
Towards PDES in a Message-Driven Paradigm:

A Preliminary Case Study Using Charm++

Eric Mikida, Nikhil Jain,

Laxmikant Kale

University of Illinois at

Urbana-Champaign

{mikida2,nikhil,kale}@illinois.edu

Elsa Gonsiorowski,

Christopher D. Carothers

Rensselaer Polytechnic

Institute

{gonsie,chrisc}@rpi.edu

Peter D. Barnes, Jr.,

David Jefferson

Lawrence Livermore

National Laboratory

{barnes26,jefferson6}@llnl.gov

ABSTRACT
Discrete event simulations (DES) are central to exploration
of “what-if” scenarios in many domains including networks,
storage devices, and chip design. Accurate simulation of dy-
namically varying behavior of large components in these do-
mains requires the DES engines to be scalable and adaptive
in order to complete simulations in a reasonable time. This
paper takes a step towards development of such a simulation
engine by redesigning ROSS, a parallel DES engine in MPI,
in Charm++, a parallel programming framework based on
the concept of message-driven migratable objects managed
by an adaptive runtime system. In this paper, we first show
that the programming model of Charm++ is highly suit-
able for implementing a PDES engine such as ROSS. Next,
the design and implementation of the Charm++ version of
ROSS is described and its benefits are discussed. Finally,
we demonstrate the performance benefits of the Charm++
version of ROSS over its MPI counterpart on IBM’s Blue
Gene/Q supercomputers. We obtain up to 40% higher event
rate for the PHOLD benchmark on two million processes,
and improve the strong-scaling of the dragonfly network
model to 524, 288 processes with up to 5⇥ speed up at lower
process counts.

1. INTRODUCTION
Discrete event simulations (DES) are a key component of

predictive analysis tools. For example, network designers
often deploy DES to study strengths and weaknesses of dif-
ferent network topologies. Similarly, the chip design process
makes heavy use of DES to find the optimal layout of the
circuit on a new chip. As the complexity of such analyses in-
creases over time, either due to the larger number of compo-
nents being studied or due to higher accuracy requirement,
the capability of DES engines also needs to increase propor-
tionately. Parallel discrete event simulation (PDES) holds
promise for fulfilling these expectations by taking advantage
of parallel computing. Many scientific domains, e.g. cosmol-

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to allow oth-
ers to do so, for Government purposes only. Permission to make digital or hard copies
for personal or classroom use is granted. Copies must bear this notice and the full ci-
tation on the first page. Copyrights for components of this work owned by others than
ACM must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.

SIGSIM-PADS ’16, May 15-18, 2016, Banff, AB, Canada

c� 2016 ACM. ISBN 978-1-4503-3742-7/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2901378.2901393

ogy [22], biophysics [27], computational chemistry [14], etc.,
have already exploited parallel computing to great e↵ect.
Thus, it is natural that PDES should be explored to match
the growing requirements posed by domains of interest.

Development of scalable PDES engines and models is a
di�cult task with many important di↵erences from common
High Performance Computing (HPC) applications, which
are predominantly from the science and engineering domain.
First, while the interaction pattern of common HPC applica-
tions can be determined apriori, the communication pattern
in most PDES models is di�cult to predict. The communi-
cation in PDES models is also more likely to be one-sided,
i.e. the source entity may create work or data for a desti-
nation without the destination expecting it. Second, typical
PDES models are asynchronous and do not have a predeter-
mined time step; simulated entities are allowed to proceed
through the simulation at a pace dictated by the availability
of work. In contrast, many common HPC applications per-
form iterative operations with similar work repeated across
iterations. Third, unlike common HPC applications, the
amount of computation per communication byte is typically
low for PDES models.

Due to the unique features of PDES described above,
MPI [2], the de-facto standard for parallel programming,
may not be the best fit for developing PDES engines
and models. This is because MPI is suitable for bulk-
synchronous models of parallel programming based on two-
sided and collective communication. Support for one-sided
indeterministic communication, as required by PDES, is lim-
ited in MPI [15]. Moreover, long running complex models
may require load balancing and checkpointing infrastruc-
ture, both of which are programmer’s responsibility in MPI.
Despite these limitations, Rensselaer’s Optimistic Simula-
tion System (ROSS) [6], a PDES engine implemented using
MPI, has been shown to be highly scalable for homogeneous
models with low communication volume [5].

For models with heavy communication and high complex-
ity, the capabilities and performance of the MPI version of
ROSS exhibit limitations. To overcome these limitations,
a new version of ROSS is being designed and implemented
on top of Charm++ [4], a parallel programming paradigm
which is a better fit for performing PDES. Powered by an
intelligent adaptive runtime system, Charm++ is an alter-
native method for developing parallel programs based on
object-oriented programming in contrast to MPI’s proces-
sor based programming. Several large scale scientific ap-
plications, including NAMD [27], ChaNGa [22], EpiSim-
demics [31] and OpenAtom [16], have been developed in

Charm++. Additionally, the Parallel Object-oriented Sim-
ulation Environment (POSE) [30] is a PDES engine imple-
mented as a DSL on top of Charm++ which explores var-
ious scheduling and load balancing techniques but is ulti-
mately limited by poor sequential performance. In this pa-
per, we describe our experience and results related to the
Charm++ version of ROSS. The main contributions of this
work are:

• Suitability of Charm++ for implementing a PDES en-
gine in general, and ROSS in particular, is demonstrated.

• A Charm++ version of ROSS is presented along with
a detailed description of its design and implementation.

• Features and benefits of the Charm++ version of
ROSS are presented.

• Superior performance of the Charm++ version of
ROSS over its MPI counterpart is shown on two models
running on IBM’s Blue Gene/Q supercomputers:

1. 40% higher event rate is obtained for the PHOLD
benchmark on two million processes.

2. Strong-scaling of the dragonfly network model for
simulating di↵erent communication patterns is im-
proved to 524, 288 processes with up to 5⇥ speed up
at lower process count.

2. BACKGROUND
Charm++ [4] and ROSS [5] are central to the work pre-

sented in this paper. This section first provides an overview
of PDES, followed by details of its concrete implementation
in ROSS. Finally we introduce Charm++ and discuss why
it is a good fit for PDES.

2.1 PDES
A DES system consists of Logical Processes (LPs) and

events. LPs represent the entities within the simulation
and encapsulate the majority of simulation state. Changes
within DES are driven by execution of events that are com-
municated from one LP to another at specific points in vir-
tual time. In order to obtain a correct simulation, the events
must be executed in timestamp order, i.e. causality viola-
tions should not happen wherein an event with higher times-
tamp is executed before an event with a lower timestamp.

For a sequential DES, the simulation progresses in a very
straight forward manner: the pending event with the lowest
timestamp is processed by its receiving LP. As each suc-
cessive event is processed, simulation time moves forward.
After an event is successfully processed, its memory can be
reclaimed by the simulation system.

In PDES, special care must be taken to ensure the correct
ordering of events. The LP objects are distributed across
concurrent processes with events traversing across the net-
work. Therefore, parallel simulators must handle inter-node
communication as well as maintain global synchronization
to avoid causality violations. There are two main schools of
thought on how to avoiding causality violations in PDES:
conservative and optimistic [13, 17, 26]. In a conservative
synchronization algorithm, events can only be executed if
there is a guarantee that it will not result in a causality vi-
olation. In optimistic algorithms, events are executed spec-
ulatively and if a causality violation does eventually occur,
the simulation engine must recover from it.

