
Mitigating Processor Variation through Dynamic Load Balancing

Bilge Acun, Laxmikant V. Kale
University of Illinois at Urbana-Champaign, Department of Computer Science

{acun2, kale}@illinois.edu

Abstract—There can be performance variation among same-
model processors in large scale clusters, and supercomputers
that are caused by power, and temperature variations among
the processors. These variations manifest itself as frequency dif-
ference of the processors under dynamic overclocking, such as
Turbo Boost. Different-model processors also create an inherent
variation when used in same cluster. For some tightly coupled
HPC applications even one slow processor in the critical path
can slow down the whole application therefore this variation is
an important problem. To mitigate the performance variation
among processors, we propose a speed-aware dynamic load
balancing strategy which works on both homogeneous and
non-homogeneous hardware. Our main idea is to provide an
estimation of the task completion time based when moving a
task from one processor to another on the processor speed. We
show up to 30% performance improvement using our speed-
aware load balancer compared to the no load balancing case.
We also show that our speed-aware balancer performs 5%
better than non-speed aware counterpart.

I. INTRODUCTION

Placement of cores, differences in node assembly, and
other manufacturing factors can cause same-model proces-
sors to have different temperature and power consumption in
a cluster. This difference can be evident from performance
when the processors are under dynamic overclocking. Power,
heat and cost prevent processors from running at maxi-
mum frequency constantly. Hence, dynamic overclocking
technique is used in many modern processors to improve
performance by increasing the frequency of the processors
opportunistically. Intels Turbo Boost Technology is an ex-
ample of this. When Turbo Boost is enabled, the frequency
of the processor depends on: type of workload, number
of active cores, estimated current consumption, estimated
power consumption, processor temperature [1].

Figure 1: Histogram of execution time same-model for processors
to run a matrix multiplication kernel. The variation is caused by
frequency difference of the processors under Turbo Boost.

Turbo Boost improves the clock speed and therefore the
application performance [2]. However, it can also cause
performance variation among processors. We observe that
there exists up to 30% execution time difference among
same-model processors under Turbo Boost running the same
local computational kernel, as shown in Figure 1. Such
variations can lead to performance degradation, especially
for tightly coupled HPC applications. A slow processor in
the critical path, can slow down the whole application.

To understand the cause of this performance variation,
we look into the frequency and temperature of the proces-
sors. Figure 3 shows the frequency and temperature trends
of tree selected same-model processors with Turbo Boost
turned on in a cluster. Node 42, 48, and 70 demonstrate 3
distinct behaviors. Node-42 is a typical fast node. During
the whole experiment, the temperature of Node-42 remains
under 80 ◦C, and its frequency stays at the maximum Turbo
Boost frequency – 2.3GHz. On the other hand, Node-48 has
a higher starting temperature and its temperature quickly
reaches the thermal limit – 91 ◦C – after the execution
started, and its frequency dropped till 1.5GHz as a result.
Node 70 displayed a more interesting behavior as its temper-
ature rose slowly. Even though their starting temperature was
almost the same as Node-42, Node-70 reaches the threshold
temperature and the frequency starts to get throttled. Fig-
ure 3 right-bottom plot shows the correlation between the
frequency and temperature of all participating 20 nodes in
the experiment. In summary, we observe a dynamic behavior
in speed of the processors that can change over time.

Another type of frequency variation can happen when
a cluster is composed of two different type of processor
models. We propose a speed-aware dynamic load balancing

Figure 2: Bottom-right plot shows frequency is inversely correlated
by the temperature of the processor.



Figure 3: Turbo Boost causes different frequency behavior on same types of processors; node 42, node 48, node 70, even though they are
running the same local computation kernel.

algorithm to resolve both types of the variation problem.
We instrument application runtime to track the speed of
the processors and balance the workload proportionally to
the speed. We implement our intelligent load balancing
algorithm in CHARM++ framework, and show the effec-
tiveness of our load balancer with through evaluations on
applications with various problem size and different cluster
configurations; heterogeneous processors and homogeneous
processors.

