
OpenAtom: Scalable Ab-Initio Molecular
Dynamics with Diverse Capabilities

Nikhil Jain†, Eric Bohm†, Eric Mikida†, Subhasish Mandal§, Minjung Kim§,
Prateek Jindal†, Qi Li?, Sohrab Ismail-Beigi§, Glenn J. Martyna?,

Laxmikant V. Kale†

†Department of Computer Science, University of Illinois at Urbana-Champaign
§Department of Applied Physics, Yale University

?IBM TJ Watson Laboratory

Abstract. The complex interplay of tightly coupled, but disparate, com-
putation and communication operations poses several challenges for sim-
ulating atomic scale dynamics on multi-petaflops architectures. Ope-
nAtom addresses these challenges by exploiting overdecomposition and
asynchrony in Charm++, and scales to thousands of cores for real-
istic scientific systems with only a few hundred atoms. At the same
time, it supports several interesting ab-initio molecular dynamics simu-
lation methods including the Car-Parrinello method, Born-Oppenheimer
method, k-points, parallel tempering, and path integrals. This paper
showcases the diverse functionalities as well as scalability of OpenAtom
via performance case studies, with focus on the recent additions and
improvements to OpenAtom. In particular, we study a metal organic
framework (MOF) that consists of 424 atoms and is being explored as
a candidate for a hydrogen storage material. Simulations of this system
are scaled to large core counts on Cray XE6 and IBM Blue Gene/Q sys-
tems, and time per step as low as 1.7s is demonstrated for simulating
path integrals with 32-beads of MOF on 262,144 cores of Blue Gene/Q.

1 Introduction

Modern supercomputers have become larger and more complex with each suc-
cessive generation. Although new platforms present novel opportunities, best use
of these platforms can be made only by overcoming the challenges that each new
architecture poses to the users. Scientific methods and their requirements also
change as the domain of interest and goals of research evolve over time. Hence,
applications used for simulating scientific phenomena on HPC systems need to
grow continually in terms of their scientific capability and parallel scalability.

OpenAtom is a scalable implementation of the Car-Parrinello Ab-initio
Molecular Dynamics (CPAIMD) method [7] implemented using the Charm++
runtime system [23]. It is suitable for studying materials at the atomistic level
wherein the electronic structure must be explicitly modeled in order to accurately
simulate the behavior of the system being investigated. For example, Figure 1
shows the schematic of a metal-organic framework (MOF) that is the subject

of materials research as a candidate for hydrogen storage [22], and is currently
being simulated using OpenAtom in this regard. Typical studies at this level
of detail are generally restricted to a few hundred atoms as they require numer-
ous communication-intensive Fast Fourier Transformations (FFTs). This makes
scalable parallelization of such methods challenging. In our previous work, we
have shown that OpenAtom is able to make use of Charm++’s asynchrony
and object-based overdecomposition approach to overcome these challenges for
performing CPAIMD on IBM’s Blue Gene/L and Blue Gene/P systems [6, 5].

While the computational capac-
ity of HPC systems has been increasing
steadily, the size of scientific systems of
interest (such as MOF) has not grown
proportionately because the time scales
of interest for the study of important
phenomena have not been reached (min-
imal 100-1000 picoseconds). This moti-
vates a drive to achieve fastest time per
step as the time step of the discrete time
solver is order 0.1 femtosecond. Hence,
it is critical that modeling software pro-
vide good strong scaling for the fixed
sized problems being studied.

Fig. 1: Schematic representation of
MOF with 43 H2

On the other hand, scientific methods that enable faster convergence (e.g.,
parallel tempering [10]), or are capable of simulating more complex physical phe-
nomena at atomic scale (e.g. quantum effects using path integrals [20]) require
concurrent execution of weakly coupled atomic systems of the same size. Imple-
mentation and execution of such scenarios present productivity and performance
challenges that also need to be addressed by software such as OpenAtom.

Our recent efforts in OpenAtom have been focused on finding solutions to
the challenges described above so that scalable simulations can be performed
on production HPC systems. This paper presents these recent additions and
improvements to OpenAtom and highlights the following contributions:

– Generalized topology-aware mapping schemes for OpenAtom are
proposed and their positive impact is demonstrated.

– Charm-FFT, a new scalable FFT library which uses 2D-decomposition and
minimizes communication, is presented and its benefits are shown.

– Multi-instance “Uber” method is a novel scheme added to OpenAtom,
which provides a powerful tool to seamlessly implement and execute new
scientific methods/variations individually and concurrently. As a result, users
can now run methods such as k-points, path integrals, and parallel tempering
together in a single run of OpenAtom, if desired.

– BOMD [21] is presented as a new addition to OpenAtom’s capability.
– Performance results that demonstrate the scalability of all scientific meth-

ods provided in OpenAtom are presented. A time per step of only 1.7s is
shown for simulating 32-beads of MOF on 262,144 cores of Blue Gene/Q.

2 Background and Related Work

OpenAtom is an implementation of the CPAIMD method [7] in Charm++[1],
and has been described in [18, 23, 6]. The CPAIMD method is an effective tech-
nique to simulate atomistic dynamics on a ground state potential surface de-
rived from a Kohn-Sham (KS) density functional theory formulation within a
local or gradient corrected approximation. It has a wide range of applications
in chemistry, biology, materials science, and geophysics, etc. [8, 11]. CPAIMD
computations involve many phases with complex dependencies, and as such have
proven to be difficult to scale. OpenAtom utilizes Charm++’s ability to nat-
urally compose multiple dissimilar modules and thus allows various phases of
CPAIMD to overlap in both time and space.

Charm++[1] is an adaptive runtime system built upon the idea of overde-
composed migratable parallel objects that communicate asynchronously via re-
mote method invocations. A key principle in Charm++ applications is that the
programmer should not have to think in terms of nodes, cores, or some other
hardware specific entity. A program is developed as a collection of parallel ob-
jects, called chares, that coordinate via messaging and are composed of both the
data and the computation of the particular application. It is then the job of the
runtime system to map these objects to the hardware, manage communication
between these objects, and schedule them for execution as work becomes avail-
able for them. This allows the programmer to decompose the problem in a way
that is natural to the algorithm itself, rather than decomposing based on the
specific hardware that is being used in a given run.