In this paper our focus is on the optimistic Time Warp
algorithm proposed by Je↵erson et al. [17]. In Time Warp,
when a causality violation is detected, states of the relevant
LPs are reverted to a point in time before the causality vio-
lation occurred. This process is referred to as rollback. Once
an LP has rolled back to a previous point in virtual time, it
is allowed to resume forward execution. In order to correctly
rollback an LP, the simulation engine needs to store history
information about that LP, which causes an increase in the
memory footprint of the program. To mitigate this, the sim-
ulation engine periodically synchronizes and computes the
Global Virtual Time (GVT). The GVT is a point in virtual
time which every LP has safely progressed to, and therefore
memory used to store the history before the GVT can safely
be reclaimed by the simulator.

2.2 ROSS
ROSS is a framework for performing parallel discrete event

simulations. It has demonstrated highly scalable, massively
parallel event processing capability for both conservative
and optimistic synchronization approaches [5, 6, 8, 20, 25].
For optimistic execution, ROSS mitigates Time Warp state-
saving overheads via reverse computation [9]. In this ap-
proach, rollback is realized by performing the inverse of the
individual operations that were executed in the event’s for-
ward execution. This reduces the need to explicitly store
prior LP state, leading to e�cient memory utilization.

Most recently, ROSS optimistic event processing has
demonstrated super-linear performance for the PHOLD
benchmark using nearly 2 million Blue Gene/Q cores on the
120 rack Sequoia supercomputer system located at LLNL [5].
Barnes et al. obtained 97x speedup at 120 racks from a base
configuration of 2 racks for a PHOLD model configured with
over 250 million LPs. The peak event rate was in excess of
500 billion events-per-second. PHOLD configurations simi-
lar to the one used in Barnes et al. [5] have been used in the
results section of this paper.

Using ROSS’s massively parallel simulation capability,
many HPC system models have been developed as part of
a DOE co-design project for future exascale systems. These
include models for the torus and dragonfly networks and
the DOE CODES storage simulation framework. The torus
model has been shown to simulate 1 billion torus nodes at
12.3 billion events per second on an IBM Blue Gene/P sys-
tem [19]. The dragonfly model has been scaled to simu-
late 50 million nodes, with a peak event rate of 1.33 billion
events/second using 64K processes on a Blue Gene/Q sys-
tem [25]. We use a similar dragonfly model in the results
section of this paper as was used by Mubarak et al. in [25].

2.3 CHARM++
Charm++ is a parallel programming framework which

consists of an adaptive runtime system that manages mi-
gratable objects communicating asynchronously with each
other. Like MPI, it is available on all major HPC plat-
forms and takes advantage of native messaging routines
when possible for better performance. Applications devel-
oped for Charm++ are written primarily in C++ with a
small amount of boiler-plate code to inform the runtime sys-
tem of the main application entities (C++ objects).

Unlike MPI, Charm++ is more than just a messaging
layer for applications. It contains a powerful runtime system
that aims to remove some of the burden of parallel program-

B
A

F

m1 m4

m1 C

E

D

m2 m3

m2

m3

B

A

C E

F

D

Message
Queues

m4

Figure 1: A depiction of communicating chares from the
programmers view (left) and the runtime system’s view af-
ter the chares have been mapped to the processes (right).
Arrows represent messages sent between chares.

ming from the application developer by taking care of tasks
such as location management, adaptive overlap of compu-
tation and communication, and object migration. Broadly
speaking, the primary attributes of Charm++ that we hope
to leverage in PDES are: object-level decomposition, asyn-
chrony, message-driven execution, and migratability.

In Charm++, the application domain is decomposed into
work and data units, implemented as C++ objects called
chares, that perform the computation required by the appli-
cation. Thus, the programmers are free to write their appli-
cations in work units natural to the problem being solved,
instead of being forced to design the application in terms
of cores or processes. An application may also have many
di↵erent kinds of chares for di↵erent types of tasks. Note
that the user is free to choose the number of chares and is
not bound by the number of cores or processes. Figure 1
(left) shows a collection of 6 chares of two di↵erent types
labeled A, B, C, D, E, and F. Arrows represent communi-
cation between chares. This freedom of decomposition is
highly suitable for implementing PDES engines and mod-
els since they typically have simulated entities of di↵erent
types whose work and count is determined by the model
being simulated.

The runtime system is responsible for mapping the chares
defined by an application to cores and processes on which
they are executed. The chares interact with each other
asynchronously in a one-sided manner: the senders send
messages to the destinations and continue with their work
without waiting for a synchronous response. This mode of
communication is a direct match to the type of communi-
cation exhibited by a typical PDES. Figure 1 (right) shows
a potential mapping of the 6 chares to specific hardware
resources. The runtime system keeps track of the location
of each chare and handles sending messages across the net-
work when communicating chares are mapped to di↵erent
hardware resources.

In Charm++, chares are message-driven entities, i.e., a
chare is scheduled and executed only when it has a message
to process from itself or from other chares. Being message-
driven makes chares an ideal candidate for representing the
entities modeled in a PDES. This is because LPs in a PDES
are also typically driven by events that are sent to them. In
Figure 1 (right), we see that each process maintains a queue
of all messages directed to it’s local chares. The runtime
system removes messages from these queues, and executes
appropriate method on each message’s destination chare.

Finally, the chares in Charm++ are migratable, i.e., the
runtime system can move the chares from one process to an-

other. Moreover, since chares are the only entities visible to
the application and the notion of processes is hidden from
the application, the migration of chares can be done auto-
matically by the runtime system. This allows the runtime
system to enable features such as dynamic load balancing,
checkpoint/restart, and fault tolerance with very little e↵ort
by the application developer. Complex PDES models can
take advantage of these features, thus providing a solution
to problems posed by long running dynamic models.

3. DESIGN OF THE CHARM++ VERSION
OF ROSS

In order to demonstrate the benefits an asynchronous
message-driven paradigm can have for PDES, we have cre-
ated a version of ROSS built on top of Charm++. Our
focus is on improving the parallel performance and taking
advantage of features provided by Charm++ (Section 2.3),
while keeping the PDES logic and ROSS API as intact as
possible. The design and implementation of the Charm++
version of ROSS can be divided into five segments, each of
which are described in this section: parallel decomposition,
scheduler, communication infrastructure, global virtual time
(GVT) calculation, and user API.

3.1 Parallel Decomposition
As described in Section 2.1, a typical PDES consists of

LPs that represent and simulate entities defined by the
model. Whenever an event is available for an LP, the LP is
executed. This execution may result in generation of more
events for the given LP or other LPs. In the MPI version
of ROSS, three main data structures are used to implement
this process as shown in Figure 2 (left): Processing Element
(PE), Kernel Processes (KP), and Logical Process (LP).

There is a single PE per MPI rank with three main respon-
sibilities. First, the PE manages event memory of its MPI
rank with a queue of preallocated events. Second, the PE

maintains a heap of pending events sent to LPs on its MPI
rank. Third, the PE contains data used when coordinating
the GVT computation across all MPI ranks.

KPs are used primarily to aggregate history storage of
multiple LPs into a single object to optimize fossil collection.
This history consists of events that have been executed by
an LP. Fossil collection refers to freeing up the memory oc-
cupied by the events that occurred before the current GVT.

LPs are the key component in actually defining the behav-
ior of a specific model. They contain model-specific state
and event handlers as defined by the model writer, in addi-
tion to storing some meta-data used by ROSS such as their
globally unique ID. The pending events received for LPs are
stored with the PEs while the events that have been executed
by the LPs are stored with the KPs.

