
Variation Among Processors Under Turbo Boost
in HPC Systems

Bilge Acun, Phil Miller, Laxmikant V. Kale
Department of Computer Science

University of Illinois at Urbana-Champaign, Urbana, IL, 61801
{acun2, mille121, kale}@illinois.edu

Abstract

The design and manufacture of present-day CPUs causes
inherent variation in supercomputer architectures such as
variation in power and temperature of the chips. The vari-
ation also manifests itself as frequency differences among
processors under Turbo Boost dynamic overclocking. This
variation can lead to unpredictable and suboptimal perfor-
mance in tightly coupled HPC applications. In this study,
we use compute-intensive kernels and applications to analyze
the variation among processors in four top supercomputers:
Edison, Cab, Stampede, and Blue Waters. We observe that
there is an execution time difference of up to 16% among
processors on the Turbo Boost-enabled supercomputers: Edi-
son, Cab, Stampede. There is less than 1% variation on Blue
Waters, which does not have a dynamic overclocking feature.
We analyze measurements from temperature and power in-
strumentation and find that intrinsic differences in the chips’
power efficiency is the culprit behind the frequency variation.
Moreover, we analyze potential solutions such as disabling
Turbo Boost, leaving idle cores and replacing slow chips to
mitigate the variation. We also propose a speed-aware dy-
namic task redistribution (load balancing) algorithm to reduce
the negative effects of performance variation. Our speed-
aware load balancing algorithm improves the performance up
to 18% compared to no load balancing performance and 6%
better than the non-speed aware counterpart.

1. Introduction
Heterogeneity in supercomputer architectures is often pre-
dicted as a characteristic of future exascale machines
with non-uniform processors, for example, machines with
GPGPUs, FPGAs, or Intel Xeon Phi co-processors. How-
ever, even today’s architectures with nominally uniform pro-
cessors are not homogeneous, i.e. there can be performance,
power, and thermal variation among them. This variation can
be caused by the CMOS manufacturing process of the tran-
sistors in a chip, physical layout of each node, differences in
node assembly, and data center hot spots.

These variations can manifest themselves as frequency dif-
ference among processors under dynamic overclocking. Dy-
namic overclocking allows the processors to automatically

run above their base operating frequency since power, heat,
and manufacturing cost prevent all processors from con-
stantly running at their maximum validated frequency. The
processor can improve performance by opportunistically ad-
justing its voltage and frequency within its thermal and power
constraints. Intel’s Turbo Boost Technology is an example
of this feature. Overclocking rates are dependent on each
processor’s power consumption, current draw, thermal limits,
number of active cores, and the type of the workload [3].

High performance computing (HPC) applications are often
more tightly coupled than server or personal computer work-
loads. However, HPC systems are mostly built with com-
mercial off-the-shelf processors (with exceptions for special-
purpose SoC processors as in the IBM Blue Gene series and
moderately custom products for some Intel customers [5]).
Therefore, HPC systems with recent Intel processors come
with the same Turbo Boost Technology as systems deployed
in other settings, even though it may be less optimized for
HPC workloads. Performance heterogeneity among compo-
nents and performance variation over time can hinder the per-
formance of HPC applications running on supercomputers.
Even one slow core in the critical path can slow down the
whole application. Therefore heterogeneity in performance
is an important concern for HPC users.

In future generation architectures, dynamic features of the
processors are expected to increase, and cause their variabil-
ity to increase as well. Thus, we expect variation to become
a pressing challenge in future HPC platforms. Our goal in
this paper is to measure and characterize the sources of varia-
tion, and propose solutions to mitigate their effects. The main
contributions of this paper are:

• Measurement and analysis of performance variation of
up to 16% between processors in top supercomputing
platforms (§ 2)
• Measurement and analysis of frequency, power, and

temperature of processors on Edison (§ 4)
• A demonstration of the performance degradation of HPC

applications caused by variation (§ 4)
• Identify specific measurement and control features that

future architectures should provide to enable responses
to in-homogeneity at the level of applications, runtime



systems, and job schedulers (§ 5)
• Analysis of potential solutions to mitigate effects of in-

homogeneity: disabling Turbo Boost, replacing slow
chips, idling cores, and dynamic task redistribution (§ 6)
• A speed-aware dynamic task redistribution technique

which improves performance up to 18% (§ 6.4)

To the best of our knowledge, there is no other work which
measures and analyzes performance, frequency, temperature,
and power variation among nominally equal processors under
Turbo Boost at large scale (See related work in Section 7).

2. Motivation

Homogeneous synchronous applications running on multiple
cores or processors are limited by the slowest rank. Hence,
even one slow core can degrade the performance of the whole
application. If one core is slower than others by x%, then the
whole application would run x% slower if the slow core is
on the critical path. For applications with non-homogeneous
workloads, this effect is not as straightforward to measure. In
the worst case scenario, the heaviest loaded rank would be on
the slowest core and that could make the application up to x%
slower.

��
����
����
����
����
����
����
����
����
����

���� ���� ���� ���� ���� ���� ���� ����

�
��
��
��
��
��
��
��
��
��
�

�������

���������������������������

��������
���

������

Figure 1: The distribution of benchmark times on 512
nodes of each machine looping MKL-DGEMM a fixed
number of times on each core.

The impact of the core-to-core performance difference is
also based on what fraction of the cores are fast and what frac-
tion of them are slow. If there are only a few fast cores and
most of the cores are slower, then the situation is not unfavor-
able. However the opposite of this condition, i.e most of the
cores are fast but some of them are slow, is unfavorable. Fig-
ure 1, shows the histogram of the core performance running
a benchmark that calls Intel MKL-DGEMM sequentially on
the Edison, Cab and Stampede supercomputers. Overall core-
to-core performance difference is around 16%, 8% and 15%
respectively.

To further understand this time difference, we look into
the relation between total time and the average frequency of

����
����
����
����
����
����
����
����

���� ���� ���� ���� ���� ���� �� ���� ����

�
��
��
��
��
��
��
�

���������������

������������������������������

������

���

��������

���������������

���������������

���������������

Figure 2: Average frequency shows a negative correla-
tion with total execution time on both Edison, Cab and
Stampede when running MKL-DGEMM.

the cores from the whole execution. The frequency differ-
ence among the chips is a result of the dynamic overclock-
ing feature of the processors. Figure 2 shows the correlation
for Edison, Cab, and Stampede supercomputers on 512 com-
pute nodes. There is an inverse linear correlation between
the time and the frequency of the processors with fit lines
shown in the figure. The values of the R2 correlation co-
efficient are 0.977, 0.965, 0.303 respectively, where 1 indi-
cates a perfect linear trend. Edison and Cab show almost
perfect inverse correlation, while Stampede has a lower R2

value because of the interference or noise: the execution time
of some of the cores were longer even though they were not
running at a slower frequency. We note a few other features
of these measurements. Edison processors (Ivy Bridge) span
a wider range of frequencies, nearly 400 MHz, than the 300
MHz spread among processors in Cab and Stampede (Sandy
Bridge). Many of Edison’s processors reach the maximum
possible frequency, while none of those in Cab or Stampede
do the same. These observations may indicate broader gener-
ational trends among Intel processors.