2.1 Parallelization of OpenAtom in Charm++

Parallelization of the CPAIMD method follows directly from the expression of
the density functional and overlap integrals between the KS electronic states [18,
23]. There are over ten different kinds of chares, each representing different
phases of the computation as shown in Figure 2. Note that although the phase
numbers are linearly increasing, different phases may overlap with each other
based on their computation tasks as discussed next.

P

III

XI

X

IX

VIII

VII
VI

V

IV

II
I

GSpace RealSpace

RhoR

RhoG

RhoGHart

RhoRHart

AtomsCompute

Asymm
Pair Calc

Symm
Pair Calc

Ortho

Particle RealParticle

Fig. 2: Parallel structure of OpenAtom

KS Electronic States: Each state, I, has both a discrete real-space (RSI(x, y, z))
and g-space (GSI(gx, gy, gz)) representation, where the latter is the Fourier ex-
pansion coefficients of the state in the plane wave basis. The representations
are interconverted via concurrent 3D-FFTs (phases I and VII in Figure 2). The
real-space representation for each state is decomposed in 1D along planes of the
3D grid. However, application of a spherical cut-off to the g-space representa-
tion results in an imbalanced decomposition if 1D decomposition along planes
is used. This imbalance is corrected by aggregating small “planes” into larger
chunks of data as described in [18].

Electronic Density: The electronic density, ρ, is expressed using both a discrete
real-space (RhoR) and g-space (RhoG) representation, where RhoR(x, y, z) =∑

I |RSI(x, y, z)|2. As for the states, RhoR is decomposed along planes, while
imbalances in RhoG due to spherical cut-off are corrected by aggregation of
smaller planes into larger chunks. The application of the Euler-Exponential
Spline method [19] to the computation of local electron-nuclear interaction cre-
ates another grid with real-space and g-space components (RhoRHart and
RhoGHart). In addition to being decomposed like RhoR and RhoG, these grids
are also decomposed along the number of atom types, Natm−type. All these com-
putations are overlapped with each other and contribute to the “Kohn-Sham
potential” (phase V), which is communicated to RS (phase VI in Figure 2).

Nonlocal Pseudopotential: The non-local pseudopotential energy accounts
for the fact that the CPAIMD method mathematically eliminates “core” elec-
trons and considers only the “valence” electrons. The interaction and the kinetic
energy of non-interacting electrons is computed independently of the density-
related terms by particle planes, and thus leads to adaptive overlap of phase III
with phases II, IV, V, and VI.

Pair Calculators: Corrections are necessary to handle first order variations
that cause deviations from orthogonality in GSI(gx, gy, gz). To do so, the Λ
matrix is computed and the forces, FGSI

(gx, gy, gz), are modified:

Λ(I,K) =
∑

g FGSI
(gx, gy, gz) GSK(gx, gy, gz)

FGSI
(gx, gy, gz) − =

∑
K Λ(I,K) GSK(gx, gy, gz)

This task is performed by the PCasymm chares, which concurrently compute
matrix multiples for pairs of states (phase IX in Figure 2). Further corrections
in second order variations to orthogonality must be applied to the newly evolved
states. The PCsymm chares perform this task by computing the overlap matrix
and are assisted by the Ortho chares for computing the inverse square root of
the overlap matrix. (phase X in Figure 2).

Atoms: As the atom position data is needed by multiple phases, it is replicated
throughout the platform as a group, i.e., a chare array with one chare on every
processor. Given the small number of atoms, this does not add a significant
memory overhead. Integration of the forces to adjust the position of the particles
is parallelized up to Natms and is trivial compared to the other operations. This
computation is kicked off in phase VIII and is completed in phase XI.

2.2 Related Work

CPMD is an MPI-based implementation of ab-initio molecular dynamics devel-
oped through collaboration between IBM and the Max-Planck Institute, Stuttgart
[9]. It has a large feature list which includes path integrals and support for ex-
cited states. However, in [3], it shows weak scaling up to 256 nodes only. QBox is
another MPI-based implementation of first-principle molecular dynamics devel-
oped at UC Davis that demonstrated scaling up to 64K nodes of Blue Gene/L
for very large atomic systems [13]. Its feature list for performing CPAIMD and
BOMD is similar to that of OpenAtom. However, to the best of our knowledge,
it does not have native support for multi-instance methods that enables execu-
tion of ensemble methods such as k-points, path integrals, parallel tempering,
etc. without code input from the users.

In HPC, several application and runtime system developers have studied tech-
niques for mapping [2, 5, 12, 14] to three-dimensional torus topologies with the
emergence of supercomputers like the IBM Blue Gene and Cray XT/XE series.
Bhatele et al. [4] explore use of information about application’s communication
patterns and network’s topology to create automated tools for generating better
mappings. Hoefler et al. [15] discuss generic mapping algorithms to minimize
contention and demonstrate their applicability to torus, PERCS, and fat-tree
networks. In addition to being custom designed for OpenAtom, mapping tech-
niques presented in this paper differ from related approaches in two ways. First,
mapping of a large number of objects of distinct types to processes is performed.
Second, instead of being platform dependent, higher level mapping rules are
defined to optimize performance on multiple platforms.

3 New Capabilities

The CPAIMD method has been commonly used to simulate nuclear motion on
a ground state potential surface. Recently, researchers have extended the basic
CPAIMD method in many ways to expand the scope of problems which can be
effectively handled. Several of these extensions share a commonality in that they
each consist of a set of slightly different, but mostly independent, instances of
the standard CPAIMD computation. These include k-points sampling, quantum
path integrals molecular dynamics, spin density functionals, and parallel temper-
ing simulations. Depending on the extension, the instances interact in different
ways among themselves, but those differences lead to relatively small changes
in the overall flow of control. We refer to all these extensions as multi-instance
methods.