II. EXPERIMENTAL SETUP
A. Platform

We use an 80 node local cluster at UIUC. The cluster
is composed of two different processor types as shown in
Table I. Some of our experiments use only one type proces-
sors to show the variation among same-model processors –
homogeneous setup. Some experiments use both processor
types at the same time – heterogeneous setup. We use
model specific registers (MSR) to calculate the frequency
of the processors. We read the temperature data of the cores
through the coretemp kernel driver.

Table I: Platform hardware details

Processor Intel Xeon E5-2620 Intel Xeon X3430

Clock Speed 2.0 GHz 2.4 GHz

Max Turbo Speed 2.5 GHz 2.8 GHz

Cores 6 4

Cache size(L3) 15MB 8MB

B. Applications
Matrix Multiplication: This is a basic double precision

dense matrix multiplication kernel. We run the sequential
kernel in a loop on each core with data size fitting in the last
level cache (L3). Specifically, we use three 248x248 double-
precision matrices, which requires around 1.5MB data per
core, which is in total smaller than the cache size of the
processors. This eliminates the effect of memory access
related performance variation in our timings.

Jacobi-2D: This is a 5-point stencil application on a 2D
grid. The application uses CHARM++ parallel programming
framework for parallelization. The grid is divided into mul-
tiple small blocks, each is represented as an object. We
experiment with multiple different grid and block sizes.

III. SPEED-AWARE DYNAMIC LOAD BALANCING

In this section, we propose solution based on dynamic
load balancing to mitigate this variation problem. Task based
parallel programming models is a good fit for solving this
problem since it gives opportunity to redistribute the tasks
among processors. For this purpose, we use CHARM++
parallel programming runtime system, where each task is
represented as a C++ object that can migrate from one to an-
other processor. The runtime collects statistics of how much
time each object spends on executing the work, background
load time etc. and use those statistics to balance work among
processors. The load of the processor or object is the time it
takes to execute. CHARM++ has a load balancing framework
that provides various load balancing algorithms. In this
paper, we look into refinement load balancing algorithm,
RefineLB [3], and make it speed-aware.

RefineLB moves heaviest objects from heavy processors
to light processors until the heavy processor’s load becomes
average [3]. However, it does not estimate the load correctly
when moving objects between processors if the speed of
the processors are different. Because the load of an object
can change when moved from a slow to a fast processor
since the speed of the processors are different. A simple
way to make this algorithm speed-aware is to scale the
load with the processors speeds, i.e. multiply with the donor
speed and divide by the recipient speed. To facilitate this,
we modified CHARM++ framework to track the speeds of
the processors dynamically. At the time of making the load
balancing decision, i.e. whether to move an object or not,
the load of object will be scaled by the tracked speeds of
processors to give a more precise load estimation.

IV. EVALUATION

In this section, we evaluate our speed-aware load balanc-
ing technique under different system configurations.

A. Heterogeneous System

In our first set of experiments, we use a heterogeneous
system configuration where the processor types are different;
i.e. half of them have 2.0 GHz base clock speed and the
other half has 2.4 GHz. In Figure 6, we evaluate RefineLB
and Speed-aware RefineLB performance against no load



(a) Speedup with different grid sizes (b) Frequency when grid size=16000 (c) Frequency when grid size=20000

Figure 4: Speed-aware RefineLB performance on Jacobi-2D with different grid sizes.

(a) Speedup with different block sizes (b) Frequency when block size=100 (c) Frequency when block size=800

Figure 5: Speed-aware RefineLB performance on Jacobi-2D with varying block size. Load balancer is triggered at iteration 800.

balancing performance. We use Jacobi-2D application with
grid size as 20000 and block size as 200.