We also look for variation in a platform which does not
have a dynamic overclocking feature: Blue Waters, which has
AMD Bulldozer processors. Blue Waters cores do not show
any significant performance difference among them. Overall
performance variation is less than 1% among 512 compute
nodes. Therefore we do not further analyze Blue Waters.

To summarize our motivation, we show that there is a sub-
stantial frequency and consequent execution time difference
among the cores under dynamic overclocking running the
same workload. In HPC applications, this variation is par-
ticularly bad for performance because slower processors will
hold back execution through the load imbalance and critical
path delays they introduce. Moreover, this effect worsens
with scale, because a larger set of processors increases the
probability of encountering more extreme slow outliers.

2



Table 1: Platform hardware and software details

Platforms Edison Cab Stampede Blue Waters
Processor Intel Xeon(R) E5-2695 v2 Intel Xeon(R) E5-2670 Intel Xeon(R) E5-2680 AMD 6276 Interlagos

(Ivy Bridge) (Sandy Bridge) (Sandy Bridge)

Clock Speed Nominal 2.4 GHz Nominal 2.6 GHz Nominal 2.7 GHz Nominal 2.3 GHz

Turbo Speed # Cores: 1 / 2 / 3 / 4 / 5-12 # Cores: 1-2 / 3-4 / 5-6 / 7-8 # Cores: 1-2 / 3-5 / 6 / 7-8 No Boost Feature
GHz: 3.2 / 3.1 / 3.0 / 2.9 / 2.8 GHz: 3.3 / 3.2 / 3.1 / 3.0 GHz: 3.5 / 3.4 / 3.2 / 3.1

TDP 115 W 115 W 130 W -

Cores per node 12× 2 = 24 8× 2 = 16 8× 2 = 16 16× 2 = 32

Cache size (L3) 30MB(shared) 20MB(shared) 20MB(shared) 16MB(shared)

3. Experimental Setup and Background

3.1. Platforms

We have used 4 different top supercomputing platforms in
our experiments. We list the detailed specifications of the
platforms in Table 1.

Edison is a Cray XC30 supercomputer at NERSC [2].
Each compute node has 2 Intel Ivy Bridge processors with
Intel’s Turbo Boost version 2.0 feature enabled. The actual
CPU frequency can peak up to 3.2 GHz if there are 4 or fewer
cores active within a chip. When all cores are active, the cores
can peak up to 2.8 GHz [4]. The platform gives users the abil-
ity to change the nominal frequency and the Linux kernel’s
power governors. It has 14 fixed frequency states ranging
from 1.2GHz to 2.4GHz and users can specify the frequency
at job launch with the aprun --pstate command. The
--p-governor flag sets the power governor.

Edison has 5576 compute nodes. We have used up to 1024
randomly allocated nodes in our experiments. Thus, we be-
lieve our results are representative of the whole machine.

Cab is a supercomputer at LLNL [1]. Each computer
node has dual socket Intel Sandy Bridge processors with Intel
Turbo Boost version 2.0 enabled. The actual CPU frequency
can peak up to 3.3 GHz if there are 1 or 2 cores active within
a chip. When all cores are active, the cores can peak up to 3.0
GHz.

Stampede is TACC’s supercomputer [7]. Each compute
node of Stampede has Intel Sandy Bridge processors and one
Xeon Phi coprocessor. We do not use the coprocessor in our
experiments. The processors have Intel Turbo Boost version
2.0 enabled. The actual CPU frequency can peak up to 3.5
GHz if there are 1 or 2 cores active within a chip. When all
cores are active, the cores can peak up to 3.1 GHz.

Blue Waters is a Cray XE/XK system at NCSA. For our
experiments we use the XE nodes which have two AMD pro-
cessors with 16 Bulldozer cores [22]. The processors in this
system do not have a dynamic overclocking feature like In-
tel’s Turbo Boost.

3.2. Applications

3.2.1. Matrix Multiplication
Dense matrix multiplication is a relatively compute-bound
operation that simultaneously stresses a broad subset of a sys-
tem’s hardware. We run the sequential matrix multiply ker-
nels in a loop on each core with data which fit in the last level
(L3) cache i.e. we use three 296x296 double-precision matri-
ces, which requires around 2MB data per core and 24MB per
chip where the L3 cache is 30MB on Ivy Bridge cores. Using
data which fits in cache eliminates the effect of memory and
cache related performance variation in our timings.

MKL-DGEMM: This kernel comes from Intel’s Math
Kernel Library (Intel MKL) version 13.0.3 on Edison
and 13.0.2 on Stampede. Specifically, we call the
cblas_dgemm function. We use this as a representative of
a maximally hardware-intensive benchmark.

NAIVE-DGEMM: This kernel is a simplistic hand-
written 3-loop sequential, double-precision dense matrix
multiply. We use this as a representative of application
code with typical compiler optimization settings, but that has
not been hand-optimized or auto-tuned for maximum perfor-
mance on a given system architecture.

Data alignment, padding, compiler flags We
use 2MB alignment using mkl_malloc() or
posix_memalign() (respectively) with 0, 64, or
128 bytes of padding for the data buffers to avoid cache
aliasing. Preliminary experiments showed that neglecting
this effect created substantial performance perturbations.
We do not explore that issue both because it has been
addressed by substantial previous research and because more
realistic applications are much less likely to encounter it as
consistently as our micro-benchmark. We use Intel’s icc
compiler (version 15.0.1 on Edison, and 13.0.2 on Stampede)
with -O3 and -march=native flags.

3.2.2. LEANMD
This is a mini-app version of NAMD, a production-
level molecular dynamics application for high performance
biomolecular simulation systems [24]. It does bonded, short-
range, and long-range force calculations between atoms. In

3



our experiments, we use the benchmark size of around 1.8
million atoms. The benchmark is written in CHARM++ par-
allel programming framework.

3.2.3. JACOBI2D
This is a 5-point stencil application on a 2D grid. The appli-
cation uses the CHARM++ parallel programming framework
for parallelization. The grid is divided into multiple small
blocks, each is represented as an object. We use multiple
different grid sizes and block sizes in our experiments. For
each iteration, the application executes in 3 stages, i.e. lo-
cal computation, neighbor communication and barrier-based
synchronization.

3.3. Measurement Methodology

We sample the time, hardware counters, temperature and
power every 10 matrix multiply iterations for NAIVE-
DGEMM and 100 iterations for MKL-DGEMM. This makes
the sampling time roughly 20 milliseconds. For other bench-
marks we do 1 second periodic measurements through an
external module. The temperature and power measurements
are specific to Edison.

Frequency Measurements: We use PAPI [10] to read the
hardware counters. Specifically, we measure the total clock
cycles, reference clock cycles, and cache misses. Total cy-
cles (PAPI TOT CYC) “measure the number of cycles re-
quired to do a fixed amount of work” and reference clock
cycles (PAPI REF CYC) “measure the number of cycles at
a constant reference clock rate, independent of the actual
clock rate of the core” [6]. We use the total and refer-
ence cycles to calculate the cycle ratio (PAPI TOT CYC /
PAPI REF CYC). The cycle ratio gives us the effective clock
rate of the processor. If the ratio is greater than one, it means
the processor is running above the nominal speed and below
means slower than the nominal speed. When running a work-
load under Turbo Boost this ratio is typically greater than one.
On the other hand, if the processor is idle this ratio will typ-
ically be less than one [6]. In summary, we can obtain the
clock frequency of the processor using the following formula:

Freqeffective = Freqnominal ×
TotalCycles

ReferenceCycles

Temperature Measurements on Edison: Edison users
have read access to the temperature data of the cores through
the /sys/devices/platform/coretemp interface.

