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Abstract

Parallel programming has always been difficult due to the complexity of hardware and the

diversity of applications. Although significant progress has been achieved over the years,

attaining high parallel efficiency on large supercomputers for various applications is still

quite challenging. As we go beyond the current scale of computers to those with peak

capacities of an ExaFLOP/s, it is clear that an introspective and adaptive runtime system

(RTS) will be critical to reduce programmers’ tuning efforts by automatically handling the

complexities of applications and machines. This is the motivation for my research on a

Performance-analysis-based Introspective Control System - PICS. PICS intelligently steers

parallel applications and runtime system configurations to achieve desired goals by utilizing

expert knowledge to analyze performance data and adaptively reconfiguring applications.

This thesis designs a holistic introspective control system for automatic performance tun-

ing that combines the real-time performance analysis and performance steering to effectively

automate the optimization. A few techniques are explored to make the parallel runtime

system and applications more adaptive and controllable. Control points are defined for

applications to interact with PICS. Decision tree based automatic performance analysis is

implemented to significantly reduce the search space of multiple configurations. Parallel

evaluation and sampling techniques are exploited to reduce the overhead of the system and

to improve its scalability. In addition, the result of automatic performance analysis can

be visualized to help developers manually tune their applications. The utility of PICS is

demonstrated with several benchmarks and real-world applications.
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Chapter 1
Introduction

Modern parallel computer systems are becoming extremely complex because of complicated

network topology, hierarchical storage system and heterogeneous processing units, etc. On

the other hand, physics simulation models are expanded to match experimental results,

which greatly increase the complexity of computation. Although computer scientists focus

on computer models and implementation while physical scientists concentrate on physics

models, they share a common goal - to maximize their application performance using avail-

able resources. This naturally raises the question of how to obtain the best performance of

applications on the existing and future platforms.

In the past, the ideal solution for parallel programming sought automatic parallelization,

that is to let compiler automatically generate an efficient parallel program from a sequential

program without involving any efforts of the developers. Despite decades of work by com-

piler researchers, automatic parallelization has only achieved very limited success [1]. This

is mainly due to the high complexity of compiler, the diversity of parallel programs and also

the low efficiency of generated code. Nowadays, the mainstream parallel programming lan-

guages remain either explicitly parallel or partial implicitly parallel. For example, the most

popular parallel programming model – MPI (Message Passing Interface [2, 3]) automates

very little. Developers need to take care of every detail of parallelization. OpenMP [4] is

the most widely used parallel programming model of the partial parallelization, in which

the developers provide the compiler directives for partial automatic parallelization. Besides
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these two parallel programming models, the other major ongoing work tries to provide more

features in programming models and underlying runtime systems to reduce the program-

mers’ burden as well to improve the parallel performance. For example, communication

optimization in Partitioned Global Address Space (PGAS) is supported by GASNET run-

time [5]. Cilk is designed as an efficient runtime system by incorporating the work stealing

scheduler [6,7]. The new popular languages of Cray Chapel [8] and IBM X10 [9] both have

their own powerful runtime systems to do partial automation. The research in this thesis

belongs to this category of parallel programming.

The research in this thesis aims at improving both the parallel program performance and

productivity. I emphasize two principles to achieve this goal. The first principle is that

the reasonable application-specific knowledge provided to a runtime system may greatly

reduce the complexity of the runtime system and improve the overall performance. For

example, when tuning an application, it can be quite useful for the runtime system to

know the start and the end of one simulation time step. It is complicated and potentially

inaccurate for the runtime system to automatically detect the execution pattern of the

application. However, it is easy for application developers to provide such information

to the runtime system. Therefore, we believe application developers should provide some

hints to help the runtime system to make decisions to improve performance. Of course,

these hints should be designed such that they do not increase too much of the developers’

programming burden. The second principle is that a powerful runtime system is crucial to

enhance the performance of programs. This is due to that the runtime system has both the

knowledge about application execution behaviors and the underlying architectures. This

empowers the runtime system to make better decisions to improve performance. Overall,

we believe that the best performance can be only achieved by efforts of both applications

developers and the underlying runtime system of the programming models.

Based on the above two principles, this thesis proposes a design of an introspective control

system that supports dynamic performance steering. The application developers provide

tuning knobs and related knowledge to guide the control system. The tuning knobs are

represented as control points, which are the interface between the control system and the
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applications or runtime system. Meanwhile, the control system collects the program be-

haviors, analyzes the performance and dynamically steer the program execution. Expertise

knowledge rules based performance analysis are applied to accelerate the process of au-

tomatic performance steering at runtime. The research also investigates how the parallel

runtime system and applications can become more adaptive and controllable by exposing

abstractions to the introspective control system. In order to make approach more feasible

in practice, scalable techniques are developed so as to handle large-scale run analysis and

steering. We have developed PICS - Performance-analysis-based Introspective Control Sys-

tem - to integrate these techniques [10]. We demonstrate the utility of this approach with

several applications and show its effectiveness.

A few examples are discussed below to show how the overall performance is affected

by different configurations of applications and the runtime system. This motivates the

necessity and importance of the performance steering.

1.1 Motivation

The first example involves the grain size of parallel tasks, which greatly affects the paral-

lel performance. This is a common problem in parallelizing applications, including both

iterative scientific applications and state space search applications. In general, when the

tasks are too large-grained, there is not enough parallelism to keep all resources busy. As

a result, resources are idle, leading to performance degradation. On the other hand, when

the tasks are too fine-grained, the overhead associated with each task becomes too high,

leading to excessive useless work. The overhead usually includes the time of spawning

tasks, scheduling tasks, communication, etc. Therefore, the grain size should be within a

reasonable range to obtain good performance. Therefore, choosing the optimal grain size

is necessary and useful.

Figure 1.1 shows how the performance varies with the grain size in two types of parallel

problems. Figure 1.1(a) is the result for solving 18-Queen problem using different values,

which is the depth threshold of executing sequential tasks versus parallel tasks. It can

be easily seen that the optimal or close-to-optimal performance is achieved only with a
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Figure 1.1: Performance variance due to grain size
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few configurations while most of other configurations provide very bad performance. This

problem represents the category of tree-structured state space search problems.

Figure 1.1(b) shows the execution time of one step of solving 1024∗1024∗1024 Jacobi3D

problem using different sub blocks running on 512 processor-cores. When the number of

sub blocks is less than 512, insufficient parallelism leads to larger amount of idle time. On

the other end, excessive sub blocks also lead to bad performance due to high overhead.

Both examples demonstrate the importance of choosing the proper grain size. The grain

size problems are also found in real-world scientific applications. For example, in molecular

dynamics applications, the number of atoms in each task can greatly affect the performance

when running on different number of processors. The complexity of real-world applications

makes it even more challenging to find the optimal grain size.

The above example showed how the grain size affects the overall performance by affecting

the degree of parallelism and the ratio of overhead. Moreover, the grain size can also affect

performance in the means of cache effects. Figure 1.2 demonstrates such effect by running

a Jacobi3D example on one core. It shows the execution time of one iteration using various

decomposition schemes. Compared with only one single task, using more sub-tasks achieves

better performance because the data of each block fits in cache. Besides the grain size, many

other factors may affect the parallel performance, including memory contention, network

contention, etc. Depending on the specific problem, these affects can interleave together

and create even more challenges.

Not only computation, the configurations in communication can also significantly affect

the overall performance. Figure 1.3 shows the execution time of transferring 1M bytes

data by splitting into different small messages. In Figure 1.3(a), only communication is

performed without any computation. It is seen that with the number of small messages

increasing, the total time increases too. This is due to the latency of small messages so

that the network bandwidth can not be fully utilized. As a result, transferring the data

in one big chunk provides the best performance. In contrast, Figure 1.3(b) demonstrates

the case of performing both computation and communication on the sender and receiver

sides. Before data is sent out, the associated computation is carried out. Meanwhile when
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data is received, computation is performed too. In this way, by splitting big data into small

chunks, the computation can overlap with communication. This explains for the first part.

When the number of chunks increases, the performance becomes better. However after

a threshold, the overhead of communication over-weighs the benefit of overlapping so the

performance drops. For the above two cases of transferring 1M bytes data, choosing the

optimal number of chunks is a question. It needs to be adapt to the specific execution.

This requires runtime automatic tuning.

Not only the application configurations can affect performance, but various configurations

in the the runtime systems can also affect the overall performance. The collectives algo-

rithms in MPI runtime are such examples [11]. Depending on the message size, the number

of processors, etc, the runtime system is configured to choose different routing algorithms to

achieve the best performance. Traditionally, the configurations for the runtime system are

chosen based on a priori knowledge from experimental results. However, with the systems

becoming more complex, the best configurations that work at a small scale might not work

well at the large scale. Also the best configurations for some problems might not perform

well for the others. For example, for the spanning tree algorithm used in reduction, the best

branching factors vary for different application inputs, which is illustrated in Figure 1.4. It

shows the time step of running Jacobi2D on 1024 processor-cores using different reduction
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branching factors. It can be seen that the optimal performance is almost 50% better than

the worst.

Moreover, nowadays the hardware has evolved to be more controllable and adjustable.

For example, the CPU frequency and memory frequency are tunable on Intel Sandy Bridge

processors to satisfy power constraint or to maximize energy efficiency. Related work can be

found in [12], where the authors illustrate how to reduce the overall energy cost by lowering

CPU frequency. This makes it very practical to steer a runtime system for hardware to

adapt to the applications to achieve the best performance.

1.2 Statement and Scope of Thesis

The thesis explores the hypothesis that, given a rich adaptive/introspective runtime system,

and given a set of control points in the application as well as in the runtime system itself,

it is possible to design a control system that can optimize application performance during

execution.

The thesis investigates to steer the parallel applications running on large-scale supercom-

puters. The applications include both scientific applications with time steps and the state

space search applications with tree structures. The runtime system underneath the appli-
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cation has the features of over-decomposition, adaptivity, and migratablity. The hardware

is mostly the large-scale supercomputers with multi-cores, high network bandwidth and

low latency. Interconnection topology might also have impact on performance. Details are

discussed in chapter 2.

1.3 Contribution of Thesis

In this thesis, an introspective control system has been developed to steer both runtime

systems and applications. With the help of certain application specific knowledge, the con-

trol system can automatically find the optimal or close-to-optimal configuration to improve

performance. This leads to the following research fronts:

1. This thesis studies the techniques of an introspective control system that supports

dynamic performance steering. One major focus of this thesis is to study various

rules to perform automatic analysis to identify problems. The depth and width of the

expertise system significantly affects the overall performance.

2. We categorize the applications and propose their corresponding control points to

reconfigure the applications. We identify many control points within the runtime

system itself, and develop techniques for tuning them to optimize some aspect of the

performance.

3. We exploit a decision tree based scheme that identifies program characteristics and

correlate them to the effects of control points, so as to decide which control points to

tune and in which direction. This is an attempt to eliminate wasteful combinatorial

search over parameter space. The results of decision tree based analysis are used not

only for performance tuning, but also can be visualized so as to guide developers to

understand and manually tune their applications.