Figure 6: RefineLB and Speed-aware RefineLB performance com-
pared to without load balancing case

RefineLB improves the performance by 4% and 11% on
2 and 4 nodes(processors) respectively. Speed-aware version
performs around 5% and 3% better compared to RefineLB
. By taking processor clock speed into consideration and
combining it with history workload information, Speed-
aware RefineLB has a more precise estimation of resulted
workload of target processor after migration. Therefore,
it can move objects more aggressively than non-speed-
aware version. Speed-aware RefineLB migrates 204 whereas
RefineLB migrates 95 objects out of 10000 objects from the
fast processors to the slow processors.

Problem Size Effect: Different problem size of Jacobi-2D
application varies the intensity of computation, communica-
tion and memory accesses. In the two sets of experiments
below, we show that depending on the grid and block size,
the benefit of load balancing changes.

Grid size is the total workload size of the array before

divided into smaller blocks. We fix block size at 200 and
vary grid size from 16000 to 24000 which is around 1.9GB
to 4.2GB of data in total. Figure 4a shows effect of grid
size with our speed-aware load balancer. We show the
processor frequency behavior over iterations in Figure 4b
and 4c. When the grid size is 16000, it takes 1.47% longer
to finish execution, load balancer has negative effect on
performance and both processors run close to their peak
speed. Smaller grid size does not require much computation
between two synchronizations (iterations), and processors
turn into communication stage before heat up. The reason of
the slowdown could be the higher communication overhead
when the objects are moved from slow to fast processor.
When grid size is set at 20000 and 24000, we have 8.51%
and 3.03% performance gain respectively. The frequency of
fast node does not change over time, while slow node’s
frequency drops after around 180 iterations from 2.4G GHz
to 2.0 GHz. Larger grid size introduces more workload for
both processors and leads to frequency throttling. On one
hand, fast node only needs to spend shorter time to finish
the work, then it gains some time to cool down before
synchronization. On the other hand, slow node has no time
to only cool down. When grid size increases to 24000 load
balancer works less effectively because of the increased
memory access latency.

Block size determines the workload of each migratable
object. We show speedup ratios in Figure 5a with grid size
fixed at 20000 and block size varying from 100 to 800. Pro-
cessor frequency behavior with block size 100 and 800 are
shown in Figure 5b and Figure 5c respectively. The highest
performance improvement is 28% when block size is set as
100. Performance gains decreases to 8.2% and 2.5% when



Figure 7: Homogeneous Processors under Turbo-Boost using
Speed-aware RefineLB

block size is increased to 200 and 400. This can be explained
as the following. Firstly, system creates more objects with
smaller block size, resulting in heavier background load.
Secondly, smaller block size is more flexible to migrate.
In our load balancer algorithm, we conservatively compute
workload of target processor after object migration. Larger
objects tend to make target processor overloaded, and less
likely to be moved. Moreover, when block size is 800, we see
12.7% performance improvement and we see objects moved
from fast node to slow node. This inverse behavior could
be caused by different cache size of the processors. Overall,
load balancing still has significant performance benefit.
B. Homogeneous System

In Figure 7, we show our speed-aware load balancer
can play an effective role in homogeneous system with a
frequency variation. Here, we run Jacobi-2D with 24000 grid
size and 400 block size on 2 same-model processor nodes.
One of the nodes keeps running at 2.4 GHz, while the other
node slowly throttles down from 2.4 GHz to 1.8 GHz due to
it’s high temperature. During every iteration, fast node has
finishes computation earlier and has more time to cool down
till the barrier synchronization after each iteration. Whereas
slow node is overloaded and has no time to cool down.
Load balancer is triggered every 300 steps. Since the slow
processors get throttled down more and more over time, one
load balancing is not enough to balance the load. Only after
first three migrations, performance stabilizes. Compared to
execution time before the first load balancer, we get 30%
improvement after last migration.

