
•  Charm++ 6.7.1 is a feature release for AMPI
–  AMPI extensions now prefixed with ‘AMPI_’
–  MPI-2.2 compliance
–  MPI-3.1 nonblocking & neighborhood collectives
–  Improved performance for test, wait routines
–  ampicc is more compatible with autoconf/cmake

•  Ongoing work:
–  Conformance to MPI-3.1
–  True RDMA for MPI’s RMA routines
–  Optimization of AMPI+OpenMP integration

24

Summary
•  Adaptive MPI provides Charm++’s high-level

features to pre-existing MPI applications
–  Overdecomposition
–  Overlap of communication and computation
–  Configurable static mapping
–  Dynamic load balancing
–  Automatic fault tolerance
–  OpenMP runtime integration

25

Thank you