4. Various techniques including partial collection, parallel evaluations are proposed and

developed to improve the scalability of the system.

9



5. All the techniques are implemented in the PICS framework. How the control system

helps enhance real-world application performance is illustrated and discussed. PICS

is evaluated in the context of synthetic benchmarks and real-world applications.

10



Chapter 2
Background

Nowadays more and more research focuses on the runtime system to improve parallel pro-

gramming productivity and performance. The PICS is built for programming models with

the runtime systems. The methodology in this thesis can be applied in various runtime

system. However, in my research I focus on Charm++, which has been existing for almost

30 years and proven to be efficient and useful in real world applications. This chapter first

describes this runtime system. One important part in PICS is to trace the performance

data. The general tracing framework in Charm++ is presented then. Multiple bench-

marks and applications are used to test various features of PICS in later chapters. The

background of several parallel applications is also discussed.

2.1 Charm++ Runtime System

Charm++ [13] is a machine independent parallel programming language that runs on

most shared and distributed memory machines. It employs an object-oriented approach

to parallel programming. The programmer decomposes the problem into collections of

objects that embody its natural elements. These objects are migratable and message-

driven. Their number is independent of, but typically much larger than, the number of

physical processors used to run the application. Figure 2.1(a) shows the user’s view of

objects while Figure 2.1(b) is the mapping of objects to physical resources. This over-

subscription of processors is termed object-based virtualization. The migratable objects are

11



(a) User’s view of objects (b) Machine’s view of objects

Figure 2.1: Automatic mapping in Charm++

assigned to processors by the underlying adaptive runtime system. Objects communicate

by asynchronously invoking an entry method on the callee object. Together, asynchronous

messaging and object-based virtualization enable the dynamic overlap of communication

and computation: a processor may overlap the messaging latency with not just the sending

object’s succeeding computation, but also with useful computation of other objects on that

processor.

In Charm++’s execution model, each processor maintains a queue of messages to be

delivered to Charm++ objects placed within it. This is called the incoming queue. There

is a corresponding outgoing queue that holds messages generated by the processor’s objects.

The main control loop can be described simply as follows: a scheduler repeatedly picks a

message from the incoming queue and retrieves the callee object and the entry method

associated with the message; the entry method is then executed and the scheduler will pick

the next message from the queue. Note that the entry method is executed to completion

and is non-preemptive.

In order to control the applications, it is desirable for a runtime to be able to observe

application behaviors and control applications. Charm++ provides such features, since

Charm++ has the full control of program execution, including scheduling, communication

and memory management. Therefore, it is feasible for the runtime to observe all the program

activities and steer both the runtime and application behaviors. This programming model

and runtime system has the following features.
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Over-decomposition: Usually the problem is divided into more tasks than the phys-

ical resources. This has the advantages of better data locality, better task to resource

mapping, and enables other features like load balancing. On the other hand, due to this

over-decomposition, it naturally raises the questions of the optimal over-decomposition ra-

tio. This makes automatic steering of grain size possible and necessary.

Migratablity: During the execution, tasks can migrate from one resource to the others.

This makes dynamic load balancing, check pointing possible. This feature also makes it

challenging to decide how and when the tasks are migrated in order to achieve the best

performance.

Asynchrony: The computation continues without explicitly waiting for the remote tasks

starting or finishing. The whole execution is driven by available messages with data inside.

There is a central scheduling to be responsible for the task execution. Therefore, it raises

the question of how tasks are scheduled. For example whether they are scheduled in FIFO

or LIFO or priority order. The control system can help make the decision.

2.2 Control Point System

The control points system in Charm++ is first proposed and developed in Dooley’s re-

search [14]. His thesis describes the automatic tuning mechanisms within Charm++. He

develops a preliminary framework that automatically reconfigures the behavior or structure

of the program through one control points. Multiple benchmarks are studied to show that

control points are useful mechanisms for dynamically reconfiguring applications to improve

their performance.

This thesis is an extension with three significant novelties. The first novelty of this

thesis is that the control system is based on decision tree based automatic performance

analysis. The performance analysis results provide significant insight about what to steer

and how to steer. The deeper the analysis is performed, the easier and more accurate the

steering will be. Moreover, the rules to construct the decision tree are written in a plain

text file. That makes expansion of the rules easy and clear. Therefore, one significant

difference of this work is to perform steering based the expertise performance analysis
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Listing 2.1: The core of the runtime scheduler

while(1) {
msg = CsdNextMessage(&state);
if (msg!=NULL) { /*A message is available-- process it*/
if (isIdle) {isIdle=0;CsdEndIdle();}
BEGIN_EXECUTION()
SCHEDULE_MESSAGE
END_EXECUTION()

}
else
{
if (!isIdle)
{
isIdle=1;
CsdBeginIdle();

}
else
CsdStillIdle();

}
}

system. The second difference is that the steering framework can be applied to both of

the application reconfiguration and runtime reconfiguration while most other work only

reconfigures applications. Thirdly, this thesis proposes and develops scalable approaches

to handle large-scale runs. The performance analysis and steering can be carried out in

scalable way. The configurations of control points can be evaluated in parallel. This is

discussed in detail in Chapter 6.

2.3 Charm++ Tracing Framework

In order to perform analysis of execution, performance data need to be collected. Our

approach is based on the tracing framework in the runtime system. As described earlier,

the runtime system takes full control of communication, task execution, memory allocation,

etc. The main code of scheduler is shown 2.1. Therefore, it is possible to observe different

behaviors of applications and trace the performance data. By inserting the tracing code in

the runtime system, we are able to gather the information we need. The following events

are important to our performance analysis. The related code is inserted in the runtime

system.

Begin Idle, End Idle: when there is no available task to be scheduled, the system
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begins idle. The schedule keeps polling the task queue. When a task becomes ready, the

idle time ends. The total idle time for this period is marked as the time from the time of

begin idle event. The higher the idle time is, the worse the overall performance is. One

goal of performance optimization is to minimize the total idle time.

Begin Execution, end execution : When a message is picked up for execution, a

Begin Execution event is recorded. The related information includes the time, the function

name, the associated object id, etc. Besides the computation, the data in the message is

also recorded including data bytes, sender. When the task associated with the message is

finished, an End Execution event is recorded. The time between these two event is the time

of task execution.

Overhead : This includes anytime that is neither idle time nor execution time is included

in the overhead spending in the runtime. The overhead in the runtime system includes

the communication overhead, the queuing overhead, scheduling overhead, all the software

related overhead. The goal of performance optimization is to minimize the overhead.

Memory allocation : All the message allocation is done by calling internal CmiAlloc.

This enable memory tracing to record how much memory is used.

The above are the most important events we care. These events are common to any

tracing framework. The actions associated with the events can be overloaded in the new

defined modules. The next chapter describes how these events are used to collect the

performance data.

2.4 Applications and Benchmarks

In this thesis, a few real world applications are studied as examples. Their background is

discussed here for references.

NAMD: NAMD [15] is a molecular dynamics application that was developed in the

mid-1990’s. The parallel structure of NAMD is based on a unique object-based hybrid de-

composition, parallelized using the Charm++ programming model. Figure 2.2 illustrates

the decomposition in NAMD. Atomic data is decomposed into spatial domains (called

“patches”) based on the short-range interaction cutoff distance such that in each dimension
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Figure 2.2: NAMD decomposition

only atoms in one-away or, when necessary to increase concurrency, one-away and two-away

neighboring domains will interact directly. These equally-sized domains are distributed as

evenly as possible across the machine and are responsible for accumulating forces and inte-

grating the equations of motion asynchronously via per-domain user-level threads. Patches

are represented on other cores by proxies and all position and force data sent between cores

passes via these proxy patches.

The parallel structure of NAMD is shown in Figure 2.2. The calculation of short-range

interactions is orthogonally decomposed into “compute objects” representing interactions

between atoms within a single domain, between pairs of domains, or for groups of neigh-

boring domains for terms representing multi-body covalent bonds. Compute objects are

scheduled by local prioritized Charm++ messages when updated position data is received

for all required patches. Longer-running domains are further subdivided by partitioning

their outer interaction loops to achieve a grain-size that enables both load balancing and

interleaving of high-priority PME or remote-atom work with lower-priority work that does

not require off-node communication.

The long-range interaction in NAMD is implemented via the Fast Fourier Transform
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Figure 2.3: NAMD parallel structure

(FFT) based particle-mesh Ewald method (PME). PME calculation, due to the data trans-

poses required in three dimensional Fourier transforms, is highly communication inten-

sive [16], and therefore very challenging to scale. NAMD supports both slab (one dimen-

sional decomposition) and pencil (two dimensional decomposition) PME.

ChaNGa : Simulation is widely applied in astronomy to and the calculation of the grav-

ity among particles is the key to the simulation. N-body simulation is the most popular

techniques for it. Nowadays, tree codes for gravity are popular following the publication of

the Barnes and Hut paper [17]. This method soon includes gas dynamics using the Smooth

Particle Hydrodynamics (SPH) method. As well as allowing for any level of adaptation, the

tree method is not restricted to a particular geometry. This makes it particularly useful for

isolated galaxies and clusters of galaxies. Tree codes have been extended to include peri-

odic boundary conditions, perhaps most successfully in hybrid tree/particle- mesh methods

where the long-range gravity is solved using an FFT while the tree is used for short-range

forces. The irregular nature of the tree-walk is a significant challenge for parallel implemen-

tations. The N-body/Smooth Particle Hydrodynamics (SPH) code ChaNGa implemented

in Charm++ has been developed to address these challenges Charm++ [18–20]. The
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program composes of four phases, domain decomposition, tree build, tree traversal and

gravity.

In decomposition phase, the particles are organized in space filling curve. The curve is

split into TreePieces, which are contiguous sets of leaves (or buckets) containing particles.

The ancestor nodes of those leaves up to the root of the entire tree. Once the particles

are on the TreePieces, each TreePiece builds its tree independently in a top-down manner.

The building starts from the root node that contains the entire simulation domain. During

this phase, each TreePiece has the information about the extents of the domains of all

other TreePiece to determine which nodes are boundary nodes. The traversal of the tree

to calculate gravity is done in third phase. During the tree traversal the local and remote

particles are accessed. While the particles are collected the gravity calculation is performed

,which costs most computation in the execution.

State space search problems : The state space search technique has varied appli-

cations. The traveling salesman problem and various scheduling problems are commonly

encountered in the field of operations research and artificial intelligence. Other examples

include floor-plan design in VLSI, genetic search for optimization, and game-playing pro-

grams such as chess solvers. Given that no polynomial-time algorithms are known to exist

for these problems, they are solved through a systematic exploration of all possible con-

figurations of their inherent elements. Each such configuration is termed a state, and the

set of all possible configurations is called a state space. Generally, an operator is available

to transform one state into another through the modification of the former’s configuration.