3.1 Uber Scheme

To support different multi-instance methods, we have implemented an overarch-
ing Uber indexing infrastructure. This scheme allows multiple instances to reuse
all the objects that implement CPAIMD in OpenAtom by creating distinct

copies of the objects that are required by the instances. Objects that belong to
a given instance are maintained as a distinct set of chare arrays and thus form
an Uber comprising one simulation instance. Objects that are shared among
different instances are referenced using shallow copies. Furthermore, Ubers are
composable across different methods, i.e., multiple types of multi-instance meth-
ods can be used in any given simulation.

When multi-instance methods are executed, the first step taken by the Uber
scheme is the division of compute resources among the instances. Given that the
work performed by most of the Ubers is of similar load, a balanced division of
compute resources is performed. Section 4.3 presents the schemes that can be
used to select specific cores that are assigned to each of the Ubers. Next, objects
required for performing simulation within each Uber are created. On any given
process and from any of these objects, the variable thisInstance can be accessed
to find more information about the Uber a given object belongs to. Currently,
an Uber is identified by four indices, each of which refers to a type of multi-
instance method supported in OpenAtom (discussed next). After the initial set
up, all Ubers simulate the configurations assigned to them. Information exchange
and synchronization among Ubers is efficiently performed using basic Charm++
constructs such as remote method invocation and collective operations.

In OpenAtom, an Uber is identified by four indices, which are the instance’s
offsets in four different types of multi-instance methods:

– Path Integrals: used to study nuclear quantum effects.
– Parallel Tempering : used for sampling to treat rough energy landscapes.
– k-points: enables sampling of the Brillion Zone (BZ) to study metals and/or

small systems.
– Spin Density Functional : treats magnetic systems.

We now briefly describe each of these methods that have been added recently
to OpenAtom, except Spin which is currently being implemented.

Path Integrals: In order to explore nuclear quantum effects, Feynman’s Imag-
inary Time Path Integral method (CPAIMD PI) [20] has been implemented. In
this method, each classical nucleus is replaced by a ring polymer of P beads
connected by harmonic links to their nearest neighbors. The method’s compu-
tational complexity increases linearly with P as the inter-bead interactions are
imaginary time ordered and each bead group forms a classical subsystem.

CPAIMD PI has been integrated into OpenAtom such that each Uber has an
independent electronic computation (RS,GS,RhoRS, etc.) associated with that
bead’s set of nuclei. Therefore, the entirety of the standard CPAIMD method
shown in Figure 2 is local to each Uber. The additional work required to evaluate
and integrate the intrapolymer forces to evolve the ensemble is order P . It is
implemented by force and position exchanges between each representation of
the N nuclear particles from all the beads. This communication extends the
standard CPAIMD nuclear force integration phase (phase XI in Figure 2) such
that the simulation cannot proceed until the bead forces are computed. Thus, it
forces a synchronization across all beads in every time step.

Parallel Tempering: One widely used method to sample rough energy land-
scapes in statistical physics is Parallel Tempering (PT) [10]. In this method, a
set of complete CPAIMD parallel simulations are initiated with different tem-
peratures. The lower temperatures in the set explore low lying minima while the
higher temperatures traverse the energy landscape. After every time step, the
Ubers that are nearest neighbors in temperature space exchange temperatures
via a rigorous Monte-Carlo acceptance rule. The computational complexity of
this method also increases linearly with the number of temperatures being ex-
plored. However, a global synchronization is not needed at the end of each time
step since the temperature exchange only happens among nearest neighbors.

k-points sampling of the Brillion zone: In a previous work, we studied large,
insulating systems where computation at only the Γ -point of the Brillion zone
(BZ) [7] was sufficient [23]. In small, metallic or semiconducting systems, more
points are required, and that is the functionality k-points sampling provides.
Away from the Γ -point, at finite k, the states are complex and a set of nk k-
points with weights wk are used to sample the BZ. Different k-points interact in
the formation of the density - there is only 1 density summed over all k-points
taking into account the weights. Hence different Ubers get their own copy of state
chares, but all of them point to the same density chares (RhoRS,RhoGHart,
etc.) and atoms. The parallel scalability of this method is typically bounded by
the time spent in the density phase.

3.2 Born-Oppenheimer Method

Other than CPAIMD, the Born-Oppenheimer method [21] (BOMD) is the other
common method used to generate the dynamics of nuclei on the ground state
energy surface provided by Kohn-Sham density functional theory. Unlike the
CPAIMD method which introduces a fictitious dynamics for the expansion co-
efficients of the KS-states, under BOMD, the density functional (and hence the
expansion coefficients of the KS-states) is minimized and then the atoms are
evolved using a straightforward symplectic integrator. This leads to a secular
growth in the energy. We have added the capability of using BOMD as an alter-
native for performing simulations in OpenAtom. Use of BOMD impacts the flow
diagram in Figure 2 in the following way: instead of performing phase VIII in
every time step, the system is first minimized and then phase VIII is performed.

Method comparison: Both CPAIMD and BOMD methods have been known
to be stable and can be used to simulate important scientific phenomena. At any
time, an improvement in one method can leap-frog the other as the preferred
way to go. The advantage of the BOMD is its simplicity. The disadvantage is
that the minimization procedure is truncated at a finite tolerance in practice,
which can lead to higher aggregated error.

4 Parallel Optimizations

Parallel implementation of phases described in Section 2.1 leads to several com-
munication intensive operations in OpenAtom. In any given phase, several

FFTs, section-reductions, and multicasts are performed concurrently. Multi-
instance methods exacerbate the situation by increasing the number of occur-
rences of these operations and by adding communication of their own. As a re-
sult, it is important that communication is well orchestrated and task-mapping
is performed to maximize the network utilization and reduce the overheads.