Overhead of the load balancing does not exceed 2 seconds
in all experiments shown. It is a small overhead which is
compensated after a few iterations. For larger node-counts,
more scalable load balancing algorithms can be made speed-
aware in a similar way we made RefineLB speed-aware.

V. RELATED WORK

Earlier work shows the existence of temperature variation
in large scale supercomputers [4], performance and power
variation under power capping [5]. Sarood et al. uses dy-
namic voltage and frequency scaling (DVFS) technique to
remove hot-spots/reduce power and energy consumption [6].
Our goal is not to reduce power consumption or increase

energy efficiency, but to get better performance by mitigating
the process variation. Hammouda et al. propose noise toler-
ant stencil algorithms to mitigate the performance variations
caused by including dynamic power management, OS jitter
etc. with a static mapping approach [7]. Choi el al. proposes
thermal-aware task scheduling [8] and Langer et al. proposes
variation-aware task scheduling among cores of many-core
processors [9]. Our approach is dynamic, and with not just
among cores but also among processors.

VI. CONCLUSION

In this paper, we first show the variation among the same-
model processors and how this variation can degrade the
performance of the parallel application that runs on those.
The variation among processors can increase as the scale
gets bigger in future supercomputing systems, therefore it is
important to find ways to reduce the negative performance
effects of the variation. We suggest that dynamic load
balancing techniques can be used to mitigate the variation
on homogeneous and heterogeneous platforms. Our primary
results show up to 30% performance benefit using our speed-
aware load balancer compared to the no load balancing case.

REFERENCES

[1] Intel Corporation, “Intel Turbo-Boost Technology.”
[Online]. Available: http://www.intel.com/content/
www/us/en/architecture-and-technology/turbo-boost/
turbo-boost-technology.html

[2] J. Charles, P. Jassi, N. S. Ananth, A. Sadat, and A. Fedorova,
“Evaluation of the intel R© core i7 turbo boost feature,” in Work-
load Characterization, 2009. IISWC 2009. IEEE International
Symposium on. IEEE, 2009, pp. 188–197.

[3] G. Zheng, “Achieving high performance on extremely large
parallel machines: performance prediction and load balancing,”
Ph.D. dissertation, Department of Computer Science, Univer-
sity of Illinois at Urbana-Champaign, 2005.

[4] K. Zhang, S. Ogrenci-Memik, G. Memik, K. Yoshii,
R. Sankaran, and P. Beckman, “Minimizing thermal variation
across system components,” in Parallel and Distributed Pro-
cessing Symposium (IPDPS), 2015 IEEE International. IEEE,
2015, pp. 1139–1148.

[5] Y. Inadomi, T. Patki, K. Inoue, M. Aoyagi, B. Rountree,
M. Schulz, D. Lowenthal, Y. Wada, K. Fukazawa, M. Ueda
et al., “Analyzing and mitigating the impact of manufacturing
variability in power-constrained supercomputing,” in SC’15.
ACM, 2015, p. 78.

[6] O. Sarood and L. V. Kalé, “Efficient’cool down’of parallel ap-
plications,” in Parallel Processing Workshops (ICPPW), 2012
41st International Conference on. IEEE, 2012, pp. 222–231.

[7] A. Hammouda, A. R. Siegel, and S. F. Siegel, “Noise-tolerant
explicit stencil computations for nonuniform process execution
rates,” ACM Transactions on Parallel Computing, vol. 2, no. 1,
p. 7, 2015.

[8] J. Choi, C.-Y. Cher, H. Franke, H. Hamann, A. Weger, and
P. Bose, “Thermal-aware task scheduling at the system soft-
ware level,” ser. ISLPED ’07. ACM, 2007, pp. 213–218.

[9] A. Langer, E. Totoni, U. S. Palekar, and L. V. Kalé, “Energy-
efficient computing for HPC workloads on heterogeneous
manycore chips,” in Proceedings of Programming Models and
Applications on Multicores and Manycores. ACM, 2015.