The objective of the state space search problem is to find a path from a start state to a goal

state (or to each among a set of goal states). Most often, the search is seen to be tree-based

– at each step of the search, we transform a stored parent state into several children states

that do not violate the constraints specified by the problem. In this sense, we also refer to

states as nodes of a search tree.

Classical examples include N -Queens problem, travel salesman problem, game problem,

etc. This thesis focuses on N -Queens and UTS problems. N -Queens is a backtracking

search problem in which N queens must be placed on an N × N chess board so that
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they do not attack each other. We search for all solutions to the N -Queens problem, for

various values of N . The unbalanced tree search (UTS) [21] problem is to count the number

of nodes in an implicitly constructed tree. The tree is parameterized in shape, depth,

size, and imbalance. Each node has all necessary information to construct its children.

Therefore, starting from the root, the tree can be traversed in parallel in any order as long

as each parent is visited before its children. The imbalance of a tree is measured by the

variation in the size of its subtrees. Highly unbalanced trees pose significant challenges

for parallel traversal because the work required for different subtrees may vary a lot. As a

result, an effective and efficient dynamic load balancing strategy is required to achieve good

performance. This benchmark stresses the ability of parallel runtime in terms of grain size

control and load balancing.

2.5 Experimental Machines

The machine models where the experiments are performed in this thesis are supercomputers

with large number of nodes, low network latency and high network bandwidth. Each node

is composed with multiple sockets of processor cores. The nodes are connected in some

topological way. Particularly, we have used two systems to perform our experiments - IBM

Blue Gene/Q system and Cray XE6/Xk6 system. IBM Blue Gene/Q system uses low power

embedded Power PC cores to scale to the 100 PF configuration. Each BG/Q node has 18

Power ISA A2 64-bit embedded PowerPC cores running at 1.6 GHz. One core is dedicated

for operating system processing and one core is a spare core, leaving 16 cores for application

processing. Each core has four hardware threads that have their own register files but share

other resources such as the L1 and L2 caches, compute units and load/store resources. The

A2 core can execute two concurrent instructions per cycle, one fixed and one floating point,

but each thread can issue only one instruction per cycle. So, to fully saturate the core’s

resources, at least two threads per core must be used. Blue Gene/Q has a data network [22]

with a 5D torus topology, where each link is capable of simultaneously sending and receiving

at 2GB/s. Due to packet header overheads the maximum achievable throughput is 1.8GB/s.

The 5D torus results in lower latency to furthest nodes and higher bisection throughput as
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compared with a 3D torus on BG/L and BG/P. On BG/Q the point-to-point network, the

collective and barrier networks all share the same torus network. The particular machine

we used is Vesta at Argonne National Laboratory. The PAMI (Parallel Active Messaging

Interface) machine layer in Charm++ [23] was used on IBM Blue Gene/Q system.

The Cray XE/XK system is connected using the Gemini Interconnect with latency as low

as to 1µs and bandwidth as high as 8GBytes/s. It provides hardware support for one-sided

communication. One Gemini ASIC serves two nodes by connecting each node to one network

interface controller (NIC) over a non-coherent HyperTransport(TM) 3 interface. The NIC

provides two hardware components for network communication: the Fast Memory Access

(FMA) unit and the Block Transfer Engine (BTE) unit. It is important for developers

to properly utilize both of them to achieve maximum communication performance. Each

XE6 node contains two sockets of sixteen 2.2GHz AMD Bulldozer processor cores while

each XK6 node contains one socket of sixteen processor cores and one GPU. UGNI (user

Generic Network Interface) [24, 25] was used on these systems. The particular system our

experiments are performed on is JYC at National Center for Supercomputing Applications.
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Chapter 3
Framework of Performance-analysis-based

Introspective Control System

This chapter describes the main components in the PICS framework. The overview of PICS

framework is firstly discussed. The performance metrics to evaluate the performance are

then discussed. The core components of automatic performance analysis and tuning process

are presented at the end.

3.1 Control System Framework

By definition, ”Control theory is a theory that deals with influencing the behavior of dy-

namical systems” [26]. It is an interdisciplinary subfield of science, which originated in

engineering and mathematics, and evolved into use by the social sciences, such as psychol-

ogy, sociology, criminology and in the financial system.” [26] Typically ”control systems

may be thought of as having four functions: Measure, Compare, Compute, and Correct.

These four functions are completed by five elements: Detector, Transducer, Transmitter,

Controller, and Final Control Element. The measuring function is completed by the detec-

tor, transducer and transmitter. In practical applications these three elements are typically

contained in one unit. A standard example of a measuring unit is a resistance thermometer.

The compare and compute functions are completed within the controller, which may be im-
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Figure 3.1: Framework of PICS

plemented electronically by proportional control, a PI controller, PID controller, bistable,

hysteric control or programmable logic controller. Older controller units have been me-

chanical, as in a centrifugal governor or a carburetor. The correct function is completed

with a final control element. The final control element changes an input or output in the

control system that affects the manipulated or controlled variable”. For computer appli-

cations to be controlled, two related notions are observability and controllability. Both of

these features are essential. Only when its behavior is observable, related performance data

can be instrumented and analyzed. In order to instrument, measurable metrics need to

be proposed. In our system, we categorize these metrics into three types based on their

relationship with the ultimate objective functions. After the performance is observed, the

control system should have a scheme to propose better values for the tunable parameters.

Whether the tuned values can be used to steer applications finally depends on the control-

lability of the applications. That means the application should be able to reconfigure or

adapt to the new values while the correctness is guaranteed.

Similar with the typical control system, our PICS contains the components of measuring,

comparing, computing and correcting. Figure 3.1 shows its infrastructure. The control
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system steers both applications shown on the top of the figure and the runtime system at

the bottom of the figure. Both applications and runtime can register tunable parameters

to the control system using the same mechanics. The tunable parameters are encapsulated

by control points, which will be described later in detail. Once the configuration of control

points are adjusted, the applications and runtime system need to adapt to the new config-

urations. The difference between control points in an application and the runtime system

is that control points in the runtime system are registered by the system developers while

the application control points are registered by the application developers. Moreover, the

runtime system control points affect all the applications running on it without application

modification. The application control points only affect the specific application.

The core components of PICS are shown in the middle of the figure. PICS records

configurations of the application and the runtime system, monitors application behaviors,

and collects the application performance data. Meanwhile, the control system has a set of

expert knowledge rules, which define various application characteristics and corresponding

solutions to solve a particular performance bottleneck. Utilizing both the performance data

and expert knowledge rules in our system, the system performs online automatic analysis

to detect performance problems to determine the control points that need tuning and the

mechanism to adjust them. New configurations are fed back to the application or runtime

system to adapt to the new values.

The goal of the control system is to find the values for the tunable parameters to achieve

better performance metrics. The performance metrics are a function of the application

control points, the runtime system control points and the hardware control points. For

some applications this function can be obtained using modeling techniques. For others, it

might be impossible to derive the function. Other heuristic techniques will be used to serve

the purpose of steering.

In order to steer applications or the runtime system, the first question we need to discuss

is to define the performance metrics.
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3.2 Performance Metrics

Performance metrics are used to evaluate how the program runs. We have extracted two

categories of performance metrics, depending on whether it is used for users or for the

system, ultimate metrics and intermediate metrics. The metrics that developers require

to optimize are defined as as the ultimate performance metrics. This type of metric

is directly from application developers. The most traditional and important metric is the

time cost to complete execution, The goal of most applications is to run as fast as

possible without considering other cost. This metric is also the fundamental reason why

parallel computing is used. With the energy cost becoming a problem, another important

metric is the energy efficiency. Due to some limit, it might be desirable to lower the

overall supercomputer power limit. In this case, the execution time is not the only metric

to judge. It is desirable to consider the overall performance. Another important metric

is network communication volume. On many supercomputers, network resources are

shared among concurrently running jobs, so it is inevitable to have interference among

jobs. Therefore, in some cases in order to maximize the overall system performance, it

might require to constrain the network communication volume of each application. Even

it might hurt the execution time of one particular application. In practice, one or multiple

performance metrics may need to be satisfied. In this thesis, we focus on the first metric,

which is the time cost to complete execution. Meanwhile, we take the energy cost and

network communication volume as secondary metric if application developers require.

The above metrics are the final objectives that application developers want to achieve.

However, these metrics provide few hints about how to steer the applications. Therefore,

we propose better intermediate metrics based on our study of parallel applications. Inter-

mediate metrics are the ones that can be measured during program run. They are used

to evaluate the effectiveness of the performance steering. We have concluded the following

intermediate metrics.

• Time cost to complete one step: this is commonly used in iterative scientific

applications. Less time cost to complete one step shows the effectiveness of the per-
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formance steering.

• Utilization percentage: the time that CPU is busy. This can be used for any

application. In general, high utilization percentage stands for good performance.

• Useful work percentage: For some applications, even when CPU is busy, it is doing

some runtime or parallel overhead work instead of useful work. What contributes to

the real progress of the applications is the useful work. The more percentage the

useful work accounts for, the better the application runs. This metrics requires the

developers to mark the useful work function.

• Idle percentage: the time that CPU is idle. Higher value hints worse performance.

• Overhead of the applications: this is the total execution time subtracting the idle

time.

• User defined metrics : For some applications, users can define their own interme-

diate metrics. For example, for graph or tree search, the number of nodes traversed

in a time period is often used as the metrics to evaluate the parallel performance..

3.3 Control Points

In our control system, we define the tunable parameters as control points. Different from the

general variable in optimization models, the control points have a few features. First, the

values of the control points should be adjustable. The applications or the runtime system

should be written in a way to use different values of control points. Secondly, the control

points have some effects on the performance. That means when we change the values of

control points, the performance will be affected in that aspect. We have concluded that the

effects of control points on the applications include:

1. Degree of parallelism: this is affected by any parameters which relate to the number

of parallel tasks. For example, for a fixed problem size of Jacobi program, the number

of sub-blocks control the degree of parallelism. In molecular dynamics, the number
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of patches affects the parallelism. In pencil 3DFFT, the number of pencils control

parallelism.

2. Grain size: this controls the amount of computation per parallel task. This metric is

converse with the degree of parallelism.

3. Memory consumption: this is affected by any parameters that control memory con-

sumption.

4. Number of messages and message size: proper message size can both better utilize

network bandwidth and also overlap computation with communication. When the

performance problem is related to message size, corresponding parameters affecting

it should be chosen and tuned.

5. Load balance frequency: the time period of performing load balancing. The more

frequent it is performed, the more balanced the load is on all processors but the

higher the overhead is.

The effect of control points are the most important property. It links the results of

performance analysis with the performance steering process. Details are discussed in the

next chapter.

3.4 Automatic Performance Analysis

The most general way to choose optimal configurations among various ones is to perform

an exhaustive search. Although it guarantees to find the optimum values, it is typically

infeasible for real applications due to the huge search space and the complexity of the

searching.

One novelty of the PICS is that it is built on automatic performance analysis. This run-

time system takes control of the application scheduling and communication. Therefore, it is

easy to instrument, record and track application behaviors. Based on the instrumentation

data, performance analysis can be performed. When possible performance problems are de-

tected, we relate the performance problems to the effects of the control points. Therefore,
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we only tune the control points which affect the performance while we ignore the others.