Power Measurements on Edison: Edison allows read
access to node level power meters for all users through the
file: /sys/cray/pm_counters/power or using PAPI
‘native’ counters. We use the first option to get each compute
node’s power consumption. The power measurements are
available as the whole compute node’s power (CPUs, RAM,

and all other components) in watts. These meters read out
with an apparent 4 W resolution. Cab, Stampede and Blue
Waters do not provide an application-accessible interface to
access power consumption without a specific privilage.

We note that the CPUs in Edison, Cab and Stampede have
model-specific registers (MSRs) that report CPU-level power
and energy measurements. However, these are only accessi-
ble to OS kernel code or processes running with administra-
tive privileges. We discuss this limitation further in Section 5.

3.4. Eliminating OS Interference

Operating systems and other extraneous processes can induce
significant noise into the application [23]. On Edison and
Blue Waters, we eliminate the effect of OS interference by
binding all the OS processes to one core using the process
launcher option aprun -r 1. From our observations, these
systems use the last core in each node to satisfy this option.
We then report measurements focusing on core 0 in each chip
to avoid the effect of those OS processes. Cab and Stampede
do not provide such an option.

3.5. Turbo Boost and Frequency

On the Intel Ivy Bridge EP processors found in Edison, there
are two ways in which the observed operating frequency of
a chip can differ from the nominal 2.4 GHz for which they
are rated. P-states are software controlled, and Turbo Boost
is hardware controlled within the limits of software-provided
parameters and hardware constraints.

The software-driven P-state variable can be used to set
the desired baseline frequency, ranging from 1.2 GHz to 2.4
GHz in increments of 100 MHz [4]. Various experiments
have used this control in HPC runtime system, job scheduler,
and resource manager software to optimize for energy usage,
temperature, reliability, and performance under resource con-
straints [14, 18, 27]. On Edison, users can only set a uni-
form P-state across all nodes for the duration of a job using
the aprun --pstate flag when launching compute pro-
cesses. For the results examined in this paper, we use only
the default maximum setting of this variable except in Sec-
tion 6.1.

Intel Turbo Boost provides dynamic hardware-driven op-
eration at frequencies above the baseline frequency requested
by the P-state setting. All active cores within a chip operate
at the same frequency. Software settings can bound the al-
lowed range of frequency values that Turbo Boost can select,
but none of the platforms currently allows users to control
this. The hardware constraints are based on limits of operat-
ing temperature (max of 76◦ C), keeping power consumption
below TDP, and current draw (value not documented in avail-
able sources) [4]. At 1 ms intervals, the hardware controller
examines sensor values for these parameters and adjusts ac-
cordingly: if any limit is exceeded, then the CPU slows down
100 MHz; if no limit is exceeded and the frequency is below
the maximum, then the CPU speeds up 100 MHz.

4



Table 2: Distribution of observed steady-state frequencies of 1K Chips on Edison

Frequency (GHz)
Application Idle cores 2.4−2.5 2.5 2.5−2.6 2.6 2.6−2.7 2.7 2.7−2.8 2.8

MKL-DGEMM 0 5 31 116 125 254 154 211 128
1 0 0 0 20 42 116 256 590

NAIVE-DGEMM 0 0 0 0 0 2 49 23 950
1 0 0 0 0 0 2 0 1022

LEANMD 0 0 0 0 0 0 0 186 838
1 0 0 0 0 0 0 8 1012

JACOBI2D 0 0 0 0 0 0 200 100 720
1 0 0 0 0 0 50 50 924

Table 3: Frequency distribution of MKL-DGEMM on Cab

Frequency (GHz)
2.6−2.7 2.7 2.7−2.8 2.8 2.8−2.9 2.9

16 56 548 184 210 10

Table 4: Frequency distribution of MKL-DGEMM
on Stampede

Frequency (GHz)
2.8−2.9 2.9 2.9−3.0 3.0 3.0−3.1

13 19 555 183 254

4. Measurement and Analysis of Variation

In this section, we measure and analyze the performance, fre-
quency, thermal, and power variation among the chips. We
use Edison in rest of the paper since it shows the highest vari-
ation not attributable to OS interference, and it gives users ac-
cess to the most power and temperature measurements. Even
this access is much less than ideal, as we discuss in Section 5.

We note that there is small intra-chip variation (i.e. varia-
tion between the cores within one chip) that is not caused by
frequency; however, this variation is not significant. There-
fore we only focus on the inter-chip variation that arises even
though they are all of the same product model.

4.1. Inter-chip Frequency Variation

The chips takes a warm-up period from the job launch to
settle down on a set frequency or a duty-cycle determined
frequency average. Figure 4 illustrates this warm-up period
with temperature, frequency and power measurements of a
randomly selected compute node. The node has two sockets
that behave differently. The temperature of Chip 1 is a few
degrees higher over the run and it has a stable 2.8 GHz fre-
quency. On the other hand, chip 2 starts at 2.8 GHz and the
frequency drops to 2.5 GHz after around 18 seconds. Un-
til the drop point, node power slowly increases from 320W
to 330W and once Chip 2 hits the threshold, its frequency
drops, causing its power level to drop. Duration of the warm-

up period can vary depending on the application’s compute
intensity. For MKL-DGEMM the warm-up is around 20 sec-
onds whereas for NAIVE-DGEMM it’s around 1 minute. We
exclude the warm-up period in our following reported mea-
surements.

Table 2 shows the distribution of the steady-state frequen-
cies of the chips on Edison. For example, during the run of
MKL-DGEMM, 67 of the 512 chips run at the maximum pos-
sible frequency of 2.8 GHz. Since these chips are efficient
and stable, we call these fast chips. These make up 13% of
the whole tested allocation. There are other chips which are
stable but run at a lower frequency, i.e 75 of the 512 chips run
at a stable 2.7 GHz with MKL-DGEMM. These are stable but
slow chips. Moreover, some of the chips have an average fre-
quency that is not one of the set values (i.e. 2.8, 2.7, 2.6 or
2.5 GHz). This means that the chip could not settle down on
a stable frequency and it is oscillating between two frequen-
cies, i.e. 100 of the 512 chips have an average between 2.7
GHz and 2.8 GHz with MKL-DGEMM. We term these vari-
able chips. Tables 3 and 4 show the corresponding data for
MKL-DGEMM on Cab and Stampede, respectively.

To understand how these types of chips behave over time,
we have selected 1 core from 3 chips which behave differently
and show how the iteration time and the frequency changes
over the iterations in Figure 3. The selected slow core has the
highest iteration time compared to the other 2 selected cores,
and its frequency of 2.7 GHz does not change over time. The
fast core has the lowest iteration time and a frequency of 2.8
GHz which changes minimally over time. On the other hand,
the variable core’s iteration time the frequency make a wave
pattern. By comparing the left and right figures we can ob-
serve that when the iteration time increases(or decreases) in
the variable core, the frequency decreases(or increases). We
analyzed the time and frequency correlation earlier in Fig-
ure 2, and the same correlation applies here as well.