4.1 Distance-aware mapping

Significant work had been done on mapping OpenAtom to compact the 3D-
grid network topology used in systems such as IBM Blue Gene/P [16]. Since
the 3D-nature of simulated space (e.g. 3D state grid) matched the 3D-grid of
Blue Gene/P’s torus, high performing precise mapping schemes were developed
to obtain improved performance on those systems. However, the mappings from
the past no longer lead to optimal performance because of (1) changes in dimen-
sionality of the networks, e.g. Blue Gene/Q has a 5D-torus, and (2) irregular al-
locations, e.g. on Cray XE6/XK7 systems, typical allocations are not restricted
to an isolated high bisection bandwidth cuboid. Hence, we have developed new
schemes that improve upon the old schemes in two ways: portability to a larger
set of current supercomputers and less time to compute the mapping.

Separation of concerns: The main principle underlying the mapping improve-
ments is the separation of logic that decides mapping from assumptions regarding
the interconnect topology. For example, the new mapping schemes take decisions
based on relative closeness of pairs of processes, but how the closeness is defined
and computed is left to the topology manager. This separation enables us to
define generic rules of thumb on relative placements of objects of various types
with respect to other objects.

Boilerplate mapping algorithm: A typical mapping routine for a given chare
type consists of three steps: find the available list, reorder/process the list based
on the object type, and make assignments. The first step simply queries the
topology manager to provide a distance-aware list of available cores/processors.
Thereafter, to find suitable candidates among the available cores for the given
objects, the available list is either divided among smaller sets or sorted in a
particular order using the topology manager. Finally, suitable cores are assigned
objects while accounting for load balance and exclusion among various cores.
Throughout the process, a highly efficient exclusion list is maintained to down-
select cores for mapping remaining objects of the same type or other types.

Distance-aware order of processes: To obtain a list of available cores for
an object type, we start with a list of all cores available to the current job.
Thereafter, any exclusions defined by the previous mappings of other types of
objects are applied. The exclusions are typically useful in assigning to different
cores objects of different types that are expected to be active concurrently. In
addition, they are used for excluding cores with special tasks, e.g. rank 0 is
responsible for control flow management tasks, and is thus given fewer objects.
We provide the option to override exclusions either by the user as a configuration
parameter or due to lack of sufficient number of cores in the current job.

In the past, for mapping on Blue Gene/P, the ordering of the list was closely
tied to the number of chares that host a state in the simulated system. By forcing
the number of such chares to be a factor of the number of cores, the mapping
was able to divide the available set of cores evenly. Given the isolated cuboidal
allocations of Blue Gene/P, the mapping was also able to divide the available
set of cores among smaller cuboids and assign them to the states [5], leading to
high efficiency communication patterns.

In the new mapping scheme, all the above restrictions have been removed,
while preserving the performance. The topology manager orders a given set of
cores by making a pass through the set of processors in a topology-aware manner.
For making the pass, the available cores are divided among small topologically-
close units and ordered accordingly. For example, on Cray’s XE6, the traversal
is performed along the longest axis using small cubes of size 4 × 4 × 4. The
main advantage of such a traversal is the guaranteed topological proximity of
the cores that are close in the list. At the same time, communication among a
pair of cores, P1, that is reasonably distant from another pair of cores, P2, is
less likely to interfere with the communication of the pair P2.

Mapping the states: The two types of state objects, RS and GS, play a
central role in the control flow of OpenAtom. Forward and backward FFTs are
performed between RS and GS in every iteration. After the forward FFT to
RS, a plane-wise reduction on RS is performed to the density objects, which
return the result via a multicast to RS. Following the backward FFT to GS,
multicast and reductions are performed between GS and pair calculators. Given
the plane-based nature of both these operations and the bisection bandwidth
requirement of O(#states) FFTs between RS and GS, it is better to spread RS
and GS on the given cores such that communication to/from the planes does
not interfere, while the planes use as much bisection bandwidth as possible.

Hence, the mapping code divides the distance-aware ordered list of cores it
obtains from the topology manager evenly among the planes of RS/GS using a
block-mapping scheme. This mapping does not add any of the cores to the global
exclusion list since every core in the system has at least one RS/GS object.

Mapping the density: Contributions from all the RS objects are combined
to create the density for RhoR by a reduction operation. Given the plane-based
division of RS, the aggregation is also performed along the planes. Hence, to
improve the performance of the reduction, the density planes of RhoR are placed
near the cores that host the corresponding RS planes. These cores are added
to the exclusion list for mapping the remaining density objects. Other density
objects, RhoG, RhoRHart, and RhoGHart, are then evenly spread on cores
sorted by their distance from the centroid of the cores that host RhoR.

Particle planes and pair calculators: Both types of particle planes, RPP
andGPP , are closely tied to the states. TheGPP objects are co-located withGS
objects since they work on a large amount of common data. The RPP objects
are spread across the set of cores that host GS/GPP objects for corresponding
plane. This helps improve the performance of FFTs between RPP and GPP .

Finally, to map the pair calculators, a new distance-aware list of cores is obtained
from the topology manager and the pair calculators are mapped in that order
while maintaining load balance. This scheme works well because it places the
pair calculators for a given plane close to where its GS objects are mapped.

4.2 Overdecomposed FFTs with cutoffs

The existing code for performing parallel FFTs in OpenAtom is based on 1D-
decomposition of data. Hence, the amount of parallelism available for state and
density FFTs are O(#states ∗ #planes) and O(#planes), respectively. In a
typical OpenAtom simulation, the number of states is at the most 1000. Each
of the states is represented using grids that contain at the most 300× 300× 300
points. This implies that the maximum parallelism available in state FFTs is
O(300, 000), but is only O(300) for density FFTs. Thus 1D-decomposition based
density FFTs severely limits the scalability of OpenAtom, especially on large
machines with many more compute nodes.