This significantly reduces the number of control points we need to optimize. The other

advantage is that based on the effect of control points and performance problems, the steer

direction is guided instead of proceeding randomly. This thesis identifies various common

application characteristics. Then it proposes a decision tree based automatic performance

analysis to to detect performance deficiency. The results of analysis are fed back to the

controller to guide performance steering. Details are discussed in the next chapter.

3.5 Improving Performance by Reconfiguring Runtime and

Applications

The essential requirement for our methodology to work is that applications and the runtime

system should be reconfigurable during execution. In order to reconfigure applications, some

efforts are needed from the applications developers. First, the applications need to provide

control points to PICS to tell what are tunable. These control points are registered in

the runtime system and then their effects on application performance are observed, stored,

analyzed. Secondly, when the configurations of application change, applications or runtime

systems need to correspondingly adapt to the new configurations. This might be easy or

hard. Some applications may require no change to use new configurations. However, some

might need significant changes, like global data redistribution. The details are discussed in

section 5.5.

3.6 The Tuning Process

Having discussed the components of PICS, figure 3.2 shows the process of applying PICS

to steer applications. At the beginning of executions, control points are registered. The

program runs with default or user provided configurations of control points. During program

execution, the program is instrumented. A performance database is maintained to keep

track of the history performance metrics. When new performance result is collected, it is

compared with history result to tell whether the tuning improves or hurts performance.
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Figure 3.2: The process of PICS tuning

If the performance for current step is better than ever, the configuration for this step

is recorded to database for future use. Performance analysis is conducted based on the

performance summary to derive the possible reasons for deficiency. Based on the results of

analysis, corresponding solutions are suggested by the expert knowledge system. Since these

solutions are also related to the effects of control points, the corresponding control points

are tuned. The tuning process is based on the ratio of current performance to previous

performance and effect of control points. When the values are tuned, they are broadcast

to all other processors to update their local configurations. In this way, the future run will

use new local values instead of querying the remote processors every time.
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Chapter 4
Decision Tree Based Automatic

Performance Analysis

The goal of the control system is to find the optimal configuration of all the control points.

Due to the complexity of the runtime system and application, many control points will

be registered with PICS. This leads to a huge search space of configurations. As a result,

performing direct optimization (such as hill climbing [27], genetic algorithm (GA) [28]) can

be time consuming. When we examine control points closely, we notice that some control

points may have more impact than others. If we can determine which control points have

the most impact on the overall performance, the process may be accelerated.

The approach we take is to perform automatic and comprehensive analysis to detect

a performance deficiency. Since the runtime system takes control of the application with

regard to scheduling and communication, it is easy to instrument, record, and track applica-

tion behaviors. Based on the instrumentation data, performance analysis can be performed.

When possible performance deficiencies are detected, we can steer the control points whose

effects are related to these performance deficiencies instead of searching all possible config-

urations. This significantly reduces the search space. The other advantage is that based on

the effect of control points and performance problems, the direction of performance steering

is guided instead of proceeding blindly.

This chapter first describes the scheme to collect performance data and gather the sum-
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mary. Based on the summary data, the decision tree based performance analysis is ex-

ploited. After the analysis is performed, the results are fed into the control system in the

close loop. In addition, the results can be visualized to help developers understand and

manually tune their applications. The techniques for visualizing the results are exploited

at the end.

4.1 Gathering Performance Data

The automatic performance analysis composes of three phases, tracing, summarizing and

gathering.

Performance data is traced during program run on each processor. Our control system

is based on the Charm++ runtime system. The Charm++ runtime system takes full

control of the program execution. It controls the mapping of the tasks to physical resources,

memory management, scheduling of function executions, and communication. Therefore,

it is easy to add instrumentation in the runtime system to monitor the behaviors of the

programs. Currently, the runtime system can record the events of begin idle, end idle,

begin of function execution, end of function execution, message creation, message sending,

message receiving, assignment of tasks . Instrumentation of these events are designed as a

linked module. It requires no source code change from the applications.

Based on these events, our control system summarizes and gathers performance summary

as needed. To get the summary, the traced performance data is accumulated together and

pre-processed. Currently, we summarize the following performance data. For each of the

performance data, we get the maximum, minimum and the average.

High level performance data : idle percentage, overhead percentage, utilization percentage

Function execution data : function execution duration, number of functions executed

Object data : load per object, number of object per processor, communication per object

Communication data : send/receive number of messages, bytes of data, external bytes
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In phase 3, upon some boundary of applications, the performance data on each processor

is gathered to a central processor or a group of processors. A reduction algorithm is used to

gather all the performance data. Once the global performance data is collected, performance

analysis is performed. During the gather process, one important question is to determine

when to perform analysis for various type of applications. The principles to determine the

time to perform analysis are as following: The first is to maximize the quality of performance

analysis. When the data is collected and analyzed, it is better to have associated application

boundary with it. Therefore, the profile data for a short period should capture the most

important features and the pattern of the whole application. Secondly, it should have

minimum interference and overhead on the application when performing analysis. For

most applications, performing analysis during idle time is a good choice to reduce the

overhead. An even better way is to use a helper thread to do it. Thirdly, it should be easier

for application developers to modify their application. Finally, after performance data is

collected, it should be easy to evaluate the performance so as to guide the runtime system

for steering.

Based on the above principles, the following three scenarios are summarized.

1. Synchronization point to perform analysis: application developers insert code at a

global synchronization point. Although it is hard for the runtime system to recognize

the time-step of applications, it is obvious for developers to tell it and insert code. In

this case, the root processor requests all processors to reduce their performance data.

2. In some iterative applications, there is no explicit global synchronization point. Each

processor knows its own time step but does not reach global barrier for each step. In

this case, application developers can mark time step locally instead of globally.

3. For non-iterative applications, it is difficult for developers to mark the time step.

State search applications belong to this category. In this case, the runtime system

will decide when to performance analysis. It can be performed either periodically

or based on performance results. One possibility is to perform analysis when some

processor has low utilization. This processor will trigger data collection and analysis.
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Now the performance summary data is gathered on one processor, which can carry out

the analysis.

4.2 Decision Tree Based Automatic Performance Analysis

In order to determine the application performance problems and possible solutions, we need

to identify the characteristics of the program. Based on our study of various applications

and the runtime system, we classify the program characteristics in to three main categories,

which are problem decomposition, task mapping and scheduling.

Problem decomposition is about how to decompose the whole problem into small

problems, which can be solved in parallel. This is mainly the responsibility of application

developers. Problem decomposition directly determines the grain size of computation and

communication, the degree of parallelism. Good problem decomposition is an essential

factor to achieve high performance.

The characteristics about problem decomposition include:

1. A single entry method takes too much time.

2. A single object takes too much time. Because in our model one object can be only

executed on one processor at one time, this causes an execution dependency.

3. There is too much runtime system overhead when average grain size is too tiny.

4. There is not enough parallelism to overlap communication with computation. When

these four characteristics are identified, it hints a problem of grain size.

The category of the problems is represented in Figure 4.1(a).

Task mapping is about how to map tasks to physical processors. Task mapping af-

fects the communication cost. Related work includes communication topology aware map-

ping [29–31]. It also affects the load balance. Besides these two most important effects, it

might also affect memory usage and I/O usage.

When mapping is a problem, a possible result is high idle time. The specific characteris-

tics shown during program run can be summarized: (1) There is load imbalance among all
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Figure 4.1: Decomposition and mapping characteristics
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processors. This can be easily identified by calculating the ratio of maximum load to aver-

age load. Corresponding solution is to perform load balancing. (2) Even when the load is

balanced, a bad mapping can still lead to high communication in the system. Whether com-

munication is high or not can be evaluated by the metric of the number of hops multiplying

bytes. Both maximum hops and average hops may impact the performance. The corre-

sponding solution is to perform a topology-aware and communication-aware load balance.

This is illustrated in Figure 4.1(b).

Scheduling is about the order to execute the available tasks on processors. How the

scheduling performs directly determines the application performance.

When scheduling is a problem, the direct result is the high idle percentage. The main

characteristic is that critical tasks are delayed. Therefore, processors that depend on the

critical task become idle. The other potential problem caused by scheduling is out of

memory. If only tasks which consume memory are scheduled while the tasks free the

memory are not, it will consume all memory.

Besides the above three main categories of program characteristics, the other charac-

teristics which relate to performance can be collective operations, like how the broadcast,

reduction algorithms are implemented, How the runtime system deals with the intra-node

and inter-node communication. These also greatly affect overall performance.

Combining all the program characteristics and corresponding solutions discussed above,

the full decision tree is represented in Figure 4.2. In this figure, starting from the per-

formance summary data, the decisions are made based on the performance characteristic

and the specific run performance data according to the tree. The triple-octagon shapes

represent the most top level of performance metrics. Based on it, there are three branches.

Under each branch, we check whether the corresponding performance characteristic exists.

The performance characteristic is represented in boxes. When a characteristic is satisfied,

the corresponding performance solution is proposed at the leaves of the tree, represented

by eggs. The corresponding performance solution has two meanings. The first is which

aspect of the applications should be steered. The another is the direction of the steering.

For example, if the solution is to decrease the grain size, we need to tune all the parameters
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Node%name%Node%type%0%
Expression%of%performance%
characteris5c%

List%of%parent%
nodes%

Performance%data%1% Operator% Performance%data%2% Compare%operator% Value%

(a) Condition node

Load_Imbalance-0- Expression-of-Load_Imbalance- High_Idle-

Max-Load- Average-Load- >- 1.1-

(b) Example of load imbalance

Figure 4.3: Definition and example of condition node

which have the effects of grain size. The direction is to adjust the values so that the grain

size becomes smaller.

The process of performance analysis is traversing the tree. Whenever a leaf node satisfies,

it is saved for tuning. As a result, we have a list of performance solutions. We feed these

solutions into the control points database so as to figure out what control points to tune

and in which direction.

Defining Rules for Decision Tree

In order to make our analysis scalable and easy to expand, we have defined a set of rules

in the configuration files. These files are read during the startup of the program to construct

the decision tree. The configuration files are plain text files and easy to read and modify.

Therefore, rules can be easily added or modified.

The configuration file contains multiple lines of information. Each line represents one

or more tree nodes. There are two types of nodes, condition nodes and solutions nodes.

Condition node represents a performance characteristic while solution node represents the

solution to solve the parent problem. Both nodes have the following formate.

• The definition of condition node is shown in Figure 4.3. NodeType is 1, which repre-

sents an internal node of tree. NodeName is the identifier to recognize the node. It

is unique for each internal node. The purpose is for child to refer to it. Following it
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Node%name%1%leaf% %%%%%%Solu.on% List%of%parent%nodes%

Solu.on%name%Direc.on%

(a) Solution node

Leaf_Up_LDB_Fr
equency111 111111Solu6on1 111Load_Imbalance1

Load_Balancing_Frequnency1Increase1

(b) Example of increasing load balancing frequency

Figure 4.4: Definition and example of solution node

is the expression of performance characteristic. At the end is a list of parent nodes.