Table 2 also shows the effect when one core is left idle.
We try leaving one core idle from socket 2 in each compute
node, to eliminate the potential for OS interference by bind-
ing the OS processes to the idle core. Leaving the core idle
not only eliminates the interference but also reduces the num-
ber and severity of slow and variable chips as well. Since the

5



����
������
������
������
������
�����
������
������

�� ���� ���� ���� ���� ����

��
��
��
��
��
�
��
��
��
�

����������

�������������������������������

�������� ���� ����

���

���

�� ���� ���� ���� ���� ����

��
��
��
��
��
��
�
��

����������

��������������������������

�������� ���� ����

Figure 3: Iteration time (left plot) and frequency (right plot) over iterations are shown from cores selected from 3 chips
showing distinct behavior: slow, variable, and fast.

��

���

���

���

���

����

� �� �� �� ��
����

����

����

����

����

����

�
��
��
��
��
��
��
�
�

��
��
��
��
��
��
�
��

��������

����������������������������

��

��

���

��� ��� ���

��� ���
���

���

��

��

Figure 4: Plot shows the power (Pow (W)) of a randomly
selected node, temperature (T1, T2) and frequency (F1,
F2) of the two chips on the node.

chips run faster and more stably when one core is left idle, we
discuss this arrangement as a potential means to avoid slow
processors in Section 6.3.

MKL-DGEMM is a highly-optimized kernel which puts a
lot of pressure on the CPU whereas NAIVE-DGEMM is not
as intense. Consequently, while the chips fall as far down as
2.5 GHz with MKL-DGEMM, with NAIVE-DGEMM they
fall down to 2.7 GHz. In a run on 1024 compute nodes of
Edison, we see that 92% of the chips are fast and only about
7% of processors are unable to sustain a steady 2.8 GHz
over the few minutes of our NAIVE-DGEMM benchmark
run. Others either persistently vary between 2.7 and 2.8 GHz
during the run, or stabilize after a variable length of time at
2.7 GHz. These off-nominal chips are exactly those on which
the benchmark as a whole took longer to run. LEANMD and
JACOBI2D applications shows a similar behavior to NAIVE-
DGEMM. The more applications are optimized for perfor-
mance, the more they are likely to encounter a chip running at
a slower frequency. For example, an application using AVX
instructions and data tiling for memory performance would
have a high CPU intensity, whereas more time waiting for
communication, synchronization or high memory access la-
tency would give CPU more idle time which results in lower
temperature and power values. We observed by experiment

that such applications may show little frequency variation or
none at all.

In a CPU-intensive parallel application, processors that are
even slightly slower or less efficient than their cohort can po-
tentially create a vicious cycle for themselves. Faster proces-
sors will experience idle time due to load imbalance and crit-
ical path delays. During that time, they will cool down and
bank energy, stabilizing their temperature, power consump-
tion, and frequency. The slower processors will run closer
to a 100% duty cycle, pushing their temperature and power
consumption up and their steady-state frequency down. As
they get hotter, draw more power, and slow down, they be-
come worse off relative to the faster chips. Thus, the effect
amplifies and feeds back on itself.

4.2. Temperature and/or Power as Cause of Fre-
quency Variation

There are several possible reasons for the frequency variation
that we have observed. Turbo Boost adjusts the clock fre-
quency based on the processor’s power, current, temperature,
active core count, and the frequency of the active cores. Ac-
tive core count is irrelevant here, because Edison’s processors
can boost to a maximum of 2.8 GHz with 5–12 cores running.

We first try to understand if the frequency variation is
caused by slow or variable processors reaching their tempera-
ture limit. In Figure 5 shows what frequency level processors
are running at for each temperature bin for NAIVE-DGEMM
and MKL-DGEMM benchmarks. We periodically collect fre-
quency and temperature data from the whole execution in-
cluding the warm-up time. Then, we bin the data points in
terms of temperature and calculate which percentage of them
run at what frequency level. We can see that chips running
MKL-DGEMM span a wide range of frequencies and tem-
peratures, with no apparent correlation. At every temperature
level, there are processors from each frequency. The fastest
chips reach temperatures as high as the slower chips. For
NAIVE-DGEMM, as the temperature goes higher, the per-
centage of chips running at high frequency drops. However,
very few chips are anywhere near the documented thresh-

6



��

���

���

���

���

����

�� �� �� �� �� �� ����
��
��
��
��
��
���
��
��
��
���
��
��
�
�

��������������

�������������������������������������

�����������
�����������
�����������
�����������
�������

�� �� �� �� �� �� ��

��������������

�����������������������������������

Figure 5: Plots show what percentage of the chips run at what frequency in each temperature level for NAIVE-
DGEMM(left plot) and MKL-DGEMM(right plot) benchmarks. The data points are collected from the whole execution
of the benchmarks and classified according to their temperature bins. Temperature of the chips running is not directly
correlated with their frequency under the heavier load of MKL-DGEMM.

260 4 4 F = Fast Chip = 2.8 GHz
265 8 8 S = Slow Chip = 2.7 GHz
270 60 60 V = Variable Chip = 2.7 <f< 2.8GHz
275 108 108
280 162 162
285 141 139 2
290 123 119 2 2
295 107 104 1 2
300 89 75 7 6 1
305 88 60 18 7 2 1
310 77 41 19 7 5 5
315 51 18 14 10 5 3 1
320 6 3 0 2 0 0 1

Power (W) Total = 1024 F & F = 901 F & S = 63 F & V = 36 S & S = 13 S & V = 9 V & V = 2

Table 5: The distribution of whole-compute-node power consumption while running NAIVE-DGEMM, for nodes contain-
ing the various possible combinations of chips. Histograms are given to illustrate the strong regularity present in the
distribution of power consumption values in the fast/fast case. This regularity suggests a relatively simple underlying
stochastic process. As a compute node includes slower and variable chips, its distribution of measured power shifts
upward, suggesting those chips are at their limiting power while the fast chips are not.

old temperature of 76◦ C. The data for LEANMD and JA-
COBI2D looks very similar to NAIVE-DGEMM. Thus, we
conclude that the chips running slower than nominal have not
slowed down due to reaching their thermal limit.

Another reason for the frequency variation could be power
draw of the cores. The package control unit (PCU) in the pro-
cessors with Turbo Boost Technology 2.0 has an intelligent
exponential weight-moving average (EWMA) algorithm [25]
to adjust the frequency of the cores. According to this algo-
rithm, energy consumption of the processor is tracked within
fixed time periods. Within these periods if the CPU is con-
suming less power than a threshold power limit, then it accu-
mulates energy credit which can be used in the following pe-
riod to boost the CPU frequency. That power threshold limit
is thermal design power (TDP) which is the power level in the
steady state where the frequency of the CPU could safely be
higher than the nominal frequency [25]. We can observe this
time interval in the EWMA algorithm from the variable core

in Figure 3. The frequency changes in a rapid wave pattern
over iterations. The core accumulates energy credits when
the frequency is low and uses those credits to increase the
frequency back again.