The organization of ROSS in MPI, as described above, is
mainly driven by the process-based model typical of MPI
programs. On each MPI process, there is a single flow of
control managing the interaction between a single PE and
a collection of KPs and LPs as shown in Figure 2 (left).
None of these application entities are recognized by MPI,
and hence are managed as passive sequential objects that
rely on the MPI process for scheduling and communication.

Decomposition with Charm++: As shown in Figure 2
(right), the Charm++ version of ROSS consists of three
key entities: LPs, LP Chares, and PE Managers. The role

LPLP

LPLP

LPLP

PE

Pending Events Heap

KPs

Processed
Queue

LPLP

LPLP

LPLP

LPLP

LPLP

LPLP

LPLP

LPLP

LPLP

Decomposition of the MPI
version of ROSS onto 4
hardware cores (above)
and a zoomed in view of
one hardware core (right).

PE Managers

LP Chares

Pending Event Heap

Pending LP Heap

LP

LP

LP

Processed LP Heap

Processed Event Queue

Figure 2: User view of ROSS decomposition in MPI (left) and Charm++ (right). Boxes are regular C structs, and ovals
are chares (known to the Charm++ runtime system). In the MPI version, the users view requires explicit knowledge of the
mapping of entities to hardware, where in the Charm++ version the runtime system manages this mapping.

and implementation of LPs is same as the MPI version of
ROSS in order to preserve the user-level API of ROSS.

LP Chares now encapsulate everything an LP needs to exe-
cute. They contain the LPs themselves, which as before hold
model-specific state and event handlers, in addition to stor-
ing both the pending and past events of its LPs. The charm
runtime system is aware of LP Chares and allows communi-
cation of events directly between LP Chares. Upon receiving
an event, an LP Chare handles any causality violations or
event cancellations by performing the necessary rollbacks,
and enqueues the new event into its pending queue. This
removes the need for event storage at the PE and KP level.
The mapping of LPs to LP Chares is left to the user so that a
model-appropriate scheme can be used, but the mapping of
LP Chares to hardware resources is handled by the runtime
system. This also allows the runtime system to migrate LPs

as needed which enables features such as checkpointing and
dynamic load balancing.

PE Managers are implemented as special chares in
Charm++ which guarantee a single PE Manager chare per
process. Similar to PEs in the MPI version, PE Managers

still manage event memory and coordinate the computa-
tion of GVT; however, they no longer store pending events.
Instead, PE Managers maintain a pending LP heap and
a processed LP heap, both of which store pointers to LP

Chares. The pending heap is sorted based on the timestamp
of the next pending event of each LP Chare, and the pro-
cessed heap is sorted based on the timestamp of the oldest
processed event of each LP Chare. The ROSS scheduler is
now integrated into the PE Managers and utilizes these LP

Chare queues to coordinate event execution and fossil col-
lection among chares co-located with a given PE Manager.
By integrating the ROSS scheduler into the PE Manager,
the Charm++ runtime system is now aware of the ROSS
scheduler. The changes to the ROSS scheduler are described
in more detail in the next section.

Expected cost of basic operations: In the MPI version,
the expected cost to add, remove, or execute an event is
logN when N is the number of events in the PE’s pending
heap. In the Charm++ version, all event heaps are stored
in the LP Chares and only store events for its own LPs, so
the cost of any operation on these heaps is approximately

log N

C

where C is the number of chares on the processor/-
core. In some cases, the addition or removal of an event
requires updating the PE Manager-level heaps which incurs
an additional logC operation. Thus, the expected cost to
add, remove, or execute an event in the Charm++ version
is at most log N

C

+ logC = logN .

3.2 Scheduling
In the MPI version of ROSS, the scheduler is simply a

function called from main after the initialization is com-
pleted. There are three types of schedulers supported in
the MPI version: sequential, conservative, and optimistic.
Figure 3a provides a code snippet that shows the simplified
implementation of the optimistic scheduler, which is almost
always the preferred option for ROSS. The scheduler is pri-
marily an infinite loop that polls the network for driving
the communication, performs rollbacks if they are needed,
executes events on LPs in batches of size batch size, and
performs GVT computation if needed. In the conservative
mode, the rollback step is skipped, while in the sequential
mode only event execution happens.

As discussed in the previous section, the schedulers in
the Charm++ version of ROSS have been promoted from
regular C functions to methods on PE Manager chares. The
runtime system schedules all chares, include PE Managers,
based on availability of messages for them to process, so the
schedulers are implemented as messages to PE Managers.
Again, we will focus our detailed discussion on the optimistic
scheduler. As shown in Figure 3b, the Charm++ version
of the scheduler has two main tasks: event execution and
GVT computation. Unlike the MPI version, the scheduler
no longer does network polling (which is now handled by the
runtime system), and no longer deals with event queuing or
rollbacks (which are now handled by the LP Chares).

When a simulation begins, all PE Managers receive a mes-
sage that triggers execution of execute events method. Dur-
ing normal execution, this involves delegating control to LP

Chares for event execution by using the pending LP heap,
and then sending a message, say M , that should trigger ex-
ecution of execute events on the PE Manager. The message
M is added to the runtime system’s queue, and when the
execution of execute events is complete, control returns to

//main con t r o l l oop in PE
void s chedu l e r () {
while (1) {
po l l ne twork () ; // d r i v e communication
// r o l l b a c k i f c a n c e l l a t i o n event
// r o l l b a c k i f event (s) wi th o l d timestamp
for (i =0; i<ba t ch s i z e ; i++) {

// execu te even t s d i r e c t l y on LPs
}
i f (r e ady f o r gv t) {

do gvt () ;
// perform f o s s i l c o l l e c t i o n on KPs

}
}

}

(a) MPI Version : PE drives the execution.

void PEManager : : execu te event s () {
for (i =0; i<ba t ch s i z e ; i++) {
/⇤ d e l e g a t e c on t r o l to LP Chares

f o r event execu t i on ⇤/
}
i f (r e ady f o r gv t)
s t a r t g v t () ;

else
// s e l f �send an e x e cu t e e v en t s () message

}
void PEManager : : gvt done () {
/⇤ d e l e g a t e c on t r o l to LP Chares

f o r f o s s i l c o l l e c t i o n ⇤/
// s e l f �send an e x e cu t e e v en t s () message

}

(b) Charm++ Version: PE Manager is one of the chares scheduled
when work is available for it.

Figure 3: Simplified versions of the role of PE in optimistic mode.

the runtime system. At this point, the runtime system may
perform other tasks such as polling the network or execute
methods on other chares based on its queue. Eventually
when the message M reaches the top of the runtime sys-
tem’s queue, execute events is executed again on the PE.

During the execution of execute events, if it is time to
compute the GVT, start gvt() is called instead of sending
the message that triggers execution of execute events. This
starts the asynchronous computation of the GVT, which is
described in more detail in Section 3.4. When the GVT
computation is complete, a message to trigger execution of
gvt done is sent to PE Managers, which results in delegation
of control to the LP Chares to do fossil collection. Finally,
a message to trigger execution of execute events is sent to
resume forward progress.