The expression of performance characteristic contains a few fields. Performance data

1 tells which performance data this internal node corresponds to. Performance data

2 tells the base of performance data, which can be a constant number defined by the

system or a input source. Operator operates on the two items of performance data,

which can be add, subtract, multiple, etc. Compare operator compares the result of

the above with the threshold value defined by the system.

• When NodeType is 0, this is a leaf node of tree, which represents a solution to solve

the performance problem shown in the parent node. The format of solution node

is shown in Figure 4.4. Comparing with internal node, leaf node as a solution is

much easier. Following the NodeName is the solution to apply, which contains the

direction and the name. Direction tells whether to increase or decrease specific effect.

The name is for the solution, which is also the effect name of control points. Parents

link this solution to its performance problem nodes. Figure 4.4(b) shows the solution

of increasing load balancing frequency to solve the load imbalance problem.

Building the Decision Trees

Corresponding to the configuration files, there are two types of nodes we need to build

in the tree. The internal nodes represent the constraints, which are also the performance
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bottlenecks. The leaf nodes are the solutions to solve the problems. The building process is

straightforward. Each line is read and one node is constructed and added into the decision

tree. Depending on the type of the nodes, either an internal condition node is added or

a solution node is created as the leaf. Notice that in configuration files, we have various

names for the performance data. However, in order to save the space used by the tree, we

do not have to store the string of the names. Instead, we map the names into integers. The

integers are used in the tree file.

Certainty Tree and Fuzzy Tree

For the expert knowledge rules, some rules are certain to be true while some are possible

to be true. For example, when the execution time of specific entry method is much longer

than the average processor load, it certainly means high idle time. In order to solve it, the

entry method should be split to small ones. Decreasing the grain size of that object will

certainly solve this problem. These rules are called certainty rules. All the certainty rules

compose the certain tree.

Besides the certainty rules, there are some possible rules, which can be very likely true

but not necessarily true. For example, decreasing the grain size of object will increase

the number of total object. It is likely to solve the load imbalance. However, whether

this will really solve the problem also depends on the result of the load balancer. It is

not necessarily true because if load balancer does not migrate objects the load imbalance

still exists. Another example is that increasing the grain size of object might decrease the

overhead percentage. However, if the overhead is caused by too frequent load balancing.

Increasing grain size will not help much. We call these types of rules fuzzy rules. The

fuzzy rules compose a fuzzy tree.

During the process of automatic performance analysis based on these decision trees, the

certain tree has the higher priority to be searched. The solutions derived from this tree

are added to solution set. When this search is done, the fuzzy tree is searched next. If the

solution from the fuzzy does not conflict with any from the certain tree, it will be added.

Otherwise, it will be ignored.

Performance Analysis by Traversing the Decision Tree

38



!
!
AVG_IdlePercentage!84.7!
AVG_OverheadPercentage!1.4!
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Figure 4.5: Performance analysis tree traversing

During the program run, we collect the performance data as discussed above. Using the

data as the input, we traverse the decision tree. Here, we perform a depth-first-search(DFS).

Different from the regular DFS, we do not necessarily search all the nodes. Before a node is

searched, we use the input performance data and the condition to test whether the condition

for the node holds true. If it is true, we continue search its children. Otherwise, we skip

this node and all of its children. The algorithm is shown as below. When the traversing is

done, a set of solution are found. Each solution corresponds to one effect of some control

point. Figure 4.5 shows an example of input and the output of traversing the tree.

Learning for the Decision Tree When the rules in our decision tree are small, it is

possible that traversing the tree gives us no results. In this case, we will use exhaustive

search by adjusting some control point. We compare the previous and current configuration.

Once performance is improved, we also compare the previous and current summary data to

check which performance characteristic goes away. We link this performance characteristic

with the control point we tuned to form a rule. This rule is added to the decision tree. We

call this process learning.
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Listing 4.1: Traversing the decision tree

void DFS( double *input,
vector<IntDoubleMap>& solutions,
int level,
std::vector<Condition*>& problems)

{
stack.push(root)
while(!stack.empty()) {
node = stack.top();
stack.pop();
for(each child of node) {
if(child.isLeaf()) {
solutions.push(child);

}
else if(child.test(input)) {
stack.push(child);

}
}

}
}

4.3 Phase by Phase Analysis

Currently the analysis and tuning is based on steps. However, in most scientific applica-

tions each step might contain multiple phases. Each phase has different computation and

communication pattern. Therefore, phase by phase analysis should be performed to im-

prove the accuracy of analysis. Meanwhile, some configurations only affect some specific

phases not all phases. Therefore, in the phases where some control points do not matter

those control points can be filter so as not to search their configuration. One good example

of this is that in NAMD non-PME phases, all PME-related control points can be ignored.

Figure 4.6 illustrates this point. Every 4 steps, there is one PME step which takes much

more time than the other three non-PME steps. If we do not distinguished these steps,

the performance for the PME step will be considered to be much worse. Without careful

examination, the control point configurations in this step might be processed in a wrong

direction. With phase by phase analysis the performance in this step will not be compared

with the previous step. Instead, it will be compared with the previous forth step.
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Figure 4.6: Timeprofile of ApoA1 simulation on 1024 nodes

4.4 Display Performance Analysis Results

The results of performance analysis are mainly used to feed into the control to guide the

performance steering. Besides this, it can be directly written into plain text files to help

the developers figure out the program performance problems.

Projections

Projections [32], is a stand-alone tool to visualize and analyze performance of Charm++

applications. During program execution, performance is traced. The details of events are

recorded in plain text files, which are read by Projections. Projections composes a set of

tools.

1. Time Profile tool : it shows the profile of various functions, idle and overhead time

for all processors over the time. The clearly tells how well the program runs.

2. Usage Profile tool : it displays each processor’s CPU usage for a time period. It is

useful to tell how the load is distributed over all processors.

3. Communication Over Time tool : it displays the communication over the time.

4. Extrema Analysis tool : it sorts the processor based on idle time ascending or de-

scending, utilization descending. This is useful to find processors with interest.

5. Timeline tool : it displays every detail of the program execution. Figure 4.8 is an

example of using Timeline tool to visualize NAMD performance. It displays a set
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(a) Time Profile (b) Usage Profile

(c) Extrema Profile (d) Communication Profile

Figure 4.7: Tools in Projections

of processors that users choose. For each processor, it shows the execution of each

function, idle period in different colors. The begin time, end time and associated

messages to entry methods are also displayed. More features include tracing message

back to source, tracing message forward to the destination. Timeline is the ultimate

tool to visualize and analyze program behaviors and performance.

All these tools are extremely powerful and useful to analyze the performance. How-

ever, there are a few drawbacks of Projections. With the number of processors that

the program running on increasing, the data files generated for Projections can be

huge, as high as hundreds of Gigabytes or even more. This costs a lot of storage. Also

it takes time to download all data from supercomputers to local machines to process.

Even worse, Projections becomes very slow to visualize or analyze the huge data due

to slow loading of files, files not fitting into the memory. The worst problem is to

analyze the complicated data manually. For example, with hundreds of thousands of

processors finding the least idle processor, the longest entry method takes long time,

which can be tens of minutes for 10K processor data set. It becomes almost impos-

sible to manually figure out the root performance bottleneck from the massive data.

This motivates us to use PICS to help performance analysis and visualization.
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Figure 4.8: Timeline tool of NAMD

PICS and Projections

In order to overcome the drawback of Projections, we have applied PICS to help. The

following approaches are used.

Output Processors with Interest : in order to reduce the data, we only output the

data for the processors with interest. For example, we output the processors with least idle

time, most utilization, most overhead, etc. This significant reduces the amount of data.

Generate a PICS summary file : A PICS summary file is generated to help Projec-

tions. For example, instead of finding the least idle time in all processors, this information

is read from this PICS summary file.

Output performance bottleneck : The results of performance analysis is written into

plain text files to help users understand the performance.

The output of PICS is organized in blocks of data shown in List 4.2. The data contains

multiple blocks of DataEntry. Each entry is firstly identified by the step id, the begin timer.

Following it are the performance summary data for this step, the performance problems

and the solutions.

Features in Projections

The PICS output file is read by Projections to reconstruct the data structure for analysis

use. In projections in Timeline tool, a few new features are added to display the PICS

output. For each feature, a binary search based on the timer is applied to find the proper

entry of data. And then the related information is displayed based on the requirement of

different features.
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Listing 4.2: Struct of PICS output

class Node {
bool isSolution;
//--- functions

}

class Condition{
}

class Solution{
}

class DataEntry{
int step;
int entries;
long timer;
double summary[][];
vector<Node> CondSol;

}

Vector<DataEntry> dataset;

Now we have added the following features in Timeline.

Least idle processors The least idle processor is automatically loaded into Timeline.

Highlight the entry methods of longest duration : When there is a performance

problem associated with entry method duration, it is important to highlight this entry,

the object it belongs, the processor it runs on. The information can all be extracted from

PICS output. After it is obtained, the associated entry methods are highlighted for users

to clearly see them.

Display the performance problems : All the output from PICS analysis can be

displayed in plain text to the users.

Plot the performance summary data : All the performance summary data can be

visualized in plot in line, bar, or area formate shown in Figure 4.9.

4.5 Examples of Performance Analysis

In this section, a few examples are discussed to show how PICS can help Projections.

Figure 4.10 is time profile, which shows the CPU utilization is as low as 30% in average.

This can be also easily seen from PICS output file shown in table 4.1. In order to figure
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Figure 4.9: Plot of average idle and utilization percentage in Projections

Figure 4.10: Time profile of simulating DHFR using 256 processors

Performance
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Figure 4.11: Tree nodes visited for NAMD analysis
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Figure 4.12: Super compact view of time profile of simulating DHFR using 256 cores

Figure 4.13: Using PICS to load least idle PE, longest entry method

out the problems of causing low utilization, Timeline tool is used. Figure 4.12 shows the

compact view of time line of all 256 processors. In high level, we can see that the load on

processors is extremely unbalanced. This is one clear reason. Besides, it is hard to tell the

other reasons.

Based on the PICS decision tree 4.11, there are a few performance problems. Now we

display the PICS output of automatic performance analysis. In text file, the reasons are

shown in 4.13. In order to verify it, only some processors’ Timeline is loaded. The first

4 processors are loaded. And then based on the result of PICS, the least idle processor,

the most idle processor is loaded. It can be easily seen a large variation of processor load.

PICS tells the load imbalance is one problem. Besides this, PICS also identifies some entry

method takes much longer time than the average load. Based on its results, the related

PE with longest entry method is loaded as well as the longest entry method is highlighted.