Table 5 shows the distribution of node power consump-
tion from NAIVE-DGEMM. We have grouped the nodes by
the pair of categories assigned to the processors they contain.
Since we only have power measurements of the whole com-
pute node on Edison, this pairing is necessary to identify the
power consumption of different chip types. There are 3 dis-
tinct frequency levels with NAIVE-DGEMM: 2.8 GHz, 2.7
GHz, and between 2.7-2.8 GHz. We simply name them fast,
slow, and variable chips. Since there are two chips in a node
on Edison, a node can have one of 6 different combination of
chips. These are: fast & fast, fast & slow, fast & variable,
slow & slow, slow & variable, variable & variable.

We can see that the variable processors systematically con-
sume more power than slow processors, which in turn con-

7



sume more power than fast processors. This occurs because
a variable core is running at an average frequency right at the
edge of what its power consumption will allow. As temper-
ature rises even slightly, the power consumption increases to
a point where the PCU will not allow the chip to ever step
up to its higher frequency, and so it stabilizes at a lower fre-
quency and hence slightly lower but still near-threshold level
of power consumption. TDP of the processors is 115 Watts.
However, since the power data is node-level power which in-
cludes not just CPU power but also power of RAM and other
components in the node, the measured power is higher than
115× 2 = 230 W.

Power measurements of LEANMD and JACOBI2D shows
a very similar distribution to NAIVE-DGEMM. MKL-
DGEMM also shows a similar distribution, however with a
much narrower power range of 18 Watts: [302-320], instead
of 60 Watts: [260-320] in NAIVE-DGEMM. The node cate-
gorization is more complicated then the categorization in Ta-
ble 5 since there are 8 different frequency levels and it makes
56 different node types.

Although it is hard to make a concrete conclusion without
CPU-level power data, our measurements show that that pro-
cessors’ frequency is likely throttled down due to the power
limit. Increase in temperature increases the power consump-
tion however, the lack of correlation between the temperature
and frequency suggests the frequency variation is not directly
due to temperature-driven throttling.

5. Architecture and System Needs

As supercomputing platforms are becoming more heteroge-
neous with thousands of processors and as processors are be-
coming more dynamic, forecasts predict more variation in the
future. Therefore, it is important that applications, or runtime
systems underneath the applications, be aware of this hetero-
geneity and to do necessary optimization to mitigate the effect
of performance variation.

Many supercomputing platforms do not give users access
to power or temperature measurements, or rights to control
the frequency of the processors or apply power-capping al-
gorithms. Access to these measurements and controls would
give researchers the opportunity to understand the behavior
of the hardware and hence improve application performance.

Edison supercomputer provides read access to node-level
power, and core-level temperature measurements. However,
node-level power measurements are not fine-grained enough,
to make detailed studies and CPU-level power measurements
are necessary. Edison also provides control of frequency and
power in job-allocation-level i.e. all nodes participating the
job launch has same frequency/power settings. However, this
is also not fine-grained enough. Given the variation we ob-
serve among chips, every chip can have a different optimal
power, frequency setting. Therefore, chip level power and
frequency control is necessary. Cab and Stampede do not

Table 6: Desired access of measurement and controls.
3: There is support and access. 7: There is no support.
G#: Hardware supports, but the software does not allow.

Need
Platform Edison Cab Stampede

Frequency Data 3 3 3
Temperature Data 3 G# G#
Node Level Power Data 3 G# G#
Chip Level Power Data G# G# G#
Core Level Power Data 7 7 7

Per-chip Power Capping G# G# G#
Per-chip Frequency Scaling G# G# G#
Per-core Frequency Scaling 7 7 7

provide access to either power or temperature measurements
and do not provide any frequency/power control mechanisms.

Most current power and energy related studies are usually
done in small clusters or using only a few processors. Ac-
cess to power related controls and measurements would also
enable researchers to extend their studies to much larger plat-
forms, to the benefit of the whole HPC community.

6. Potential Solutions to Mitigate Perfor-
mance Variation

In this section, we analyze potential solutions to mitigate the
variation problem. The solutions do not all require power
related measurement/control rights. These solutions are: dis-
abling Turbo Boost, replacing slow chips, leaving some cores
idle, and dynamic task redistribution.

6.1. Disable Turbo Boost

Turbo Boost enables the cores of Edison to speed up to 2.8
GHz when all cores are active. In this section, we show the
performance of the applications when the frequency is fixed
to run at 2.4 GHz using the aprun --pstate option (note
that 2.4 GHz is the maximum possible non-Turbo frequency
to set the processors at). Setting the frequency at 2.4 GHz
removes the frequency variation among the chips and makes
every chip run at 2.4 GHz.

Table 7: Percentage slowdown of applications when the
frequency is fixed at maximum frequency of 2.4GHz

Application % Slowdown
MKL-DGEMM 9.1

NAIVE-DGEMM 18.1

LEANMD 16.8

JACOBI2D 4.2

Our measurements show that with Turbo Boost enabled,
even the slowest and the most variable chips are consistently
running beyond the nominal clock speed of 2.4 GHz and
the applications definitely have a performance gain. Table 7

8



�����
�����
����
�����
�����
�����
�����
����

�� ���� ���� ���� ���� ���� ���� ���� ���� ����

�
��
��
��
��
��
��
��
��
��
�
�
��

��������������������������

������������������������������������

���������
�����������

��������
������

��
��
��
��
��

���
���

�� ���� ���� ���� ���� ���� ���� ���� ���� ����

��
��
��
��
��
�

��������������������������

������������������������������������

���������
�����������

��������
������

Figure 6: How many chips we should replace to get performance benefit?

shows the slowdown of the applications when the frequency
is fixed at 2.4 GHz compared to the default case where Turbo
Boost is on. All of the applications show significant per-
formance degradation. NAIVE-DGEMM gets 18.1% perfor-
mance degradation whereas MKL-DGEMM gets 9.1%. The
applications that are running at higher frequency levels with
Turbo-Boost on (i.e. NAIVE-DGEMM), shows more slow-
down when Turbo-Boost is disabled (i.e. compared to MKL-
DGEMM). LEANMD gets 16.8% because of its compute in-
tensity, whereas application has a comparatively larger mem-
ory access latency and therefore the slowdown is only 4.3%.
Memory bound applications are less affected by disabling
Turbo-Boost.

As all applications lose performance with Turbo Boost off,
disabling Turbo Boost is not an ideal solution in terms of
performance even though it removes the frequency variation.
In fact, newer generation processors are becoming more and
more dynamic. We have shown an example of this in Sec-
tion 2 where newer generation Ivy Bridge processors have
a wider frequency boost range than older generation Sandy
Bridge processors. Processors can take advantage of power
and thermal headroom to improve performance by oppor-
tunistically adjusting their voltage and frequency based on
embedded constraints. Instead of disabling these dynamic
features, software and applications should be able to work
well with these architectural features.

6.2. Replacing Slow Chips

In this section we analyze replacing the chips that are running
at a lower frequency as a solution to mitigate the performance
variation. We seek answer to the question: How many chips
should we replace to get x% performance benefit? Figure 6
shows the answer for each application.