3.3 Communication Infrastructure
ROSS requires communication across processes to deliver

events generated by LPs on one process for LPs on di↵er-
ent processes. In the MPI version of ROSS, the delivery
of events is performed using point-to-point communication
routines in MPI. Since MPI’s point-to-point communication
is two-sided, this requires both the sender and the receiver to
make MPI calls. The complexity and ine�ciency in this pro-
cess stems from the fact that the events are generated based
on the model instance being simulated, and thus the commu-
nication pattern is not know apriori. Whenever an LP, say
srcLP, generates an event for another LP, say destLP, the
process which hosts destLP is computed using simple static
algebraic calculations and the sender process issue a non-
blocking MPI Isend to it. Since the communication pattern
is not known ahead of time, all MPI processes post non-
blocking receives that can match to any incoming message
(using MPI_ANY_TAG and MPI_ANY_SOURCE). Periodically, the
scheduler performs network polling to test if new messages
have arrive for LPs on the current process. Both these ac-
tions, posting of receives that match to any receive and pe-
riodic polling, lead to high overheads.

In the Charm++ version of ROSS, both LPs and the
events they generate are encapsulated in LP Chares which
the runtime system knows about. Hence, when an LP Chare

issues an event for the another LP Chare, the runtime takes

the ownership of the event and delivers it to the destina-
tion LP Chare without the involvement of PE Manager. This
also means that each LP Chare can detect its own causality
violations as soon as it receives events, and take the ap-
propriate course of action immediately. The runtime also
performs the lookup of the process that actually owns each
LP Chare automatically and does not require any additional
support from ROSS. This automation is extremely useful
for cases where LPs are load balanced across processes, and
their owner processes cannot be computed using simple al-
gebraic calculation. Moreover, since Charm++’s program-
ming model is one-sided and message driven, there is no
need to post receives in advance.

3.4 GVT Computation
Computation of the GVT requires finding the minimum

active timestamp in the simulation. Hence, while comput-
ing the GVT, all of the events and anti-events (events that
cancel an older event) which have not been executed yet
have to be taken into consideration. This implies that any
event that has been sent by a process must be received at
its destination before the GVT is computed. Without such
a guarantee, we are at the risk of not accounting for events
that are in transit. Alternatively, a sender process can ac-
count for the events it sends out in the GVT computation.
However, this scheme leads to additional overhead of explicit
acknowledgment for every event received by the destination
processes to the sender processes, and hence is inferior in
terms of performance to the former scheme.

In the MPI version of ROSS, to guarantee that all events
are accounted for the ROSS engine maintains two counters:
events sent, and event received. When the GVT is to be
computed, all execution of events stops and ROSS makes
a series of MPI Allreduce calls interspersed with polling of
the network to guarantee communication progress. Once
the global sum of the two counters match, all events are
accounted for, and the global minimum timestamp of these
events becomes the new GVT. Then ROSS resets the coun-
ters, performs fossil collection, and resumes event execution.

In the Charm++ version of ROSS, we have simplified
the computation of the GVT by replacing the above men-
tioned mechanism with a call to Charm++’s e�cient asyn-

chronous quiescence detection (QD) library [1,28]. The QD
library automatically keeps track of all communication in
a Charm++ application, and invokes an application speci-
fied callback function when the global sum of initiated sends
matches the global sum of the receives. The e�ciency of the
QD library is due to overlap of the library’s execution with
application progress obtained by performing asynchronous
non-blocking communication in the background. Once it is
time to compute the GVT, event execution is stopped while
ROSS waits for QD to complete. During QD the runtime
continues polling the network and delivering messages to
chares as normal. Once quiescence is reached, the GVT is
computed via a global reduction, and the PE Manager does
fossil collection and restarts event execution. Because of the
flexibility in QD and the asynchrony of the runtime system
there are further opportunities to reduce the synchronization
cost of GVT computation discussed in Section 4.4.1.

3.5 User API and Porting Models
One of the major goals when writing the Charm++ ver-

sion of ROSS was preserving the existing user API. By mak-
ing minimal changes to the user API, we hope to make the
porting process for models written for the MPI version of
ROSS simple and minimalistic. To port a model from the
MPI version to the Charm++ version of ROSS, the major-
ity of changes are performed in the startup code where the
model is initialized. Once the simulation of the model be-
gins, the logical behavior of the Charm++ version is exactly
same as the MPI version, and hence there is often no change
needed in the LP event handlers or reverse event handlers.

Among the startup changes, the primary change is related
to LP mapping. In the MPI version, there are two mapping
functions. One of them is used during startup to create LPs

on the calling PE, and decide their local storage o↵set, KP
it belongs to, and type of LP it is. The second mapping
function is used during execution to determine the PE on
which an LP with a given ID exists.

In the Charm++ version, since LPs are no longer bound
to PEs, four mapping functions have to be defined to provide
equivalent functionality w.r.t. LP Chares. The first two are
used during startup. One is a function that takes an LP

Chare index and an o↵set, and returns the global LP ID
that resides on that chare at that o↵set. The second is a
function that takes a global LP ID and returns the type of
that LP. The remaining two functions are used for LP lookup
during execution. One takes an LP ID and returns the LP

Chare on which that LP resides and another takes an LP ID
and returns the local storage o↵set of that LP. These two
functions are the inverse of the first function that initially
determined placement of LPs.

In addition to the above mapping changes, the models
usually require minor changes to their main functions. These
changes usually entail setting which maps to use, and set-
ting some other Charm++ specific variables such as the
number of LP Chares a simulation is going to use. Concrete
examples of the changes required to port the models are fur-
ther presented in the results section, where the PHOLD and
Dragonfly models are discussed in detail (Section 5).

4. BENEFITS OF THE CHARM++
VERSION OF ROSS

In this section, we describe the benefits of the Charm++

version of ROSS. These include inherent benefits that the
use of Charm++’s programming model provides in the cur-
rent version, as well as new features enabled by the runtime
system that are being implemented and will be explored in
detail in a future publication.

4.1 Better Expression of Simulation
Components

One of the most important advantages of using
Charm++ for implementing ROSS is that the programming
model of Charm++ is a natural fit for implementing PDES.
In the Charm++’s programming model, as described in
Section 2.3, an application implementation is composed of
many chares executing concurrently, driven by asynchronous
message communication. When a message is received for a
chare, the runtime executes the appropriate method on the
chare to handle the message. This model is analogous to
PDES where several LPs are created to represent simula-
tion entities and event handlers are executed on the LPs
when events are available for them. Thus LPs and events
map naturally to chares and messages. Moreover, similar to
PDES models, which can have di↵erent types of LPs and
events to simulate di↵erent types of entities and work, there
can be many types of messages and chares in Charm++
to trigger and perform di↵erent types of computation. As a
result, use of Charm++ provides a natural design and easy
implementation of ROSS, which is in part evidenced by the
smaller code base discussed in the next section.

4.2 Code Size and Complexity
Since the Charm++ runtime system relieves ROSS from

managing inter-process communication, network polling,
and scheduling computation and communication, the size
and complexity of the ROSS code base has been reduced
significantly. The communication module of the ROSS code
base, which contains a large amount of MPI code for con-
ducting data exchange e�ciently, has been removed. This
has resulted in a much smaller code base. In fact, the SLOC
count (significant lines of code count) has been reduced to
nearly half its original value, from 7, 277 in the MPI ver-
sion to 3, 991 in the Charm++ version. This is despite the
fact that the Charm++ version of ROSS also includes addi-
tional code required for enabling migration of LPs, a feature
that is not present in the MPI version. Moreover, since the
Charm++ runtime system manages scheduling of di↵erent
types of work units (LPs, PEs, communication, etc.), the
code base has been simplified since explicit scheduling of
these work units need not be done by ROSS.