Charm-FFT overview: To eliminate the scaling bottleneck due to density
FFTs, we have developed a fully asynchronous Charm++ based FFT library,
Charm-FFT. This library allows users to create multiple instances of the library
and perform concurrent FFTs using them. Each of the FFT runs in the back-
ground as other parts of user code execute, and a callback is invoked when the
FFT is complete. The key features of this library are:

1. 2D-decomposition: Users can define fine-grained 2D-decomposition that in-
creases the amount of available parallelism and improves network utilization.
2. Cutoff-based smaller grid : The data grid typically has a cutoff in g-space,
e.g. density has a g-space spherical cutoff. Charm-FFT improves performance
by avoiding communication and computation of the data beyond the cutoff.
3. User-defined mapping of library objects: The placement of objects that con-
stitute the library instance can be defined by the user based on the application’s
other concurrent communication and placement of other objects.
4. Overlap with other computational work : Given the callback-based interface
and Charm++’s asynchrony, the FFTs are performed in the background while
other application work can be done in parallel.

Charm-FFT details: The creation of an instance of the library is performed by
calling Charm createFFT from any process. The user is required to specify the
size of the FFT grid and the desired decomposition. A cutoff and mapping of the
FFT objects can also be specified. Optionally, a callback can be specified which
is invoked when the distributed creation of the library instance is completed.
Internally, three types of Charm++ objects are created: D1, D2, and D3. Each of
these objects owns a thin bar (a pencil) of the FFT-grid in one of the dimensions,
e.g. in Figure 3(a), D1 objects own pencils along Z axis. The decomposition of
the FFT-grid among these objects is decided based on the user input.

Typically, D1 objects are associated with the grid in the real-space, while D3

objects are used for the grid in the g-space. The D2 objects are not visible to
the user as they are used for the intermediate transpose only. Before executing

Nx

Ny

Nz

D1 objects

(a) FFT along Z dim

Nx

Nz

Ny

D2 objects

(b) FFT along Y dim

Nz

Ny

Nx

D3
objects

(c) FFT along X dim

Nz

Ny

Nx

Points in
cutoff

(d) g-space

Fig. 3: Charm-FFT: concurrent cutoff-based FFTs with 2D-decomposition.

FFTs, the user is required to inform D1 and D3 objects about the memory where
the grid resides by making local API calls in a distributed manner.

When the setup is complete, an FFT can be started on an instance by calling
Charm doForwardFFT or Charm doBackwardFFT. These calls return immediately
without actually performing the FFT, but after registering it with the library.
If Charm doForwardFFT is invoked, the FFTs are performed locally along Z di-
mension by D1 objects. Following this FFT, any data along Z axis that is beyond
the cutoff is ignored, and only the data within the cutoff is communicated to D2

(Figure 3(b)). On D2 objects, FFT along Y dimension is performed which further
reduces the FFT-grid to a cylinder of thin bars as shown in Figure 3(c). This
data is communicated to D3 objects, where FFT along X dimension reduces the
cylinder to a sphere (Figure 3(d)). At this point, the user specified callback is
invoked informing the application of FFT’s completion. The distribution of pen-
cils, which have grid points within the sphere, to D3 objects is performed such
that the total number of grid points that are in the sphere are load balanced
across D3 objects. For Charm doBackwardFFT call, these steps are performed in
reverse order. Note that if FFTs are started on multiple instances one after the
other, all of them are performed concurrently.

Adapting OpenAtom to use Charm-FFT: In order to use Charm-FFT with
OpenAtom, a significant fraction of the density object implementation has been
rewritten. This is because the decomposition of density objects is tied to the
decomposition of the FFT-grid. The integration has provided three benefits:

1) The decomposition of the density objects is no longer restricted to be a 1D-
decomposition. Users can choose a decomposition that suits their system.

2) The RS to density reduction is now divided among finer chunks and is targeted
to objects that are distributed among more cores. This is likely to improve the
performance due to better utilization of the network.

3) The significant lines of code (SLOC) count for the control flow of density has
been reduced by more than 50% from 4, 198 to 1, 831.

Mapping of FFT objects: To make the best use of the 2D-decomposition of
density, a new mapping scheme has been developed for the density and Charm-
FFT objects. Since the RhoR objects are no longer tied to only one plane of RS,
they are evenly spread among the available cores. However, while spreading them
uniformly, we attempt to keep RhoR objects close to the RS planes with which
they communicate. Other density objects are similarly spread while maintaining
their proximity to the RhoR objects with which they interact. The Charm-FFT
objects, D1 and D3, are colocated with the real-space and g-space objects. The
D2 objects are assigned in close proximity of the D1 objects they interact with.

4.3 Scaling multiple instances

When multiple instances, i.e., Ubers described in Section 3.1, are executed con-
currently, two additional concerns arise: 1) How should the objects that belong to
different Ubers be mapped? 2) What impact does presence of multiple instances
have on the performance of OpenAtom? In this section, we explore these issues
and discuss how they are addressed in OpenAtom.

In Section 3.1, we have described the implementation of different multi-
instance methods. From that description, it is easy to see that inter-Uber com-
munication is infrequent and low volume. Hence, it is preferable to map objects
of different Ubers on different cores, so that they do not interfere with each
other. We have experimented with two types of mappings based on this idea:

1) Disjoint partitions (DPS): In this scheme, the ordered distance-aware list
of cores created by the topology manager is divided evenly among the instances
using a block-mapping scheme. Given the topologically sorted property of the
list, this reduces interference among the intra-Uber communication of different
Ubers. This also reduces the number of hops for communication within a Uber.

2) Interleaved partitions (IPS): This scheme divides the topologically sorted
list of cores among various instances in a round-robin manner. Here, while the
intra-Uber communication of different Ubers may interfere, the increased bisec-
tion bandwidth may improve the performance of the 3D-FFTs. This scheme may
also benefit from overlap of computation time of one Uber with communication
of other Ubers since cores connected to a router are assigned to different Ubers.

