
Charm++ & Adaptive MPI
Sam White

University of Illinois at Urbana-Champaign

Exascale Applications
•  Main challenge: variability
–  Hardware variation

•  Static/dynamic, heterogeneity, failures, power, etc.
–  Dynamic program behavior

•  AMR, particle movements, subscale simulations, …

•  To deal with these, we must seek:
–  Not full automation
–  Not full burden on the app-developers
–  But a good division of labor between the app-

developer and system

2

Charm++
•  Charm++ is a general-purpose object-

oriented parallel programming system
–  Built on an adaptive runtime system

•  Three principles that empower an adaptive
runtime system:
–  Overdecomposition
–  Migratability
–  Asynchrony

3

Overdecomposition
•  Decompose the work units & data units into

many more pieces than execution units
–  Nodes/cores/…

•  Not so hard: we do decomposition anyway

4

Migratability
•  Allow these work and data units to be

migratable at runtime
–  So the programmer or runtime can move them

•  Consequences for users
–  Communication must be addressed to logical

units with global names, not to processes
–  But this is a good thing

•  Consequences for RTS
–  Naming and location management

5

Asynchrony
•  We have multiple units on each processor
•  They address each other via logical names
–  How do we schedule them?

•  Message-driven execution:
–  Let the work-unit that happens to have data

(“message”) available for it execute next
–  Let the RTS select among ready work units

P0

P1
6

Charm++: Object-based overdecomposition

•  Multiple indexed collections of C++ objects
–  Indices: multidimensional and/or sparse

•  Programmer expresses communication
between objects
–  Objects communicate via asynchronous remote

method invocation
–  With no reference to processors: A[i].foo(…)

User view

System view

7

Process 0

Scheduler

Message Queue

Process 1

Scheduler

Message Queue

Message-driven Execution

A[..].foo(…)

8

Adaptive Runtime Systems

•  Decomposing a program into a large number
of migratable objects empowers the RTS to:
–  Map and migrate objects at will
–  Schedule tasks when they have work
–  Instrument computation and communication

•  Object A communicates x bytes to B every iteration
–  Maintain historical data to track changes in

application behavior
•  i.e. to trigger load balancing

9

Projections
•  Performance visualization tool for Charm++

10

Fault Tolerance
•  Basic Ideas:
–  Checkpoints are just migrations to storage
–  Underlying storage can be various things
–  Can be used in concert with load balancing

•  Four approaches available:
–  Disk-based checkpoint/restart
–  In-memory double checkpoint w/ auto restart
–  Proactive object migration
–  Message-logging

11

Interoperability with MPI

Language1 Language 2

P(1)

(a) Time Division (b) Space Division (c) Hybrid

Time

P(2)

P(n-1)

P(n)

.

.

Language1 Language 2

P(1)

(a) Time Division (b) Space Division (c) Hybrid

Time

P(2)

P(n-1)

P(n)

.

.

Language1 Language 2

P(1)

(a) Time Division (b) Space Division (c) Hybrid

Time

P(2)

P(n-1)

P(n)

.

.
Language1 Language 2

P(1)

(a) Time Division (b) Space Division (c) Hybrid

Time

P(2)

P(n-1)

P(n)

.

.

•  Implement new libraries/modules in the
model that fits it best
–  Reuse existing libraries
–  Incremental adoption path
–  Already in production use for petascale apps:

NAMD, OpenAtom, EpiSimdemics

MPI

Charm++

12

Adaptive MPI
•  MPI-2.2 implementation on top of Charm++
–  MPI ranks are lightweight, migratable user-level

threads associated with Charm++ objects

Node 0

... ...

Rank 0

Processor 0

Rank 1

Rank 2 Rank 3

Rank 4

Processor 1

Rank 5

Rank 6

13

AMPI migration
•  AMPI can transparently migrate ranks

text

data
bss

thread 3 stack
thread 2 stack

thread 0 stack

text

data
bss

thread 4 stack

thread 1 stack

0xFFFFFFFF 0xFFFFFFFF

0x00000000 0x00000000

thread 0 heap

thread 2 heap
thread 3 heap

thread 1 heap

thread 4 heap

14

Adaptive MPI
•  Application-independent features:
–  Over-decomposition via process virtualization
–  Automatic overlap of comm. & comp.
–  Dynamic load balancing
–  Fault tolerance

•  Issue: global/static variables are shared by
all ranks in the same OS process
–  But we have automated compiler tools for

privatization

15

Near Future Plans
•  Merging now:
–  Improved GPU manager
–  Job shrink-expand
–  Online performance autotuning
–  Fine-grained message aggregation

•  Ongoing work:
–  AMPI compliance with MPI-3.1
–  Improved node-level threading/tasking library
–  OpenMP thread/task scheduling integration

16

Summary
•  Charm++ is a scalable, adaptive runtime

system for asynchronous parallel computing

•  Many applications have been developed using
it
–  NAMD, ChaNGa, EpiSimdemics, OpenAtom, …
–  Many mini-apps and third-party apps

•  Lesson: adaptivity developed for apps is
useful for addressing exascale challenges
–  Adaptivity to hardware and software factors

www.charmplusplus.org 17

Thank you

18

Charm++ production apps

19

AMPI codes (with no porting effort)

Mantevo 3.0
CoMD 1.1
HPCCG 1.0
MiniFE 2.0
MiniMD 2.0
MiniXYCE 1.0

LLNL ASC Proxy Apps
AMG 2013
Kripke 1.1
LULESH 2.0
Lassen 1.0

LLNL Libraries
HYPRE 2.10.1
MFEM 3.0.1
XBraid 1.1

Other apps
SNAP (C) 1.01
PENNANT 0.8
PRK 2.16

20