4.3 Ease and Freedom of Mapping
Charm++ programmers are encouraged to design their

applications in terms of chares and the interactions between
them, instead of programming in terms of processes and
cores. This relieves the programmers from the burden of
mapping their computation tasks to processes and cores,
and thus allows them to divide work into units natural to the
computation. In ROSS, and in PDES in general, this means
that a model writer can focus solely on the behavior of the
LPs and map them to chares based on their interactions. As
a result, the model writer does not have to worry about clus-
tering the LPs to match the number of processes and cores
they may be running on now or in the future. Instead, they
can choose the number of chares that is most suitable to

their model, and let the runtime assign these chares to pro-
cesses based on their computation load and communication
pattern. A concrete example of this is shown in Section 5.2.4
for the dragonfly network model.

4.4 Features Enabled by CHARM++
In addition to the benefits described above, use of

Charm++ enables many new features that are di�cult or
infeasible to add to the MPI version of ROSS. Many of these
features are currently under development, so their perfor-
mance implications will be described in a future work.

4.4.1 Asynchronous GVT

As mentioned in Section 3.4, the computation of GVT
using ROSS’s current scheme has been simplified by the
Charm++ QD library. Moving forward, the flexibility pro-
vided by the adaptive and asynchronous nature of the run-
time system presents opportunities to further restructure
the GVT computation. Since computation and communi-
cation in Charm++ are asynchronous and non-blocking,
GVT computation can be adaptively overlapped with event
execution. An obvious optimization is to overlap the global
reduction performed to compute the GVT post quiescence
detection with event execution. A more complex scheme,
similar to the one described by Mattern [21], will enable con-
tinuous computation of the GVT in the background, without
the need for globally synchronizing all processes and inter-
mittently blocking event execution for detecting quiescence.

4.4.2 Migratability

One of the most important benefits of the object ori-
ented programming model of Charm++ is the ability to
migrate chares. The use of LP Chares to host data be-
longing to LPs enables migration of LPs during execution
of a simulation. In terms of implementation, this has been
achieved in the Charm++ version of ROSS by defining a
simple serializing-deserializing function for LP Chares using
Charm++’s PUP framework [4]. Migratability of LPs leads
to two new features in ROSS: automatic checkpoint-restart
and load balancing. When directed by ROSS to checkpoint,
the Charm++ runtime system migrates LPs to disk and the
simulation can be restarted as part of a new job.
Load Balancing: In complex, long-running models, load
imbalance and excess communication can hinder perfor-
mance and scalability. Dynamic load balancing algorithms
can help address this problem [10, 12] but may add com-
plexity to both the PDES engine, or to specific models. The
Charm++ runtime system eases this burden by making mi-
gratability a central tenet of its design. Migratability of LPs
enables the Charm++ runtime system to periodically re-
distribute LPs in order to balance load among processes and
reduce communication overhead. In the current implemen-
tation, the Charm++ version of ROSS is able to utilize
basic load balancing strategies provided by the runtime sys-
tem. Currently, we are working on developing PDES-specific
load balancing strategies so that better performance can be
obtained for complex models by utilizing extra information
provided by the PDES engine and model.

4.4.3 TRAM

One common characteristic of many PDES simulations is
communication of a high volume of fine-grained messages in
the form of events. These numerous fine-grained messages

can easily saturate the networks, and thus increase the sim-
ulation time. To optimize for such scenarios, Charm++
provides the Topological Routing and Aggregation Module
that automatically aggregates smaller messages into larger
ones [29]. In the past, Acun et al. [4] have already demon-
strated the benefits of using TRAM for PDES simulations
using a simple PDES mini-application. Based on those re-
sults, we plan to utilize TRAM to further improve the per-
formance of ROSS.

5. PERFORMANCE EVALUATION
Scalable performance is a major strength of ROSS that

has lead to its widespread use in conducting large scale sim-
ulations [23,24]. One of the primary reasons for the unprece-
dented event rate obtained by ROSS is its MPI-based com-
munication engine that has been fine-tuned over a decade
by the developers of ROSS. Hence, despite the benefits of
the Charm++ version of ROSS described in the previous
section, it is critical that it also provides performance com-
parable to the MPI version of ROSS. In this section, we
study the performance of the two versions of ROSS using
its most commonly evaluated models - PHOLD and Drag-
onfly [7,23]. For these comparisons, we have used the latest
version of ROSS as of December, 2015 [3].

5.1 PHOLD
PHOLD is one of the most commonly used models to eval-

uate the scalability of a PDES engine under varying com-
munication load. It consists of a large number of LPs all of
which perform similar work. At the beginning of a PHOLD
simulation, a fixed number of events are scheduled on every
LP. When an LP executes an event at time T

s

, it creates a
new event to be executed at time T

s

+ T

o

. The o↵set, T
o

,
equals the sum of a fixed lookahead, T

l

and a random delay
chosen using an exponential distribution. The new event is
sent either to a randomly selected LP with probability p,
or to the current LP with probability 1 � p. T

l

, p, and the
mean of the exponential distribution are all model input pa-
rameters. The only work done by an LP when processing
an event is the generation of a few numbers from a ran-
dom distribution, which results in PHOLD being extremely
fine-grained and communication intensive if p is large.

5.1.1 Porting Process

Minimal changes are required to execute the version of
PHOLD distributed with ROSS on top of the Charm++
version of ROSS. First, a few global variables used in
PHOLD, e.g. the number of LPs, should be removed since
they are provided by the Charm++ version of ROSS. As
such, storing the model specific versions of these variables is
redundant. Second, a new simple mapping function that re-
turns the type of LP based on it global ID is required. Since
PHOLD only has one type of LP, this mapper is a trivial
two-line function that always returns the same LP type.

5.1.2 Experimental Set up

All the experiments have been performed on Vesta and
Mira, IBM Blue Gene/Q systems at Argonne National Lab-
oratory. The node count is varied from 512 to 32, 768, where
64 processes are launched on each node to make use of all
the hardware threads. On BG/Q, due to disjoint partition-
ing of jobs and minimal system noise, event rate does not
change significantly across multiple trials.

����

��

��

��

��

���

���

��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��

������������������������

�������
�������
��������
��������

���������
���������
����������
����������

��

���

���

���

����

����

��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��

������������������������

��������
������
������

����������
��������
��������

Figure 4: Simulating PHOLD on up to two million processes: for all process counts, Charm++ version of ROSS provides up
to 40% higher event rate in comparison to the MPI version of ROSS.

In these weak-scaling experiments, the number of LPs is
fixed at 40 LPs per process (or MPI rank), each of which
receives 16 events at startup. The lookahead (T

l

) and the
simulation end time are set to 0.1 and 8, 192, respectively.
The percentage of remote events, (100 ⇤ p), is varied from
10% to 100% to compare the two versions of ROSS under
di↵erent communication loads.

5.1.3 Performance Results

Figure 4 compares the performance of PHOLD executed
using the MPI and Charm++ versions of ROSS on a wide
range of process counts. For both the versions, we observe
that the event rate drops significantly as the percentage of
remote events increase. This is expected because at a low
remote percentage, most of the events are self-events, i.e.
they are targeted at the LP which generates them. Hence,
the number of messages communicated across the network is
low. As the percentage of remote events increases, a higher
volume of events are communicated to LPs located on other
processes. Thus, the message send requires network com-
munication and the amount of time spent in communication
increases, which limits the observed event rate.