The left plot shows how average frequency of all chips
changes with replacing the slow chips (i.e. not running at 2.8
GHz) with fast ones (i.e. running at 2.8 GHz) starting from
the slowest. The right plot shows the percentage speedup.
The speedup here is calculated by the improvement in the
minimum frequency of all chips. We use minimum number
here since the slowest chip will be the bottleneck in a syn-

chronized application without dynamic load balancing.
The number of chips to replace to get a given level of

performance benefit varies from application to application.
MKL-DGEMM requires many more chips to be replaced
compared to the other applications. Getting all of the chips
running at 2.8GHz requires a significant number of the chips
to be replaced and therefore is not feasible. However, re-
placing 50 chips, which is around 5% of the chips, would
give an instant 5% speedup for MKL-DGEMM and NAIVE-
DGEMM applications. There is a trade-off between the re-
placement cost, and the performance benefit which varies
from application to application.

6.3. Leaving cores idle

The mitigation of sluggishness and variability when leav-
ing a core idle (cf. Table 2) suggests that this could be
done intentionally as a means to regain threatened perfor-
mance. A chip with one or more cores idle would system-
atically have more head room in power consumption, heat
output, and cache capacity. Experiments with a core idle in
one chip per node show measured cache misses on each core
that were much lower than on a fully occupied chip, which
would also imply less power consumed by the memory con-
troller (and in DRAM, though that does not presently impact
CPU frequency).

This trade-off would not be generally worthwhile on Edi-
son for CPU-bound applications optimizing for time to com-
pletion. In Figure 7, we calculate the aggregate throughput
if one core from each of the chips running below the highest
frequency are selectively left idle, starting from the slowest.
The average frequency increases almost to the maximum fre-
quency with selective idling. Still, the aggregate throughput,
is higher for all applications when there is no idling.

We also experimented with leaving different core ID’s
within chips idle to see if the selection matters, but we did
not observe much difference. So rather than one specific core
slowing down its chip, whole chips seem to be uniformly
more or less efficient.

On other systems, with different core densities, clock
speeds, and prevalence of slow and variable chips, this cal-

9



������
������
������
������
������
������
������
������
������

�� ��� ���� ���� ���� ���� ���� ���� ���� ����

�
��
��
��
��
��
��
��
��
�
�
��

������������������������������������

��������������������������������

���������
�����������

��������
������

Figure 7: Throughput of all cores when 1 core is left idle
from chips starting from the slowest chip.

culation could turn out differently. Given how close this
trade-off is in this setting, it’s worth considering situations in
which the trade-off may differ. An application and problem
for which the working set fits better in cache or the memory
bus is less contended with one less working core might get
higher performance by idling one or more cores. To consider
those effects, we also calculate the throughput with real ex-
ecution time instead of frequency-based throughput. In this
case, MKL-DGEMM shows a small increase in the through-
put, up to 0.05%, when 1 core from each of the 20 chips that
get the greatest benefit is left idle. When more chips are left
idle, the throughput starts falling down again. Thus, the ben-
efit is negligible.

On a system that charged for energy consumption instead
of or in addition to time, leaving cores idle can reduce total
cost - especially if one can select the least efficient cores [20].
A system provisioned with more nodes than the facility can
fully power and cool could be used more fully by leaving
cores idle to stay under the effective power cap [27]. Reduc-
ing the power drawn by each chip would also reduce their op-
erating temperature, potentially lowering fault rates and thus
improving overall time to completion [28].

6.4. Dynamic Work Redistribution

Dynamic introspective load balancing and work stealing can
fully address the observed variation at a cost of overhead and
implementation complexity. The load balancing algorithms
should take the CPU frequency and performance of the cores
into account when distributing the work among the cores. The
load balancing can be done by the application itself or by a
run-time system. Moving only a small portion of the work-
load at run-time with an intelligent load balancing strategy
can be sufficient to compensate for the performance variation;
therefore, the load balancing overhead could be negligible or
lower than the benefit obtained from re-balancing the appli-
cation.

Algorithm 1 presents a refinement based load balancing
algorithm, REFINELB, available in the CHARM++ frame-

work [33]. In CHARM++ , the work is represented as C++
objects which can migrate from processor to processor. This
algorithm moves away objects from the most overloaded pro-
cessors (defined as heavyProcs in algorithm 1) to the least
overloaded ones (lightProcs) until the overloaded proces-
sors’ load reaches the average load. A processor is considered
overloaded if its load is more than a threshold ratio above the
average load of the whole set of processors. This threshold
value is typically set to 1.002. The main goal of the algorithm
is to balance the load with a minimum number of objects to
be migrated.

Algorithm 1 Refinement Load Balancing Algorithm
Idea: Move heaviest object to lightest processor until the
processor’s load reachs the average load
Input: Vo (set of objects), Vp (set of processors)
Result: Map: Vo→ Vp (An object mapping)

1: Heap heavyProcs = getHeavyProcs(Vp)
2: Set lightProcs = getLightProcs(Vp)
3: while heavyProcs.size() do
4: donor = heavyProcs.deleteMax()
5: while (lightProc = ligthProcs.next()) do
6: obj, lightProc = getBestProcAndObj(donor, Vo)
7: if (obj.load+lightProc.load<avgLoad) break
8: end while
9: deAssign(obj, donor)

10: assign(obj, lightProc)
11: end while

Algorithm 2 Speed-Aware Refinement Algorithm
Idea: When moving objects between processors, take
processor speed into account.
Input: Sp (Speed of processor p)
Replace line 7 in Algorithm 1 with the following:

7: if (obj.load × Sdonor ÷ SlightProc + lightProc.load <
avgLoad) break

The processor load is calculated by past execution time in-
formation of each object on the processor and the background
load collected by the CHARM++ framework. However, when
moving one object from a heavy to light processor, the al-
gorithm does not take into account speed of the processors,
instead assuming processor speeds are equal. An object’s
load can change as a result of migration i.e can take less time
when it’s moved from a slow processor to a fast processor.
Therefore the object’s estimated load needs to be scaled with
the speed of the processors. Algorithm 7 shows the neces-
sary change in to make in the RefineLB algorithm to make
it speed-aware. This scaling is done using the frequency of
the processors; a more advanced method can use instructions

10



��

��

���

���

���

������ ��������

��
��
��
��
��
�

��������������������������

�������
�������������������

Figure 8: Speedup of RefineLB and Speed-aware Re-
fineLB compared to no load balancing case.

per cycle or a more detailed performance model, such as a
frequency-dependent Roofline [31], to get a better estimation.

In Figure 8, we show the performance of RefineLB and
our speed-aware RefineLB compared to no load balancing
with JACOBI2D and LEANMD applications running on 6
nodes. Note that these applications have no inherent load im-
balance, so each core initially has an equal workload. Load
balancing with RefineLB improves the performance by 6%
in LEANMD and 12% in JACOBI2D compared to no load
balancing. Moreover, speed-aware RefineLB outperforms
RefineLB by 2% in LEANMD and 6% in JACOBI2D. A
better load estimation with speed-awareness results in more
object migration from slow chips to the fast ones compared
to non-speed aware version. Load balancing has overheads
of measurement, decision making and the actual migration.
Since the number of migrated objects are a small portion of
the total number of objects, the overhead is not too much and
will be compensated after a few iterations.