Performance comparison: To compare the two schemes, DPS and IPS, we
execute the MOF system (Section 5) with 2, 4, and 8 Ubers, where each Uber
is allocated 2,048 cores of Blue Waters. When only two Ubers are executed,
both schemes provide similar performance. However, as the number of Ubers
is increased to four and eight, DPS reduces the time per step by up to 31%
and 40%, respectively in comparison to IPS. From these results, we conclude

that avoiding interference among intra-Uber communication of different Ubers
is better, and thus DPS is used for all the remaining results in this paper.

Effect of Ubers on performance

Figure 4b presents the time line view of Projections [17] obtained when Ope-
nAtom is executed with four Ubers on a Blue Gene/Q system for one time step.
Each horizontal bar in this figure shows the computation executed on a core (or
process) colored using the legend shown in Figure 4a. It can be observed that a
significant fraction of the timeline is colored white, which implies high idle time.

High idle time is observed because the execution of different Ubers is not as
synchronized as it should be given their similar workload. As seen in Figure 4b,
this is because the start of the time step in some Ubers is delayed (highlighted
in the figure), which in turn is caused by these Ubers waiting on information
computed by the multi-instance methods. Longer waits are observed for some
Ubers since transmission of such information is blocked by forward progress
made by other Ubers that have already received the information. To avoid these
delays, we force all Ubers to wait at the end of each time step till all instances
have received the data needed to perform the next time step.

Figure 4c shows another type of delay caused by inter-Uber interference. This
delay is because, in Charm++, global operations such as broadcasts and reduc-
tions are implemented using optimized tree-based construction that spans all
cores (as is done in most parallel languages). However, when multiple instances
are executed, the global broadcasts and reductions are meant for only a sub-
set of objects on some cores. Such operations may get delayed if intermediate
cores, which are not part of the source Uber, are busy performing other work.
This inefficiency is removed by replacing global broadcasts and reductions by
Charm++’s sections-based operations. Use of these constructs ensures that only
participating cores are used for forwarding data during global operations, and
thus minimizes aforementioned delays.

After eliminating idle time due to inter-Uber interference, we observe that the
small amount of additional work done for the multi-instance methods unexpect-
edly takes a very long time as highlighted in Figure 4d. We find two reasons for
this: 1) Excessive fine-grained division of work required by multi-instance meth-
ods leads to a large number of small-sized broadcasts and reductions, 2) Core 0
is overloaded since it is assigned work both as a member of an Uber and as the
multi-instance method coordinator. These issues are solved first by increasing
the granularity of the chare array that performs the multi-instance method; this
reduces the number of broadcasts and reductions. Second, core 0 is excluded
from being assigned work for any Uber.

Figure 4e presents the last performance issue we observe: as core 0 is of-
floaded, one of the cores in one of the Ubers (which gets one less core than
others) gets overloaded with the pair calculator work resulting in some perfor-
mance loss. To remove this inefficiency, we allow the affected Uber to place only
pair calculators on core 0. This works fine because no other computation overlaps
with the computation done by pair calculators.

(a) Legend for the performance analysis graphs

(b) Out of sync Ubers cause idle time.

(c) Global reductions lead to interference.

(d) Idle time after CPAIMD.

(e) Load imbalance on one of the cores.

Fig. 4: Multi-instance performance optimization.

5 Scaling Results

In this section, we present scaling results obtained by integrating capabilities and
optimizations described in Sections 3 & 4 into OpenAtom. All the experiments
have been performed on Blue Waters, a Cray XE6/XK7 system, and Vulcan and
Mira, IBM Blue Gene/Q systems. Most experiments were repeated five times to
account for runtime variabilities, but only up to 1% deviation was observed on
both types of systems.

We use two systems of scientific interest in these studies: Liquid water and
Metal-organic Framework (MOF). Water is a simple system which contains a
box of water with 32 molecules. MOF is a more complex larger system used to
study suitability of metal-organic frameworks (Figure 1) for H2 storage [22]. The
MOF system used in this paper is MOF-5 which comprises Zn4O(BDC)3 (BDC
1,4 benzenedicarboxylate). It contains 424 atoms, 1552 electrons, and 776 KS
states. We have found it to be stable at the cutoff of 50 Rydberg, which is used
in our simulations. Each state is represented by a 220× 220× 220 size grid.

5.1 Performance of Charm-FFT

The first set of results shows the performance of Charm-FFT as a FFT library.
To understand the impact of decompo-
sition on the time taken to compute a
3D-FFT, we perform a FFT of a 300 ×
300× 300 size grid on 512 nodes of Blue
Gene/Q using different decompositions.
For these experiments, the baseline exe-
cution time is 76 ms, which is obtained
when 1D-decomposition of the grid is
performed, i.e., 300 objects are used.
In Figure 5, it can be seen that as we
perform finer decomposition of the grid
along two dimensions, the time to com-
pute 3D-FFT reduces significantly.

#Objects Decomposition Time (ms)

100 10 × 10 80
300 300 × 1 76
300 75 × 4 69
300 20 × 15 45
400 20 × 20 35
900 30 × 30 24
1600 40 × 40 24
2500 50 × 50 22
3600 60 × 60 23

Fig. 5: FFT on a 300×300×300 grid.

The best performance is obtained when the grid is divided among 2,500 objects
that are arranged as a 2D grid of size 50× 50. In this case, the time to perform
FFT is reduced by 70% in comparison to the baseline. Further decreasing the
decomposition granularity leads to excess communication overhead.

Figure 6(left) demonstrates that the choice of cutoff can have a significant
impact on the time to perform FFT. For a grid of size 300× 300× 300, up to 3x
reduction in execution time can be seen on 512 nodes of Blue Gene/Q. While
cutoffs as low as 100 are unrealistic from a scientific perspective, G2 values that
eliminate as many as half the grid points are common. In Figure 6(left), the
x-axis value of 6,400 represents this common scenario, where 41% reduction in
execution time is observed.