At low remote percentages (10 � 20%), both versions of
PHOLD achieve a similar event rate irrespective of the pro-
cess count being used. However, as the percentage of remote
events increase, the Charm++ version of ROSS consistently
achieves a higher event rate in comparison to the MPI ver-
sion of ROSS. At 100% remote events, the Charm++ ver-
sion outperforms the MPI version by 40%. This shows that
when communication is dominant, the runtime controlled
message-driven programming paradigm of Charm++ is
able to better utilize the given resources. At 50% remote
events, which is a more realistic scenario based on the drag-
onfly results from the next section, the Charm++ version
improves the event rate by approximately 28%. Figure 4
shows that these improvements in the event rate are ob-
served on all process counts, ranging from 32K processes
(512 nodes) to two million processes (32K nodes).

5.1.4 Performance Analysis

To identify the reasons for the performance di↵erences
presented in the previous section, we used several perfor-
mance analysis tools to trace the utilization of processes.
For the Charm++ version of ROSS, we use Projections,
a tracing tool built for Charm++ applications [18]. MPI-

Trace library [11] is used to monitor the execution of the
MPI version of ROSS. As a representative of other scenarios,
we present the analysis for execution of PHOLD on 32, 768
processes with 50% remote events.

Figure 5a shows that for the MPI version of ROSS, as
much as 45 � 50% of the time is spent on communica-
tion, while the rest is spent on computation. In this pro-
file, communication is time spent in MPI calls, which in-
clude MPI Isend, MPI Allreduce, and MPI Iprobe. A more
detailed look at the tracing data collected by MPI-Trace
shows that half of the communication time is spent in the
MPI Allreduce calls used when computing the GVT, while
the remaining half is spent in sending, polling for, and re-
ceiving the point-to-point messages. A major fraction of the
latter half is spent in polling the network for unexpected
messages from unknown sources.

In contrast to the MPI version of ROSS, Figure 5b shows
that the Charm++ version of ROSS spends approximately
75% of its time performing computation, while only the re-
maining 25% is spent in communication. In this profile,
communication encompasses sending and receiving of events,
global synchronization for the GVT, and any other over-
heads incurred by the runtime system while performing com-
munication tasks. Since Projections traces are integrated
with the Charm++ runtime system, Figure 5b provides a
more detailed breakdown of time spent doing computation.
Approximately 12% of the time is spent doing fossil col-
lection, while 55% of time is spent in the main scheduling
loop executing events. The remaining 8% is spent managing
events, which entails checking for causality violations and
performing necessary rollbacks, as well as pushing received
events onto the pending events heap of the receiving LP.

The Charm++ version of ROSS is able to reduce the
time spent in communication due to three reasons. First,
Charm++ is a message-driven paradigm, so ROSS does not
need to actively poll the network for incoming events. This
saves a significant fraction of time since Charm++ performs
such polling in an e�cient manner using lower level con-
structs. Second, the GVT is computed using a highly opti-
mized quiescence detection mechanism in Charm++, which
is based on use of asynchronous operations. Third, since the
runtime system schedules execution in Charm++, it is able
to overlap communication and computation automatically.
Figure 6 shows the number of messages received over time
during event execution between two consecutive GVT com-

��

���

���

���

���

����

�� ��� ���� ���� ���� ����

�
��
��
��
��
��
��
�

������������
����������������������������������

�������������

(a) Usage profile of MPI ROSS

��

���

���

���

���

����

�� ��� ���� ���� ���� ����

�
��
��
��
��
��
��
�

������������
�����������������
���������������

����������������
�������������

(b) Usage profile of Charm++ ROSS

Figure 5: PHOLD model at 50% remote events: Charm++ version of ROSS spends 20 � 25% time in communication, but
MPI version of ROSS communicates for 45� 50% of execution time.

Figure 6: Charm++ version of ROSS: communication is spread uniformly over the period of event execution between GVT
computation.

putations in the Charm++ version of ROSS. It shows that
throughout execution, messages are actively being handled
by the Charm++ runtime system. The runtime system fre-
quently schedules the communication engine, which ensures
fast overlapping communication progress.

5.2 Dragonfly
The dragonfly model used in this section, which is similar

to the one described in [23], allows us to study the perfor-
mance of the two ROSS versions on a real application model.
The LPs in the model are of three types: routers, terminals,
and MPI processes. Three di↵erent built in communication
patterns are used to drive the simulation from the MPI pro-
cesses: 1) Uniform random - MPI ranks send messages to
randomly selected partners, 2) Transpose - every MPI rank
communicates with the MPI rank situated diagonally op-
posite to it if the ranks are arranged in a 2D grid, and 3)
Nearest Nbr - all MPI ranks connected to a given router send
messages to other MPI ranks connected to the same router
only. As is apparent from their descriptions, these patterns
results in completely di↵erent types of communication for
the simulation engine.

5.2.1 Porting Process

Although, the dragonfly model is a much more complex
model than PHOLD, the porting process is still very similar

to the one we described for PHOLD and involves minimal
coding changes. The main di↵erence is the use of a model
specified mapping of LPs to LP Chares, instead of the default
block mapping used by PHOLD. This necessitated a few key
changes in the code. First, a few global variables used for
mapping in the MPI version of ROSS are tied to the MPI
processes, e.g. the variable that stores the number of LPs

per MPI process. These variables have been either removed,
or changed to be contained in the LP Chares. Second, the
mapper that maps LPs to MPI processes is changed to map
LPs to LP Chares instead. This change is mainly an API
change, as the mapping logic itself remains the same. Third,
a new mapper that returns the LP types based on their ID
has been added.

5.2.2 Experimental Set up

Experiments for the dragonfly model have been done on
Mira and Vulcan, a IBM Blue Gene/Q system at Lawrence
Livermore National Laboratory. Allocations of sizes 512
nodes to 8, 192 nodes have been used, with 64 processes be-
ing executed on every node. As mentioned above, due to the
nature of BG/Q allocations, performance statistics had min-
imal variability between trials. Two di↵erent configurations
of the dragonfly network are simulated on these supercom-
puters for the three tra�c patterns described above.

���

�

�

��� ��� ����

��
��
�
��
��
��
���
��
��
��
��
��
��
��
��
��
��

������ �� ���������

��� ������� ����� �������

����

���

�

�

��� ��� ����

��
��
�
��
��
��
���
��
��
��
��
��
��
��
��
��
��

������ �� ���������

��� ��������� ����� ���������

����

���

�

�

�

��� ��� ����

��
��
�
��
��
��
���
��
��
��
��
��
��
��
��
��
��

������ �� ���������

��� ������� ��� ����� ������� ���

Figure 7: Performance comparison for a dragonfly with 256K routers and 10M terminals: when strong scaling is done, the
Charm++ version of ROSS outperforms the MPI version.

�

�

�

�

��

��� ���� ���� ����

��
��
�
��
��
��
���
��
��
��
��
��
��
��
��
��
��

������ �� ���������

��� ������� ����� �������

�

�

�

�

��

��

��� ���� ���� ����

��
��
�
��
��
��
���
��
��
��
��
��
��
��
��
��
��

������ �� ���������

��� ��������� ����� ���������

����

���

�

�

�

�

��

��

��� ���� ���� ����

��
��
�
��
��
��
���
��
��
��
��
��
��
��
��
��
��

������ �� ���������

��� ������� ��� ����� ������� ���

Figure 8: Strong scaling of a dragonfly with 2M routers and 160M terminals: for all tra�c patterns, the Charm++ version
of ROSS scales to 524K processes and provides up to 4⇥ speed up over the MPI version of ROSS.