From the figure, it is the ’self short-range calculation’ that takes longest time. From our

experience, this is due to the decomposition method in NAMD. PICS suggests to increase

the Away decomposition. Therefore, we tried another experiment with same input but

using 2 Away XY decomposition shown in Figure 4.14(b). In 2Away XY decomposition,
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(a) 1Away decomposition (b) 2Away XY decomposition

Figure 4.14: Decomposition in NAMD

Figure 4.15: Time profile of running NAMD simulation of DHFR with 2 Away XY on 256
processors on BGQ

each patch is split into 4 smaller ones. As a result, atoms in each patch interact with atoms

in neighbor patches that are 2 patches away. In this way the amount of computation in both

patches and computes decreases. Figure 4.15 shows the time profile of the 256 processor

run with 2 Away XY decomposition. It is clearly seen that the idle percentage becomes

much lower and the utilization gets much higher. The detail data is shown in the table 4.1.

The super compact time line view is displayed in Figure 4.16.

The results of PICS analysis are also used to load the least idle processor, most idle

processors, and the processor with the longest entry method execution in Figure 4.17.

Studying the table again, we can see that the longest entry method with 2 Away XY is
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Name of performance data 1Away 2Away XY

average idle percentage 0.679998 0.263319
average overhead percentage 0.006755 0.071367

average utilization percentage 0.313265 0.665345
maximum entry method duration 0.022648 0.004039

entry method ID with longest duration 172 178
PE where longest entry method happens 132 24

least idle PE 2 1

Table 4.1: PICS performance summary for NAMD simulating DHFR on 256 processors
using 1Away and 2Away XY decompositions

Figure 4.16: Super compact view of time profile of running NAMD simulation of DHFR
with 2 Away XY on 256 processors on BGQ
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Figure 4.17: Using PICS to load least idle PE, longest entry method

much less than the one with 1 Away XY.
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Chapter 5
Steering Runtime System and Applications

In the previous chapter, we have discussed how to perform automatic analysis so as to figure

out the program problems and the corresponding solutions. This chapter describes how the

performance steering is carried out based on the results of analysis. A few techniques are

discussed. And then the categories of runtime system and application control points are

listed.

5.1 Control Point Steering

As it is described in Chapter 4, the output of performance analysis is a set of possible

performance problems and their corresponding solutions. Each solution contains two parts,

an effect and the direction of that effect. On the other hand, when the control points

are registered by the applications or the runtime system, they are stored in the controller

system database. The solutions are associated with the control points. Therefore, we know

what control points to tune and in which direction. The main algorithm is listed:

Steering Strategies

Steering direction : We have proposed and developed three strategies to determine the

steering direction.

1. The steering direction is first guided by the performance analysis result. As it is

discussed earlier, performance deficiency can be reduced by a set of solutions, which
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Listing 5.1: Control point steering

void tuneParameters(vector<IntDoubleMap> &effects) {
for(each eff in effects )
{
vector<TunableParamters*> vec_with_effect = database[eff];
for(each tp in vec_with_effect)
{
tp.tune(eff);

}
}

}

include the control points and steering direction.

2. If the steering direction is not known, we check whether performance of current it-

eration is better or worse than the previous. Being better means that the previous

steering is correct and making progress. The steering will go toward this direction.

Otherwise, it means the steering is in the opposite direction so that the steering

direction is reversed.

3. There is an exception. When the effect of control point is exhaustive, there is no direct

relation between the performance and configurations. Therefore, all configurations are

searched and best configuration is saved for future use.

Steering Values. When the control points are registered, the minimum modification unit

is set by users. We have a few strategies to modify the values.

1. The simplest one is to modify the value by the minimum unit every time. It is slow

but tries to search as many configurations as possible.

2. To speed up the search process, we can modify the values by a larger extent if mov-

ing toward one direction continuously improves performance. Once the performance

degrades, we reduce the modification extent.

3. The other option is to do binary search based on steering direction.

4. Coarse grain first to determine the rough range where the optimal values might be.

And then a finer-grain search is performed where smaller steps are moved.
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Accelerating the Steering

As we have described, many control points can be inserted into the runtime system and

applications, this makes the search space of configurations of control points extremely large.

The main approach we take to prune the search space is to perform analysis to narrow down

the possible useful control points. Another way that we find useful to prune the search space

is to record whether control points are accessed during one step or one phase. Since we

have directed all access to control points to a function call which is in the control of PICS,

it is easy to record whether it is accessed. In this way, when we tune a control point, if it

is not accessed at all, nothing will be done to that control point. If it is accessed and also

one possible solution to improve performance based on analysis, that control point is tuned

and the flag for access is reset. This seems to be a minor point but it is very useful since

it can prune a lot of control points, which are registered in the runtime system but are not

relevant to a particular execution.

Handling Oscillation

During our steering, when the same configurations are repeatedly checked for a few times,

we might end up in repeating the same process by going forward and backward. In this case,

in our system after a few times of same configurations, we continue the run by applying the

configurations which provide best performance. In most cases, this works well. However,

for applications with dynamic behaviors where best configurations might change during

run, PICS handles it by resetting search. In the case that the current performance becomes

worse using the previous best configuration, we reset the values for the control points and

restart searching. Since our performance analysis could detect the deficiency, this handles

the oscillation in applications.

5.2 Handling Conflicting Effects

The output of automatic performance analysis is a set of solutions to eliminate the perfor-

mance problems. It is very likely that some solutions conflict with each other. For example,

if overhead is larger than a threshold, possible solution is to increase the grain size. On the

other hand, the idle time is larger than the threshold too. Possible reason is load imbalance.
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To handle load imbalance, one solution is to decrease the grain size so that the difference

between maximum load and average load is reduced. In this case, the solutions about grain

size conflict with each other. We have proposed and developed two strategies to handle this

case.

First strategy: determine the dominant effect. By dominant effect, we mean that by

solving the problem, it provides larger potential performance improvement. For example,

in the above case, assume that the overhead percentage is 20% while idle percentage is

10%. To be extreme, removing overhead will potentially improve the performance by 20%

while removing idle will give 10% maximum improvement. Therefore, we choose the effect

associated with eliminating overhead. To be general, we calculate the upper bound of

potential performance improvement for each performance problem. Based on it, we keep

the effects that provide larger improvement.

Now, we describe how the upper bound performance improvement is calculated. In the

decision tree, the nodes in the second level include CPU utilization, idle percentage and

overhead percentage. The potential improvement for these nodes can be easily calculated.

For the utilization node, the maximum improvement percentage is 1 − Rcpu. For the

overhead and idle nodes, the maximum is RoverheadorRidle. For the intermediate nodes,

the upper bound of potential improvement is no more than that in the parent node. Besides

this upper bound, some nodes have its own constraints. For example, for the load imbalance

node, if load is perfectly balanced, the maximum improvement is maxload/avgload− 1. In

this case, the upper bound of this node is the minimum of parent upper bound and its

own constraint. In this way, when traversing the decision tree, each node is also associated

with the improvement. The improvement of leaves is inherited from their parents. For each

obtained effects, we check whether its counter-wise effects exist or not. If the counter-wise

ones exist and have larger impact than the newly obtained ones, we just ignore the new

ones. Otherwise, we keep the new ones.

Second strategy : pick up the effects which have no conflicts. In this strategy, we

ignore all the control points with conflict effects. Only the ones with single direction of

effects are steered. The reason behind this is that it is likely to be wrong prediction for the
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effects with conflicts.

Third strategy : For each category of problem, pick up the one without conflict first.

When there are conflicts, keep the effect that is relevant with the problem, which has no

solution yet.

When a solution is found, we first check whether the opposite solution exists in the higher

level solution set. If it does exist, this solution is ignored. Otherwise we store the solution

in the corresponding problem set.

Once we have the solutions for each problem category, we process them. If one solution

does not conflict with any others, it is kept and the corresponding problem is marked as

hasSolution. If the solution exists in the higher level solution set, the same action is taken.

If one problem category has only one solution, it is kept without checking conflicting with

others.

Next phase for the solutions which are uncertain, we process them again. First we check

whether it conflicts with the must keep set of solutions, it does not conflict, it is kept and

added.

5.3 Control Points in the Runtime System

With the applications and hardware becoming more and more complex, it is widely accepted

that a powerful and intelligent runtime system should handle more complexity to improve

performance and facility the programming.

Traditionally, in order to achieve the best application performance, it is well known that

the application configurations should be adapt to the particular execution. The underlying

runtime system might not adapt. When studying the runtime system carefully, we find

that many runtime configurations are chosen as constant values based on experience. These

configurations usually do not change with applications or particular run setting. However,

with the systems becoming more complex, the best configurations that work at a small

scale might not work well at the large scale. Also the best configurations for some problems

might not perform well for the others. Therefore, we believe that the runtime system should

also be more adaptive. The runtime system should be steered too. This chapter describes
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how to steer the runtime system and what can be adjustable. And then different categories

of application control points are presented. A few techniques to steer the performance are

discussed in details here.

In order to steer the runtime system, we need to first understand what a typical runtime

system performs? As an example, Charm++ is a representative of this type of runtime

systems. Based on our knowledge we have concluded that it is mainly responsible for the

lower level communication, task/thread scheduling, resource management and mapping,

etc. Now I will describe how each component should be steered and the corresponding

control points.

At the bottom of a runtime system is the lower level communication libraries. Depending

on the underlying platform, the libraries can be varied a lot. This layer is mainly responsible

for communication, including sending/receiving network data, making network progress,

and performing some collectives. Depending on the underlying network, the communication

protocol and libraries are chosen at the build time. However, some parameters should be

adaptive during run time. For example, on Cray machines with Gemini or Aries network,

uGNI protocol is used as the low level communication library. In this library, in order to

send different size of data, different protocols are applied. For smaller messages, direct

connected channels are set up at the initialization phases. Memory space is reserved to

store the data before sending to the network and before delivering to the user space. There

is a tradeoff about the size of the memory reserved. In small scale, reserving more memory

will speed up the small data transferring. However, in large scale run, due to the big size of

channels, it takes much memory. As a result, it should not be too large. Also depending on

the communication patterns in the applications, it might require or not need to reserve high

memory. Therefore, the threshold between defining the small messages and large messages

is a tunable parameter in the runtime.

In Charm++, Converse is a component of the Charm++ runtime system that provides

a unified functionality across all machine layers to Charm++. For portable and efficient

implementations on a variety of parallel machines, this runtime system needs a minimum

set of capabilities from the parallel machine, its communication infrastructure, and its node-
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control points Effects Use Cases
broadcast algorithm selection communication most applications

broadcast/reduction branch factor critical path most applications(NAMD)
compression algorithm communication, overhead NAMD, ChaNGa

seed load balancer period overhead, load balance NQuees, UTS
seed load balancer topology overhead, load balance NQueens, UTS

fault tolerance frequency overhead, memory usage most applications
load balancing frequency overhead, load balance most applications

tracing data disk write frequency memory usage, overhead most applications
number of AMPI virtual threads grain size AMPI applications

Table 5.1: Runtime system control points

level operating system. Therefore, it is desirable to separate machine specific components

of Converse into a low-level runtime system, i.e., LRTS [24]. Different machine-specific

LRTS implementations can share common implementations such as collective operations

(e.g. broadcast) to construct a full Converse layer.