Finally, in Figure 6(right), we present the impact of using Charm-FFT in
OpenAtom for the 32-molecule Water system scaled to core counts that are

��

���

���

���

���

���� ����� ������

��
��
��
��
��
���
��
��
��

���������

����������������������������������

��

����

����

����

����

��� ���� ���� ����

�
��
��
��
��
��
��

�
��
�

���������������

����������������������������������

������
���������

Fig. 6: (left) As the G2 cutoff decreases, time to FFT reduces. (right) Charm-
FFT improves the time per step of OpenAtom by up to 40%.

at the parallelization limits of the Water system. For most of the core counts,
Charm-FFT is able to increase the available parallelism and reduces the time per
step by 30-40%. For core counts less than 400, we find that the performance of the
default version of OpenAtom matches closely with the version that uses Charm-
FFT. This is expected since for small core counts, the default 1D-decomposition
is able to utilize most of the network bandwidth.

5.2 Single instance execution

In this section, we present performance results for simulating a single instance
of MOF with OpenAtom. Figure 7 shows strong scaling results when the core
count is increased from 512 to 32,768 on Blue Waters. It can be seen that the
time per step decreases significantly from 11.7 seconds to less than a second as
more cores are used. Our topology-aware mapping scheme consistently provides
a performance boost of 16− 32% on all system sizes. Similar improvements are
obtained on Mira where three hardware threads are utilized on every core. Best
execution time of 0.67s per time step is obtained on 32,768 cores of Blue Waters
for the MOF system which has only 776 electronic states. Note that topology
aware mappings are computed once at the beginning of long running simulations.
Hence, overhead due to such computations is minimal. For example, for a typical
science run of several hours on 1,024 nodes, computing the mapping takes less
than 3.2 seconds.

In Figure 8, good scalability is shown for BOMD computation as we scale
from 4,096 cores to 16,384 cores on Blue Gene/Q. Use of topology-aware mapping
outperforms the default mapping by up to 32% in these cases. In fact, with
topology-aware mapping, 74% reduction in time per step is obtained when the
number of cores is increased by four times, i.e., perfect scaling is observed. These
results strongly indicate that OpenAtom is able to provide scalable support to
different simulation methods by exploiting their common characteristics.

5.3 Scalability of Ubers

Now, we present performance results for simulating multiple instances of MOF
on Blue Gene/Q. As a representative of multi-instance methods, we use the Path

��
�

��

��

��� �� �� �� �� ��� ���

�
��
��
��
��
��
��

�
��
�

��

��������������������������

���������������
���������������������������

�����
�����

�����
�����

����� �����

��
�

��

��

��� �� �� �� �� ���

�
��
��
��
��
��
��

�
��
�

���

�����������������������������

���������������
����������������������

�����

�����
�����

�����
�����

�����

Fig. 7: OpenAtom shows good scaling on both Cray XE6 and Blue Gene/Q.
Benefit of topology aware mapping is significant as shown by the % values.

���

����

�� �� ���

�
��
��
��
��
��
��

�
��
�

���

������������������������������

���������������
����������������������

Fig. 8: Perfect scaling and positive impact of topology-aware mapping is demon-
strated for BOMD computation.

�

�

�

��

�� ��� ��� ��� ���� ����

�
��
��
��
��
��
��

�
��
�

���

����������������������������

�������
��������
��������

Fig. 9: By exploiting Uber infrastructure and topology-aware mapping, Ope-
nAtom enables strong scaling of Path Integrals up to a quarter million cores
on Blue Gene/Q. These are representative results that should extend to other
multi-instance methods such as the k-points, Parallel Tempering, and Spin.

Integral method (CPAIMD PI) in these experiments. Three configurations with
8, 16, and 32 Ubers are strong scaled from 8,192 cores to 262,144 cores, where
three hardware threads are used on each core. For each of these configurations,
Figure 9 shows that an efficiency of 52% is obtained when the core count is
increased by 8x from the smallest configuration executed. For example, the 32
beads simulations observe a 4.2× speed up when core count is increased from
32,768 to 262,144. Time per step as low as 1.7s is obtained for executing 32 beads
on 262K cores of Blue Gene/Q. For other configurations, time per step close to
one second is obtained by making use of multiple hardware threads available on
the system. In fact, due to the communication intensive nature of these simula-
tions, one out of every three threads is dedicated to advancing communication
asynchronously, while the other two threads perform computation.

6 Conclusion

In this paper, we have presented the capabilities and scalability of OpenAtom.
New science capabilities, viz. multi-instance methods and BOMD, have been
added to OpenAtom recently and are described in this paper. Positive impact
of optimization techniques, namely distance-aware mapping, Uber indexing, and
overdecomposed 3D-FFTs with spherical cutoff, has also been shown on two pro-
duction HPC platforms, IBM Blue Gene/Q and Cray XE6. By leveraging these
techniques, we have demonstrated that OpenAtom provides efficient strong
scaling up to 32,768 cores for MOF, an important science system with only a
few hundred atoms. Finally, a time per step of 1.7s and strong scaling up to
262,144 cores have been shown for multi-instance scientific simulations. These
results strongly suggest that OpenAtom is a highly scalable simulation code
with diverse capabilities.

Acknowledgments

This research is partly funded by the NSF SI2-SSI grant titled Collaborative
Research: Scalable, Extensible, and Open Framework for Ground and Excited
State Properties of Complex Systems with ID ACI 13-39715. This research is
also part of the Blue Waters sustained-petascale computing project, which is
supported by the National Science Foundation (award number OCI 07-25070)
and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at
Urbana-Champaign and its National Center for Supercomputing Applications.

This research used resources of the Argonne Leadership Computing Facility
at Argonne National Laboratory, which is supported by the Office of Science
of the U.S. Department of Energy under contract DE-AC02-06CH11357. This
research also used computer time on Livermore Computing’s high performance
computing resources, provided under the M&IC Program.