The first configuration of the dragonfly uses 80 routers
per group, with 40 terminals and 40 global connection per
router. This results in a system with 256, 080 routers and
10, 243, 200 terminals being simulated, with one MPI process
per terminal. The second larger configuration consists of 160
routers per group, with 80 terminals and 80 global connec-
tions per router. This system contains 2, 048, 160 routers
and 163, 852, 800 terminals in total.

5.2.3 Performance Results

The 256K router configuration of dragonfly is simulated
on 32K to 131K processes. Figure 7 shows the observed
event rate for these strong scaling experiments using all three
tra�c patterns. It can seen that for each tra�c pattern, the
Charm++ version of ROSS outperforms its MPI counter-
part. For two of the tra�c patterns, Uniform random and
Nearest Nbr, the Charm++ version provides performance
gains up to 131K processes. In contrast, the MPI version
sees a dip in performance after 65K processes. It is worth
noting that at 131K processes, we are simulating the drag-
onfly at its extreme limits since there are only one to two
routers per process. Though the number of terminals is
much higher, a large fraction of communication is directed
towards the routers in a dragonfly simulation, which makes
it the primary simulation bottleneck.

For the larger 2M router configuration, Figure 8 shows
distinct patterns in the performance of both versions. At ev-
ery data point, the Charm++ version achieves significantly
higher event rate than the MPI version. At 524K processes,
an event rate advantage of 4⇥ is observed for the Transpose
pattern. For the Uniform random pattern, 2⇥ improvement
in the event rate is observed. The most extreme case is the
Nearest Nbr pattern where we see the Charm++ version
achieving more than 2⇥ the event rate of the MPI version
at 65K processes. This advantage increases to 5⇥ at 262K

MPI Charm
Uniform 51.40% 33.99%

Transpose 34.80% 5.97%
Nearest Nbr 43.11% 0.26%

Table 1: Dragonfly remote event percentage.

processes, and skyrockets to 60⇥ at 524K processes, mainly
because of the drop in the performance of the MPI version.

5.2.4 Performance Analysis

To analyze the performance for the dragonfly model, we
look at two key factors: remote event percentage and ef-
ficiency. In these experiments, both these factors are im-
pacted by how LP mapping is performed in the dragonfly
model. The mapping in both versions of the dragonfly model
is a modified linear mapping that maps each LP type sep-
arately. Each execution unit (MPI process in the MPI ver-
sion, or LP Chare in the Charm++ version) is assigned ap-
proximately the same number of router LPs, terminal LPs,
and MPI LPs. To do so, LPs are assigned IDs to preserve
locality. If there are x terminals per router, then the x termi-
nals connected to the first router are given the first x IDs,
followed by the terminals connected to the second router,
and so on. A similar method is taken for assigning the IDs
to MPI LPs.

In an ideal scenario, when the number of routers LPs (and
hence the number of terminal and MPI LPs) is a multiple of
the number of processes, the above mentioned ID assignment
guarantees that terminals and MPI ranks that connect to
a router are mapped to the same process/execution unit.
However, when the number of routers is not a multiple of the
number of processes, an even distribution of terminal and
MPI LPs to all processes leads to them being on processes
di↵erent from their router. This results in bad performance
for the MPI version of ROSS.

��

��

��

��

��

���

��� ���� ���� ����

��
��
��
��
�

������ �� ���������

��� �������
����� �������

��

��

��

��

��

���

��� ���� ���� ����

��
��
��
��
�

������ �� ���������

��� ���������
����� ���������

��

��

��

��

��

���

��� ���� ���� ����

��
��
��
��
�

������ �� ���������

��� ������� ���
����� ������� ���

Figure 9: E�ciency comparison: as the process count increases, the e�ciency of the Charm++ version of ROSS decreases
at a much slower rate in comparison to the MPI version.

In the Charm++ version of ROSS this issue is easy to
handle. Since the number of LP Chares can be chosen at run-
time, we can always ensure that terminal LPs and MPI LPs
are co-located with their routers on a single LP chare. This
advantage of the Charm++ version of ROSS follows from
the fact that Charm++ frees the programmer from having
to worry about the specifics of the hardware the application
is executed on. Instead, the work units of a Charm++ ap-
plication are the chares, and we have the flexibility to set the
number of chares to yield the best performance. In this par-
ticular experiment, the best performance was achieved when
there was exactly one router (and it’s associated terminals
and MPI processes) per chare.

Table 1 provides empirical evidence for the issue described
above by presenting the average remote communication for
each of the tra�c patterns simulated in the dragonfly model.
Here, remote communication is the percentage of committed
events that had to be sent remotely. It does not include
anti-events, or remote events that were rolled back. It is
easy to see that the Charm++ version requires less remote
communication for every pattern, since many of the events
are sent among LPs within the same chare. This is especially
evident in the Nearest Nbr pattern where the Charm++
version has less than 1% remote events in contrast to 43%
remote events for the MPI version.

The mapping and its impact on remote events also di-
rectly a↵ects the e�ciency of each model. Figure 9 shows
the e�ciency for the di↵erent tra�c patterns simulated in
the dragonfly model. Here, e�ciency is calculated as 1� R

N

where R is the number of events rolled back, and N is the
total number of events executed. We see that the e↵ect is
particularly pronounced for the Nearest Nbr tra�c pattern.
In the Charm++ version, nearly all events are sent locally,
so there is very little chance for causality errors to occur. Be-
cause of this theCharm++ version maintains 99% e�ciency
at all process counts, whereas the MPI version drops signifi-
cantly in e�ciency as the process count increases, eventually
reaching an e�ciency of �705% at 524K processes.

6. CONCLUSION
In this paper we have shown the suitability of Charm++,

a parallel adaptive runtime system, for designing and im-
plementing PDES engines and models. The re-targeting of
ROSS from MPI has simplified and reduced the ROSS code
base, while simultaneously enabling new features such as
asynchronous GVT computation and dynamic load balanc-
ing. Furthermore, the Charm++ version of ROSS provides
significantly better performance in comparison to its MPI
counterpart. In the paper, we showed that as the commu-

nication volume increases in the PHOLD benchmark, the
gap in the performance of Charm++ and MPI version also
increases. For the dragonfly model, irrespective of the com-
munication pattern being simulated, the Charm++ version
not only provides higher event rate, it also scales to higher
core counts. Moreover, due to the features discussed in this
paper (checkpointing and load balancing), the Charm++
version of ROSS is also better suited for simulating dynamic
and complex models with long run times.

7. ACKNOWLEDGMENTS
This work was performed under the auspices of the U.S.

Department of Energy by Lawrence Livermore National
Laboratory (LDRD project 14-ERD-062 under Contract
DE-AC52-07NA27344). This work used resources of the
Argonne Leadership Computing Facility at Argonne Na-
tional Laboratory, which is supported by the O�ce of Sci-
ence of the U.S. Department of Energy under contract DE-
AC02-06CH11357 (project allocations: PEACEndStation,
PARTS, CharmRTS). This work also used resources from
the Blue Waters sustained-petascale computing project,
which is supported by the National Science Foundation
(award number OCI 07-25070) and the state of Illinois.

8. REFERENCES
[1] The charm++ parallel programming system manual.

http://charm.cs.illinois.edu/manuals/html/charm++/
manual.html, visited 2016-3-20.

[2] MPI: A Message Passing Interface Standard. In MPI
Forum. http://www.mpi-forum.org/, visited
2016-03-20.

[3] Ross source code on github.
https://github.com/carothersc/ROSS, visited
2016-03-20.