To conclude, dynamic load balancing is the most feasible
solution giving the best performance and it does not require
any change in the machine infrastructure. We have shown
how a dynamic application runtime can cope with the dy-
namic, unpredictable behavior of the chips.

7. Related Work

There are several published evaluations of earlier generations
of Intel’s Turbo Boost technology. Charles et al. show that
Turbo Boost increases the performance of the applications,
but it can increase the power consumption more than the per-
formance benefit it gives [11]. Especially with memory in-
tensive applications, the performance benefit coming from
CPU frequency boost may not be significant. This means
that performance per watt may not be better under Turbo
Boost for all workloads. Balakrishnan et al. also show that
for some benchmarks, performance per watt under Turbo
Boost is worse [9]. On the other hand, Kumar et al. show
[19] performance per watt is higher in most situations when
compared with symmetric multi-core processors. Regardless

of the conclusion of the performance per watt metric under
Turbo Boost, none of these studies examine the variability
caused by Turbo Boost on HPC platforms with thousands of
processors working in concert.

Rountree et al. show that there is variation and hence
performance degradation in applications under power cap-
ping [16, 26]. However, they do not study variation in the
absence of power capping below TDP or under Turbo Boost.

Application performance on the Edison supercomputer un-
der different CPU frequency settings has been studied be-
fore [8]. Austin et al. show energy optimal CPU frequency
points for various applications. However they do not ana-
lyze CPU frequency variation in their study and only focus
on fixed frequencies below nominal speed.

Variation within a multicore processor has been demon-
strated by Dighe et al [13]. Langer and Totoni propose a
variation aware scheduling algorithm [20, 29] with an inte-
ger linear programming approach to find the best task to core
match in a simulated environment with variation. Hammouda
et al. propose noise tolerant stencil algorithms to tolerate the
performance variations caused by various sources including
dynamic power management, cache performance and OS jit-
ter [15].

There have been various other studies showing the ther-
mal variation among supercomputer architectures [17, 32].
Moreover, there are various studies to mitigate the tempera-
ture variation or hot spots among cores or processors. Menon
et al. demonstrate a thermal aware load balancer technique
using task migration to remove the hot-spots in HPC data
centers [21]. Wang et al. propose thermal aware workload
scheduling technique for green data centers [30]. Choi et al.
propose a thermal aware task scheduling technique to reduce
the temperature of the cores within a processor [12].

To the best of our knowledge, there is no other paper which
comprehensively measures and analyzes performance, fre-
quency, temperature, and power variation among nominally
equal processors under Turbo Boost at large scale.

8. Conclusion and Future Work

In this paper, we have analyzed the performance variation
caused by dynamic overclocking on top supercomputing plat-
forms. We have shown the performance degradation caused
by frequency variation on math kernels and HPC applications.
As we move towards exascale machines, we expect this vari-
ation to increase further. Modern processors are becoming
more dynamic in order to take advantage of headroom in the
operating temperature and power consumption, and can ad-
just their voltage and frequency based on their thermal and
energy constraints. Turning off these dynamic features is not
the ideal solution to mitigate the variation. We should look for
ways to mitigate variation from the application software. We
show a speed-aware dynamic task migration strategy to tackle
this problem and show up to 18% performance improvement.

11



References

[1] Cab supercomputer at LLNL. https:
//computing.llnl.gov/tutorials/bgq/
https://computing.llnl.gov/?set=
resources&page=OCF_resources#cab.

[2] Edison Supercomputer at NERSC.
https://www.nersc.gov/users/
computational-systems/edison/.

[3] Intel Turbo Boost Technology 2.0. http:
//www.intel.com/content/www/us/
en/architecture-and-technology/
turbo-boost/turbo-boost-technology.
html.

[4] Intel Xeon Processor E5 v2 Product Family,
Specification Update. http://www.intel.
com/content/dam/www/public/us/en/
documents/specification-updates/
xeon-e5-v2-spec-update.pdf.

[5] Lenovo showcases high-performance com-
puting innovations at supercomputing 2014.
http://news.lenovo.com/article_
display.cfm?article_id=1865.

[6] PAPI 5.4.1.0, Cycle Ratio. https://icl.cs.utk.
edu/papi/docs/da/dab/cycle__ratio_8c_
source.html.

[7] Stampede supercomputer at TACC. https://www.
tacc.utexas.edu/stampede/.

[8] Brian Austin and Nicholas J Wright. Measurement and
interpretation of microbenchmark and application en-
ergy use on the Cray XC30. In Proceedings of the 2Nd
International Workshop on Energy Efficient Supercom-
puting, E2SC ’14, pages 51–59, Piscataway, NJ, USA,
2014. IEEE.

[9] Ganesh Balakrishnan. Understanding Intel Xeon 5500
Turbo Boost Technology. How to Use Turbo Boost
Technology to Your Advantage, IBM, 2009.

[10] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci.
A Portable Programming Interface for Performance
Evaluation on Modern Processors. Int. J. High Perform.
Comput. Appl., 14(3):189–204, 2000.

[11] James Charles, Preet Jassi, Narayan S Ananth, Ab-
bas Sadat, and Alexandra Fedorova. Evaluation of the
Intel R© Core i7 Turbo Boost feature. In Workload Char-
acterization, 2009. IISWC 2009. IEEE International
Symposium on, pages 188–197. IEEE, 2009.

[12] Jeonghwan Choi, Chen-Yong Cher, Hubertus Franke,
Henrdrik Hamann, Alan Weger, and Pradip Bose.
Thermal-aware task scheduling at the system software
level. In Proceedings of the 2007 International Sympo-
sium on Low Power Electronics and Design, ISLPED
’07, pages 213–218. ACM, 2007.

[13] Saurabh Dighe, Sriram R Vangal, Paolo Aseron, Shasi
Kumar, Tiju Jacob, Keith A Bowman, Jason Howard,
James Tschanz, Vasantha Erraguntla, Nitin Borkar,
et al. Within-die variation-aware dynamic-voltage-
frequency-scaling with optimal core allocation and
thread hopping for the 80-core teraflops processor.
Solid-State Circuits, IEEE Journal of, 46(1):184–193,
Jan 2011.

[14] Rong Ge, Xizhou Feng, and Kirk W Cameron.
Performance-constrained distributed DVS scheduling
for scientific applications on power-aware clusters. In
Proceedings of the 2005 ACM/IEEE Conference on Su-
percomputing, SC ’05, pages 34–, Washington, DC,
USA, 2005. IEEE.

[15] Adam Hammouda, Andrew R Siegel, and Stephen F
Siegel. Noise-tolerant explicit stencil computations for
nonuniform process execution rates. ACM Trans. Par-
allel Comput., 2(1):7:1–7:33, April 2015.

[16] Yuichi Inadomi, Tapasya Patki, Koji Inoue, Mutsumi
Aoyagi, Barry Rountree, Martin Schulz, David Lowen-
thal, Yasutaka Wada, Keiichiro Fukazawa, Masatsugu
Ueda, et al. Analyzing and mitigating the impact of
manufacturing variability in power-constrained super-
computing. In Proceedings of the International Con-
ference for High Performance Computing, Networking,
Storage and Analysis, page 78. ACM, 2015.