For a supercomputer vendor, LRTS serves as a concise specification of the minimum

requirements to implement Charm++ software stack on their platform. This simplifies

the work of porting the Charm++ runtime to a new platform since the vendor only

needs to implement the functions defined in the LRTS. These LRTS functions are classified

into capabilities needed for communication, node-level OS interface (including memory

allocation, virtual memory functions, topology information, and timers), support for user

level threads, external communication, and fault tolerance.

In Converse layer, after carefully studying the runtime system, we have abstracted a list

of control points, which affect the system performance. It is shown in Table 5.1. Among

these control points, we will study the following.

Broadcast Based on the unified API functions, we have designed broadcast operations

using spanning tree and hypercube virtual topology. However, depending on the problem

and system size, the branch factor in spanning tree needs to be tunable. Whether to use

spanning tree or hypercube should be tunable too.

Reduction Reduction is performed in the structure of reduction tree. The degree of

reduction tree affects the performance on different scales. Therefore, it should be tunable.

In pipelined reduction implementation, the size of each fragment affects performance too.

Thus, it should be tunable too.

Message compression. Compressing network message reduces the network load and
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speeds up the communication, possibly reducing the idle time. However, whether it benefits

the overall performance depends on multiple factors, compression/decompression speed,

compression/decompression rate, and also network bandwidth. Equation 5.1 represents the

time cost of sending one message without compression.

T = ls +
S

Bw
(5.1)

Tc = ls + tcS + tdS +
SR

Bw
(5.2)

Compared with the regular communication, the time of transferring data of S Bytes with

compression is described in Equation 5.2. Here, ls is the constant time cost to process the

message. tc is the per Byte cost for compression. td is the per Byte cost for decompression.

R is compression rate. Bw is the network bandwidth.

Intuitively, applications benefit from compression on the machines with the fast processor

and slow network. However, these two factors are fixed to the specific machine. The other

factor is compression rate. For one particular message, there is nothing to tune. However,

in a real application messages have different compression rate. The time cost of transferring

N messages of SN bytes is shown in Equation 5.3. If messages with low compression rate

are transferred, the cost of compression/decompression might be more than the saving

of network time. Only when compression rate is higher than some threshold, the overall

performance will get better. Therefore, one possible control point is the threshold of the

compression rate. The time cost function is represented in Equation 5.4. α is the ratio of

messages that have compression rate larger than threshold T .

Tc = N × ls + (tc + td) × SN +

N∑
i=1

Si ×Ri
Bw

(5.3)

Tc = N × ls + (tc + α× td) × SN +
α×N∑
i=1

Si ×Ri
Bw

(5.4)

The other control point in compression is the compression algorithm. Many algorithms

57



can be used with their own advantages and disadvantages. Some algorithms have high

compression rate but slow speed while others have low compression rate but fast speed.

Depending on the hardware and application data patterns, some algorithms might perform

better than the others. So far I have studied four compression algorithms, including ZLIB,

LZ4, byte compression, and float compression. ZLIB has very good compression rate but

quite slow. LZ4 has both reasonably good compression rate and compression speed. Byte

similarity compression performs good when the compression data have higher similarity

among bytes. We make this algorithm selection as a control point.

5.4 Control Points in Applications

Most parallel applications are written in a way with many constant or empirical values

for performance related parameters. To some extent, the performance of the applications

highly depends on the values of these parameters. For some applications, when running on

small scales, these values might work reasonably well. However, when scaling to large runs,

they might give bad performance. Therefore, these parameters should be tunable by the

control system so as to steer applications toward the direction of the better performance.

In order for applications to be tunable, we require the application developers to provide

some hints for the runtime system.

In this section, a few common control points in the applications are discussed. And then

the general categories of control points for various scientific applications are listed.

Steering grain size One crucial control points in most scientific application are the

number of parallel tasks (degree of parallelism). When the total amount of problem work

is fixed, the degree of parallelism is the inverse of the grain size.

In 8 section, I will present the result of using PICS to steer the Jacobi to find the

optimal grain size. Besides Jacobi problems, all the other stencil applications have the

similar problem. In matrix related applications, how metrics are decomposed belong to

this category. In real applications for example molecular dynamics, how the particles are

grouped into patches(the unit of task) is the problem of grain size control. In NAMD,

depending on the number of processors running, we carefully choose between 1-Away, 2-
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Away X, 2-Away XY, 2-Way XYZ. So far how these are chosen totally depends on user’s

experience. Instead, our introspective runtime system should automate the choice.

All the above examples are about scientific applications with regular computation pattern.

The grain size control also exists in state space search problems, where the search is a tree

structure. Determining whether to perform sub tree search in parallel or in sequential

significantly affects the performance. I have proposed and designed an adaptive grain size

control algorithm to steer this type of applications. Main idea is to split the sequential

tasks into parallel ones when the computation granularity of one task is more than some

threshold. This work is published in [33] and [34].

Steering for message aggregation

The other important category of control points is in message aggregation. When we

strong scale an application, the granularity of each task is decreasing. Meanwhile, the

communication data of each task is decreasing too. Especially with the over decomposition

runtime system, the communication data of each message can be very small, as small as

a few bytes. In this case, the overhead of sending, processing and receiving each small

message is relatively high. In worst case, the overhead can dominate the overall execution

time. One way to decrease the overhead is to aggregate multiple small messages into one

big message. However, how many messages should be aggregated together is a problem.

Our introspective runtime should be able to adaptively choose the best aggregation size

on different platforms. In 8, I will discuss how the runtime system help find the optimal

aggregation size and improve application performance.

Other application control points are summarized in table 5.2. We list the type of tunable

parameters, their effects on applications and their use cases.

5.5 Application Reconfiguration

As described above, the values of control points are tuned by PICS and ready to be fed

back in to the runtime system and applications. The last step is that the runtime and

applications should be able to adapt to the new values. Only when the new values are used,

all the tuning will be effective.
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control points Effects Use Cases

sub-block size parallelism,grain size Jacobi,Wave,Stencil

parallel threshold parallelism,overhead,grain size state space search

stages in pipeline number of messages,message size pipeline collectives

algorithm selection degree of parallelism,grain size plan/pencil 3DFFT

software cache size memory usage,communication ChaNGa

mapping scheme number of msgs/Bytes, hops most applications

ratio of GPU CPU load computation,load balance NAMD, ChaNGa

Table 5.2: Application control points

Depending on the specific control points and applications, adapting to the new configu-

rations can be easy or difficult. We have summarized the following categories about how

the new values are adapted.

Direct Use

For some control points, the applications are written in the way that the values can be

easily changed during execution. Without using PICS, that values can be a fixed number or

from the user input. With PICS, just minor modification is required to be adaptive. Instead,

the new values are obtained from the PICS and directly applied for next execution. For

example, in a message pipeline program, list 5.2 compares the regular function without

using PICS and that with PICS. Comparing two function, it can be seen that the only

modification is to add get function to get the value from PICS. Everything else is same.

This is the easiest case to use PICS.

Data Redistribution

For a lot of applications, it requires more actions to be adapt to the new configurations.

Most important action is to redistribute the data. Especially when the decomposition is

changed, the number of tasks are changed, the data associated with each task should be

re-distributed. An example is Jacobi program. As we described earlier, the sub-block size or

the number of tasks should be adaptive to achieve the best performance. During execution,

once the sub-block size is changed, the objects should be rebuilt, the data in the old object

should be distributed correctly to the new objects. The applications should be written in

the way to be able to correctly handle the data movement. Figure 5.1 shows how one task

is split into four tasks and how data are moved to the new tasks.
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Listing 5.2: Direct use of new configurations

//-------------------------Without PICS -----------------
void regularSend() {
int frags = 1;
int size = payload/frags;
for(int i=0; i<frags; i++)
{
sum += doWork(workLoad/frags);
PingMsg *msg = new (size) PingMsg();
memset(msg->x, sum, sizeof(double));
thisProxy[1].recv(msg);

}
}

//------------------------- With PICS ------------------
void sendWithPICS() {
int frags = (int)PICS_getTunedParameter("PIPELINE_NUM", &valid);
int size = payload/frags;
for(int i=0; i<frags; i++)
{
sum += doWork(workLoad/frags);
PingMsg *msg = new (size) PingMsg();
memset(msg->x, sum, sizeof(double));
thisProxy[1].recv(msg);

}
} Data$re'distribu-on$

Figure 5.1: Data redistribution when one task is split into four
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Data Structure Reconstruction

In this category of control points, once their values are changed during executions, it

requires a lot of modifications in the applications, including applying new values, data

redistribution, and even data structure rebuild. In this case, in case of doing the complicated

reconfiguration during execution, we pretend to exit the program and restart with new

configurations. One example of this type of applications is NAMD.

In NAMD the decomposition is an important control point. Usually it is read from the

simulation config file. The value is based on users’ experience. However, it is not necessarily

the best. Once it is read, the whole program is built based on the values, it determines the

number of patches, the number of compute objects, the number of pencils, the multi-cast

tree construction. Almost everything in the program depends on the decomposition. They

are constructed at the start up phase. Once the program is running, it is very complicated

to change the decomposition. In this case, we just simply record the tuned values from

PICS and exit the program. And then the program is restarted with the new values that

is recorded from PICS.
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Chapter 6
Scalable and Distributed Framework

In the above chapters, we have discussed the techniques for performance analysis and tuning.

It is designed in the centralized fashion, where the data is collected to one processing unit,

analysis and tuning is performed on it. This is good in the aspects that it provides most

accurate results. However, when we scale to large number of processors, the analysis and

tuning itself can be the performance bottleneck. In order to solve this problem, this chapter

discusses the ideas and techniques to make PICS more scalable and distributed.

6.1 Scalable Performance Analysis

After the data is measured, it is collected and analyzed. The next question is who performs

analysis and steering. For data collection, we use spanning-tree based reduction algorithm.

All the processors are organized in a tree structure. Each processor except the root has

some parents. All processors except the leaves have some children based on a branch factor.

The reduction starts from the leaf processors, which contribute its data to parents. The

internal parent nodes wait for data from all children to arrive. The data is combined and

processed. The parent continues to contribute the processed data till reaching the root of

the spanning tree. The straightforward and traditional way is to collect all data to the root

of the spanning tree, which is called the central server. Since this central server has the

knowledge from all processors, it performs the most accurate and comprehensive analysis.

This scheme works well for small scale runs. Although it is easy to implement and provides
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accurate results, all data is processed by one processor using sequential analysis. This poses

a bottleneck when scaling to large number of processors.

Here we discuss a few modes to overcome this bottleneck.

Types of control points

First, let us exam the features of the control points which need to be steered. In general,

there are two categories of control points that we need to handle differently.

• Control points with different configurations on different processors. That means that

the values of control points on different sets of processors can be independent. They

do not have to be the same. In this case, each processor can steer the configurations

independently. As a result, the performance analysis and steering process can be fully

distributed.