[4] B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon,
E. Mikida, X. Ni, M. Robson, Y. Sun, E. Totoni,
L. Wesolowski, and L. Kale. Parallel Programming
with Migratable Objects: Charm++ in Practice. SC,
2014.

[5] P. D. Barnes, Jr., C. D. Carothers, D. R. Je↵erson,
and J. M. LaPre. Warp speed: executing time warp on
1,966,080 cores. In Proceedings of the 2013 ACM
SIGSIM conference on Principles of advanced discrete
simulation, SIGSIM-PADS ’13, pages 327–336, New
York, NY, USA, 2013. ACM.

[6] D. W. Bauer Jr., C. D. Carothers, and A. Holder.
Scalable time warp on blue gene supercomputers. In
Proceedings of the 2009 ACM/IEEE/SCS 23rd

Workshop on Principles of Advanced and Distributed
Simulation, pages 35–44, Washington, DC, USA, 2009.
IEEE Computer Society.

[7] C. D. Carothers, D. Bauer, and S. Pearce. ROSS: A
high-performance, low-memory, modular Time Warp
system. Journal of Parallel and Distributed
Computing, 62(11):1648–1669, 2002.

[8] C. D. Carothers and K. S. Perumalla. On deciding
between conservative and optimistic approaches on
massively parallel platforms. In Winter Simulation
Conference’10, pages 678–687, 2010.

[9] C. D. Carothers, K. S. Perumalla, and R. M.
Fujimoto. E�cient optimistic parallel simulations
using reverse computation. ACM Trans. Model.
Comput. Simul., 9(3):224–253, July 1999.

[10] M. Choe and C. Tropper. On learning algorithms and
balancing loads in time warp. In Workshop on Parallel
and Distributed Simulation, pages 101–108, 1999.

[11] I.-H. Chung, R. E. Walkup, H.-F. Wen, and H. Yu.
MPI tools and performance studies—MPI
performance analysis tools on Blue Gene/L. In SC
’06: Proceedings of the 2006 ACM/IEEE conference
on Supercomputing, page 123, New York, NY, USA,
2006. ACM Press.

[12] E. Deelman and B. K. Szymanski. Dynamic load
balancing in parallel discrete event simulation for
spatially explicit problems. In Workshop on Parallel
and Distributed Simulation, pages 46–53, 1998.

[13] R. Fujimoto. Parallel Discrete Event Simulation.
Comm. of the ACM, 33(10):30–53, 1990.

[14] F. Gygi, E. W. Draeger, M. Schulz, B. R. de Supinski,
J. A. Gunnels, V. Austel, J. C. Sexton, F. Franchetti,
S. Kral, C. W. Ueberhuber, and J. Lorenz. Large-scale
electronic structure calculations of high-z metals on
the bluegene/l platform. In Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, SC ’06,
New York, NY, USA, 2006. ACM.

[15] N. Jain, A. Bhatele, J.-S. Yeom, M. F. Adams,
F. Miniati, C. Mei, and L. V. Kale. Charm++ & MPI:
Combining the best of both worlds. In Proceedings of
the IEEE International Parallel & Distributed
Processing Symposium (to appear), IPDPS ’15. IEEE
Computer Society, May 2015. LLNL-CONF-663041.

[16] N. Jain, E. Bohm, E. Mikida, S. Mandal, M. Kim,
P. Jindal, Q. Li, S. Ismail-Beigi, G. Martyna, and
L. Kale. Openatom: Scalable ab-initio molecular
dynamics with diverse capabilities. In International
Supercomputing Conference, ISC HPC ’16 (to appear),
2016.

[17] D. Je↵erson and H. Sowizral. Fast Concurrent
Simulation Using the Time Warp Mechanism. In
Proceedings of the Conference on Distributed
Simulation, pages 63–69, July 1985.

[18] L. V. Kale, G. Zheng, C. W. Lee, and S. Kumar.
Scaling applications to massively parallel machines
using projections performance analysis tool. In Future
Generation Computer Systems Special Issue on:
Large-Scale System Performance Modeling and
Analysis, volume 22, pages 347–358, February 2006.

[19] N. Liu, C. Carothers, J. Cope, P. Carns, R. Ross,
A. Crume, and C. Maltzahn. Modeling a

leadership-scale storage system. In Proceedings of the
9th international conference on Parallel Processing
and Applied Mathematics - Volume Part I, PPAM’11,
pages 10–19, Berlin, Heidelberg, 2012. Springer-Verlag.

[20] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross,
G. Grider, A. Crume, and C. Maltzahn. On the role of
burst bu↵ers in leadership-class storage systems. In
Proceedings of the 2012 IEEE Conference on Massive
Data Storage, Pacific Grove, CA, Apr. 2012.

[21] F. Mattern. E�cient algorithms for distributed
snapshopts and global virtual time approximation.
Journal of Parallel and Distributed Computing,
18:423–434, 1993.

[22] H. Menon, L. Wesolowski, G. Zheng, P. Jetley,
L. Kale, T. Quinn, and F. Governato. Adaptive
techniques for clustered n-body cosmological
simulations. Computational Astrophysics and
Cosmology, 2(1):1–16, 2015.

[23] R. B. R. Misbah Mubarak, Christopher D. Carothers
and P. Carns. Modeling a million-node dragonfly
network using massively parallel discrete-event
simulation. SCC, SC Companion, 2012.

[24] R. B. R. Misbah Mubarak, Christopher D. Carothers
and P. Carns. A case study in using massively parallel
simulation for extreme-scale torus network codesign.
In Proceedings of the 2nd ACM SIGSIM PADS, pages
27–38. ACM, 2014.

[25] M. Mubarak, C. D. Carothers, R. Ross, and P. Carns.
Modeling a million-node dragonfly network using
massively parallel discrete-event simulation. In High
Performance Computing, Networking, Storage and
Analysis (SCC), 2012 SC Companion,, pages 366–376.
IEEE, 2012.

[26] D. M. Nicol. The cost of conservative synchronization
in parallel discrete event simulations. J. ACM.

[27] J. Phillips, G. Zheng, and L. V. Kalé. Namd:
Biomolecular simulation on thousands of processors.
In Workshop: Scaling to New Heights, Pittsburgh, PA,
May 2002.

[28] A. B. Sinha, L. V. Kale, and B. Ramkumar. A
dynamic and adaptive quiescence detection algorithm.
Technical Report 93-11, Parallel Programming
Laboratory, Department of Computer Science ,
University of Illinois, Urbana-Champaign, 1993.

[29] L. Wesolowski, R. Venkataraman, A. Gupta, J.-S.
Yeom, K. Bisset, Y. Sun, P. Jetley, T. R. Quinn, and
L. V. Kale. TRAM: Optimizing Fine-grained
Communication with Topological Routing and
Aggregation of Messages. In Proceedings of the
International Conference on Parallel Processing, ICPP
’14, Minneapolis, MN, September 2014.

[30] T. L. Wilmarth. POSE: Scalable General-purpose
Parallel Discrete Event Simulation. PhD thesis,
Department of Computer Science, University of
Illinois at Urbana-Champaign, 2005.

[31] J.-S. Yeom, A. Bhatele, K. R. Bisset, E. Bohm,
A. Gupta, L. V. Kale, M. Marathe, D. S. Nikolopoulos,
M. Schulz, and L. Wesolowski. Overcoming the
scalability challenges of epidemic simulations on blue
waters. In Proceedings of the IEEE International
Parallel & Distributed Processing Symposium, IPDPS
’14. IEEE Computer Society, May 2014.