[17] Laxmikant Kale, Akhil Langer, and Osman Sarood.
Power-aware and Temperature Restrain Modeling for
Maximizing Performance and Reliability. In DoE Work-
shop on Modeling and Simulation of Exascale Systems
and Applications (MODSIM), Seattle, Washington, Au-
gust 2014.

[18] Nandini Kappiah, Vincent W Freeh, and David K
Lowenthal. Just in time dynamic voltage scaling: Ex-
ploiting inter-node slack to save energy in MPI pro-
grams. In Proceedings of the 2005 ACM/IEEE Confer-
ence on Supercomputing, SC ’05, pages 33–, Washing-
ton, DC, USA, 2005. IEEE.

[19] Rakesh Kumar, Keith Farkas, Norman P Jouppi,
Parthasarathy Ranganathan, Dean M Tullsen, et al.
Single-ISA heterogeneous multi-core architectures:
The potential for processor power reduction. In Mi-
croarchitecture, 2003. MICRO-36. Proceedings. 36th

12

https://computing.llnl.gov/tutorials/bgq/https://computing.llnl.gov/?set=resources&page=OCF_resources#cab
https://computing.llnl.gov/tutorials/bgq/https://computing.llnl.gov/?set=resources&page=OCF_resources#cab
https://computing.llnl.gov/tutorials/bgq/https://computing.llnl.gov/?set=resources&page=OCF_resources#cab
https://computing.llnl.gov/tutorials/bgq/https://computing.llnl.gov/?set=resources&page=OCF_resources#cab
https://www.nersc.gov/users/computational-systems/edison/
https://www.nersc.gov/users/computational-systems/edison/
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://www.intel.com/content/dam/www/public/us/en/ documents/specification-updates/xeon-e5-v2-spec-update.pdf
http://www.intel.com/content/dam/www/public/us/en/ documents/specification-updates/xeon-e5-v2-spec-update.pdf
http://www.intel.com/content/dam/www/public/us/en/ documents/specification-updates/xeon-e5-v2-spec-update.pdf
http://www.intel.com/content/dam/www/public/us/en/ documents/specification-updates/xeon-e5-v2-spec-update.pdf
http://news.lenovo.com/article_display.cfm?article_id=1865
http://news.lenovo.com/article_display.cfm?article_id=1865
https://icl.cs.utk.edu/papi/docs/da/dab/cycle__ratio_8c_source.html
https://icl.cs.utk.edu/papi/docs/da/dab/cycle__ratio_8c_source.html
https://icl.cs.utk.edu/papi/docs/da/dab/cycle__ratio_8c_source.html
https://www.tacc.utexas.edu/stampede/
https://www.tacc.utexas.edu/stampede/


Annual IEEE/ACM International Symposium on, pages
81–92. IEEE, 2003.

[20] Akhil Langer, Ehsan Totoni, Udatta S. Palekar, and
Laxmikant V. Kalé. Energy-efficient computing for
HPC workloads on heterogeneous manycore chips. In
Proceedings of Programming Models and Applications
on Multicores and Manycores. ACM, 2015.

[21] Harshitha Menon, Bilge Acun, Simon Garcia De Gon-
zalo, Osman Sarood, and Laxmikant Kalé. Thermal
aware automated load balancing for HPC applications.
In Cluster Computing (CLUSTER), 2013 IEEE Interna-
tional Conference on, pages 1–8. IEEE, 2013.

[22] National Center for Supercomputing
Applications. Blue Waters project.
http://www.ncsa.illinois.edu/BlueWaters/.

[23] Fabrizio Petrini, Darren Kerbyson, and Scott Pakin.
The Case of the Missing Supercomputer Performance:
Achieving Optimal Performance on the 8,192 Proces-
sors of ASCI Q. In ACM/IEEE SC2003, Phoenix, Ari-
zona, November 10–16, 2003.

[24] James C. Phillips, Rosemary Braun, Wei Wang,
James Gumbart, Emad Tajkhorshid, Elizabeth Villa,
Christophe Chipot, Robert D. Skeel, Laxmikant Kalé,
and Klaus Schulten. Scalable molecular dynamics
with NAMD. Journal of Computational Chemistry,
26(16):1781–1802, 2005.

[25] Efraim Rotem, Alon Naveh, Avinash Ananthakrish-
nan, Doron Rajwan, and Eliezer Weissmann. Power-
management architecture of the Intel microarchitecture
code-named Sandy Bridge. IEEE Micro, (2):20–27,
2012.

[26] Barry Rountree, Dong H Ahn, Bronis R de Supin-
ski, David K Lowenthal, and Martin Schulz. Beyond
DVFS: A First Look at Performance Under a Hardware-
enforced Power Bound. In IEEE 26th International Par-
allel and Distributed Processing Symposium Workshops
& PhD Forum (IPDPSW), 2012.

[27] Osman Sarood, Akhil Langer, Abhishek Gupta, and
Laxmikant V. Kale. Maximizing throughput of over-
provisioned HPC data centers under a strict power bud-
get. In Proceedings of the International Conference
on High Performance Computing, Networking, Stor-
age and Analysis, SC ’14, New York, NY, USA, 2014.
ACM.

[28] Osman Sarood, Esteban Meneses, and L. V. Kale. A
‘cool’ way of improving the reliability of HPC ma-
chines. In Proceedings of The International Conference
for High Performance Computing, Networking, Storage
and Analysis, Denver, CO, USA, November 2013.

[29] Ehsan Totoni. Power and Energy Management of Mod-
ern Architectures in Adaptive HPC Runtime Systems.
PhD thesis, Dept. of Computer Science, University of
Illinois, 2014.

[30] Lizhe Wang, Gregor von Laszewski, Jai Dayal, and
Thomas R Furlani. Thermal aware workload scheduling
with backfilling for green data centers. In Performance
Computing and Communications Conference (IPCCC),
2009 IEEE 28th International, pages 289–296. IEEE,
2009.

[31] Samuel Williams, Andrew Waterman, and David Patter-
son. Roofline: an insightful visual performance model
for multicore architectures. Commun. ACM, 52(4):65–
76, 2009.

[32] Kaicheng Zhang, Seda Ogrenci-Memik, Gokhan
Memik, Kazutomo Yoshii, Rajesh Sankaran, and Pete
Beckman. Minimizing thermal variation across system
components. In Parallel and Distributed Processing
Symposium (IPDPS), 2015 IEEE International, pages
1139–1148. IEEE, 2015.

[33] Gengbin Zheng. Achieving high performance on ex-
tremely large parallel machines: performance predic-
tion and load balancing. PhD thesis, Department of
Computer Science, University of Illinois at Urbana-
Champaign, 2005.

13


	Introduction
	Motivation
	Experimental Setup and Background
	Platforms
	Applications
	Matrix Multiplication
	LEANMD
	JACOBI2D

	Measurement Methodology
	Eliminating OS Interference
	Turbo Boost and Frequency

	Measurement and Analysis of Variation
	Inter-chip Frequency Variation
	Temperature and/or Power as Cause of Frequency Variation

	Architecture and System Needs
	Potential Solutions to Mitigate Performance Variation
	Disable Turbo Boost
	Replacing Slow Chips
	Leaving cores idle
	Dynamic Work Redistribution

	Related Work
	Conclusion and Future Work