References

1. Acun, B., Gupta, A., Jain, N., Langer, A., Menon, H., Mikida, E., Ni, X., Rob-
son, M., Sun, Y., Totoni, E., Wesolowski, L., Kale, L.: Parallel Programming with
Migratable Objects: Charm++ in Practice. SC (2014)

2. Agarwal, T., Sharma, A., Kalé, L.V.: Topology-aware task mapping for reducing
communication contention on large parallel machines. In: Proceedings of IEEE
International Parallel and Distributed Processing Symposium 2006 (April 2006)

3. Alam, S., Bekas, C., Boettiger, H., Curioni, A., Fourestey, G., Homberg, W.,
Knobloch, M., Laino, T., Maurer, T., Mohr, B., Pleiter, D., Schiller, A., Schulthess,
T., Weber, V.: Early experiences with scientific applications on the ibm blue gene/q
supercomputer. IBM Journal of Research and Development 57(1/2), 14:1–14:9
(2013), http://dx.doi.org/10.1147/JRD.2012.2234331

4. Bhatele, A.: Automating Topology Aware Mapping for Supercomputers. Ph.D.
thesis, Dept. of Computer Science, University of Illinois (August 2010), http:

//hdl.handle.net/2142/16578

5. Bhatele, A., Bohm, E., Kale, L.V.: Optimizing communication for charm++ appli-
cations by reducing network contention. Concurrency and Computation: Practice
and Experience 23(2), 211–222 (2011)

6. Bohm, E., Bhatele, A., Kale, L.V., Tuckerman, M.E., Kumar, S., Gunnels, J.A.,
Martyna, G.J.: Fine Grained Parallelization of the Car-Parrinello ab initio MD
Method on Blue Gene/L. IBM Journal of Research and Development: Applications
of Massively Parallel Systems 52(1/2), 159–174 (2008)

7. Car, R., Parrinello, M.: Unified approach for molecular dynamics and density func-
tional theory. Phys. Rev. Lett. 55, 2471 ((1985))

8. Carloni, P., Bloechl, P., Parrinello, M.: Electronic Structure of the Cu,Zn Super-
oxide dimutase active site and its interactions with the substrate. J. Phys. Chem.
99, 1338–1348 ((1995))

9. cpmd.org, http://www.cpmd.org/
10. Earl, D.J., Deem, M.: Parallel tempering: Theory, applications, and new perspec-

tives. Phys. Chem. Chem. Phys. 7, 3910–3916 ((2005))
11. F, B., M, B., M, P.: Ab initio simulation of rotational dynamics of solvated am-

monium ion in water. J Am. Chem. Soc. 121, 10883 ((1999))

12. Fitch, B.G., Rayshubskiy, A., Eleftheriou, M., Ward, T.J.C., Giampapa, M., Pit-
man, M.C.: Blue Matter: Approaching the Limits of Concurrency for Classical
Molecular Dynamics. In: SC ’06: Proceedings of the 2006 ACM/IEEE conference
on Supercomputing. ACM Press, New York, NY, USA (2006)

13. Gygi, F., Draeger, E.W., Schulz, M., de Supinski, B.R., Gunnels, J.A., Austel, V.,
Sexton, J.C., Franchetti, F., Kral, S., Ueberhuber, C.W., Lorenz, J.: Large-scale
electronic structure calculations of high-z metals on the bluegene/l platform. In:
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. SC ’06, ACM,
New York, NY, USA (2006), http://doi.acm.org/10.1145/1188455.1188502

14. Gygi, F., Draeger, E.W., Schulz, M., Supinski, B.R.D., Gunnels, J.A., Austel, V.,
Sexton, J.C., Franchetti, F., Kral, S., Ueberhuber, C., Lorenz, J.: Large-Scale Elec-
tronic Structure Calculations of High-Z Metals on the Blue Gene/L Platform. In:
Proceedings of the International Conference in Supercomputing. ACM Press (2006)

15. Hoefler, T., Snir, M.: Generic topology mapping strategies for large-scale parallel
architectures. In: Proceedings of the international conference on Supercomputing.
pp. 75–84. ICS ’11, ACM, New York, NY, USA (2011)

16. IBM Blue Gene Team: Overview of the IBM Blue Gene/P project. IBM Journal
of Research and Development 52(1/2) (2008)

17. Kale, L.V., Zheng, G., Lee, C.W., Kumar, S.: Scaling applications to massively par-
allel machines using projections performance analysis tool. In: Future Generation
Computer Systems Special Issue on: Large-Scale System Performance Modeling
and Analysis. vol. 22, pp. 347–358 (February 2006)

18. Kumar, S., Shi, Y., Bohm, E., Kale, L.V.: Scalable, fine grain, parallelization of
the car-parrinello ab initio molecular dynamics method. Tech. rep., UIUC, Dept.
of Computer Science (2005)

19. Lee, H.S., Tuckerman, M., Martyna, G.: Efficient evaluation of nonlocal pseudopo-
tentials via euler exponential spline interpolation. Chem. Phys. Chem. 6, 18271835
(2005)

20. Marx, D., Parrinello, M.: Ab initio path integral molecular dynamics. Z. Phys. B
95, 143 ((1994))

21. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., Joannopoulos, J.D.: Iterative
minimization techniques for ab initio total-energy calculations: molecular dynamics
and conjugate gradients. Rev. Mod. Phys. 64, 1045 (1992)

22. Rosi, N.L., Eckert, J., Eddaoudi, M., Vodak, D.T., Kim, J., O’Keeffe, M.,
Yaghi, O.M.: Hydrogen storage in microporous metal-organic frameworks. Science
300(5622), 1127–1129 (2003), http://www.sciencemag.org/content/300/5622/

1127.abstract

23. Vadali, R.V., Shi, Y., Kumar, S., Kale, L.V., Tuckerman, M.E., Martyna, G.J.:
Scalable fine-grained parallelization of plane-wave-based ab initio molecular dy-
namics for large supercomputers. Journal of Comptational Chemistry 25(16), 2006–
2022 (Oct 2004)