• Control points with same configurations on all processors. That means configurations

must be same any time on all processors. In this case, even though we can steer

configurations independently, only one set can be used.

Options for analysis and steering Based on the types of control points described

above, the number of configurations generated by PICS once, whether the performance data

is fully or partially collected, the following options are summarized as shown in figure 6.1.

• Full or Partial: When the analysis is performed, either performance data from

all processors or from partial processors is collected. In Full mode, data from all

processors are collected and analyzed. It provides more accurate analysis but does

not scale well. In Partial mode, only data from a set of processors are collected.

It can reduce the amount of communication in the system and speed up the collect

process. The partial information collection overcomes this drawback in the satisfying

the accuracy.

• Single or Multiple: When performance steering is carried out, new sets of config-

urations are generated. Either single set or multiple sets of new configurations are

generated. Traditionally, when performance analysis is done, the controller generate

64



Full$ Par(al$

Single$

Mul(ple$

Sequen(al$

Parallel$

collected$
performance$data$

set$of$configura(ons$generated$once$

evalua(on$of$configura(ons$

Figure 6.1: Modes of analysis and steering

one set of configurations of control point for next execution. There is another option.

When performance analysis is performed once, the controller generates multiple sets

of configurations. The multiple configurations can be evaluated in parallel or in mul-

tiple steps. This reduces the time of performance collection and analysis. It is more

efficient. The drawback of this mode is that it is possible that some configurations

are in the direction of degrading performance. It is a waste of time to evaluate these

sets of configurations.

• Sequential or Parallel: As described, there are two types of control points. For

some control points, the values must be same for all processors. This is due to

application requirement. While, for other control points, the configurations can be

different on each processor. For the first case, at one time only set of configurations

are applied on all processors and evaluated. For the second case, multiple sets of

configurations can be evaluated in parallel within multiple groups.

Although in theory there are eight total combinations of the above options, some of

them does not make sense. For example, if single configuration is generated once, parallel

evaluation is impossible. Due to some application requirement, if the configurations have
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Figure 6.2: Independent configurations

to be same on all processors, the parallel evaluation does not make sense.

6.2 Distributed Analysis

In the above options, there is one option that we can make future optimization. When

multiple configurations are generated and evaluated in parallel, we can do it in a totally

distributed way. The processors are divided into groups based on the group size. Each group

has a group leader, where all the other processors in this group contribute the data to. The

group leaders are responsible for analyzing the performance data and deciding the next

configurations for the control points. When the decisions are made, the new configurations

are multicast to the processors within the group. This is illustrated in Figure 6.2

Choose among multiple configurations

Here rises a problem - since each group leader independently makes its own decision, the

configurations of same control point on different processors are very likely different shown

in Figure 6.2. Depending on the scenario, this can be right or wrong.

If the configurations are required to be same, we need to tweak this strategy. The idea

is to do a global steering as shown in Figure 6.4. After each group leader makes its own

decision, the results are contributed to a global root processor. This processor determines

which configurations are best to choose. This set of configurations are broadcast to every
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Figure 6.3: Independent configurations with global steering

processor so that every one has the same configurations.

If the configurations on different processors are not required to be same, multiple sets of

configurations can be evaluated in parallel. This is shown in Figure 6.4. A global steering

is performed to generate multiple sets of configurations. Each set of configuration is sent

to one group leader, which is responsible to distribute to all group members.

6.3 The Process of Scalable Tuning

Based on the different modes described above, in PICS, there are the following steering

processes.

1. Performance analysis is performed, and then steering is carried out to generate one set

of configurations. This set of configurations is applied on all processors. The process

is illustrated in Figure 6.5(a).

2. Performance analysis is performed, and then steering is carried out to generate mul-

tiple sets of configurations. These configurations are stored in the control system. In

the next a few rounds, each time one set of configurations is applied on all processors

and evaluated. Multiple sets of configurations are evaluated sequentially. And one
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Figure 6.4: Multiple configurations with global steering

set is chosen among them to be the base of next performance steering. This is shown

in Figure 6.5(b).

3. Performance analysis is performed once, multiple sets of configurations are generated

once. These multiple set of configurations are evaluated in parallel. It is shown in

Figure 6.5(c).
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Chapter 7
Implementation in Charm++

To investigate the appropriate mechanisms required to add control points to parallel appli-

cations, PICS has been developed within the Charm++ runtime system. The framework

is capable of observing performance characteristics across the parallel machine and storing

that information along with the past history of control point configurations for a running

program. Once the framework decides how to adapt the behavior of a parallel program, it

can enact the changes through a callback to the program.

7.1 PICS Framework in Charm++

Charm++ is a message-driven parallel programming paradigm. Charm++ programs are

written mostly in C++, with portions in Fortran, C, or other languages if necessary. A

Charm++ program consists of collections of worker objects called chares that are mapped

onto processors by the runtime system. The chares communicate with each other predomi-

nantly by invoking entry methods asynchronously and remotely on each other. The runtime

system can instrument the computation and communication loads and can remap chares to

processors in order to perform dynamic load balancing. The standard practice in writing

Charm++ programs is to over-decompose the problem so that there exist many chares

on each processor. A scheduler on each processor executes the available entry method

invocations once at a time. We have implemented PICS system in Charm++ parallel

programming system. The PICS framework is implemented as a set of chare objects, one
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instantiated on each processor. This allows the communication and computation performed

by the framework to be automatically interleaved with the execution of the program, lever-

aging the message-driven scheduling.

Measurement Gathering. Charm++ contains mechanisms to measure certain per-

formance characteristics of a running program. To gather measurements that are useful

for automatic performance analysis and tuning, we have developed a new custom tracing

module. The new tracing module records the amount of time spent in each type of entry

method, time spent idle, time spent in overhead (the remaining unaccounted for time) on

each processor, number of messages, and communication volume. The overhead time rep-

resents time spent in the runtime system for handling communication and scheduling. The

measurements produced by the tracing module are used by the control system when it tries

to make automatic performance analysis. Thus it is important to gather measurements

that will likely inform the decision making process. These measurements are general and

abstracted away from the behavioral effects produced by varying a control point.

7.2 Control Point API

In our framework, a control point has the structure as shown in Listing 7.1. It includes its

name, value type, value range, the unit of change, and the approach to change its value.

Besides these, the important fields are the effect and direction of effect as described in

Section 3.3. The effects of control points are the bridge between automatic performance

analysis and performance tuning. The result of performance analysis is correlated to the

effect of some control points. The strategy field is used to select the search algorithms for the

control points, which have no obvious effect. For example, when the possible configurations

of control points are quite few, exhaustive search can be used for accuracy. The arrayID

field is used to locate what tasks are affected by this control point. This is useful for real

applications, which contain various types of tasks. After control points are defined, they

are registered to the control system by calling registerTunableParameter(ControlPoint *tp).

This interface is uniform for registering both runtime system and application control points.

The effects of control points are defined in the PICS system as shown in list 7.2.
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Listing 7.1: Struct of control point

typedef struct __controlpoint
{
char name[30];
enum TP_DATATYPE datatype;
double defaultValue;
double currentValue;
double minValue;
double maxValue;
double bestValue;
double moveUnit;
int moveOP;
int effect;
int effectDirection;
int strategy;
double effectScale;
int arrayID;

} ControlPoint;

void registerControlPoint(ControlPoint *tp);

Listing 7.2: Effects in PICS

enum Effect_t {
PICS_EFF_PERFGOOD=0,
PICS_EFF_GRAINSIZE,
PICS_EFF_AGGREGATION,
PICS_EFF_COMPRESSION,
PICS_EFF_REPLICA,
PICS_EFF_LDBFREQUENCY,
PICS_EFF_NODESIZE,
PICS_EFF_MESSAGESIZE,
PICS_EFF_UNKNOWN

};

72



double getTunedParameter(const char *name, bool *valid);

Listing 7.3: APIs for steps and phases

void PICS_setNumOfPhases(int fromGlobal, int num, char *names[]);

void PICS_startStep();
void PICS_endStep();

void PICS_startPhase(int phaseId);
void PICS_endPhase();

The application acquires a new configuration for the control points by calling a simple

function named getTunedParameter. This function takes the name of the control point and

a bool pointer. When it returns, if the value of the bool is true, it returns the tuned value.

Otherwise it means the control point does not exist yet. The API is as follows.

Besides registering control points, application users also need to tell the control system

about the pattern of the application. We have provided APIs for two types of applications,

including applications with steps and without steps. Most scientific applications generally

compose of a sequence of steps. At the end of a step, corresponding performance data is

collected, analysis is performed, and any required tuning is done. The API for applications

to mark the steps of applications is startStep and endStep. For applications that contain

multiple phases in one step, startPhase and endPhase are provided to mark these phases.

The API is shown in Listing 7.3.

Applications also need to provide a callback to tell the control system how to continue

when the performance steering is done. The callback is a standard Charm++ callback

provided at startup by the application through a registration call such as:

When there is no obvious step boundary in the applications, performance analysis and

steering is done periodically. In this case, the applications do not have to tell the step

boundaries. Neither the callback is required. The PICS performs all these in the back-

ground.

Besides the APIs exposed to the applications, there are also relevant runtime options

void registerAutoPerfDone(CkCallback cb);
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available to control PICS.

1. +auto-pics : PICS analysis and steering happens periodically instead of steps. This

is mainly useful for applications without iterations.

2. +picsGroupSize : This is for the scalable analysis to determine the number of pro-

cessor in one group.

3. +picsCollectionMode : This is also for scalable analysis to determine whether to

perform data gather on all processors or partial processors.

4. +picsOutput : Set the filename to store the results of performance analysis.

7.3 System Design of PICS

Figure 7.1 illustrates the design of PICS. Trace is a common class in Charm++ to provide

the tracing APIs to the runtime and applications. All the specific tracing modules are

inherited from this class and implement the functions for their own purpose. In PICS,

TraceAutoPerf inherits from Trace to trace different events to generate the performance

data. The performance data is stored in the PerfData temporarily. Once the analysis is

started, it is over-written. The old data is saved to DataBase. Here all the tracing happens

on each processor. Once it is time to perform collection, TraceAutoPerf does the most

work. It first collects all data to the group leader or one root processor. Then performance

analysis is carried out. As described earlier, the analysis is based on decision trees with

expert knowledge rules. The decision tree is implemented in Decision Tree class, which

consists of Tree nodes from TreeNode. Once the analysis is done, the results are output for

Projections use or it is fed into TraceAutoTuner. TraceAutoTuner has an instance on each

processor, which is responsible to communicate with TraceAutoPerf and Control Point

database. TraceAutoTuner finally calls ParameterDatabase to steer the control points.

All the history of control points are stored in ParameterDatabase. Based on the input

from TraceAutoTuner and the history data, performance steering is done. The interface

for the runtime system and applications to use PICS is provided in picsAutoPerfAPI and
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Chapter 8
Integration and Validation with

Benchmarks

In this chapter four synthetic benchmarks are studied to demonstrate how to apply PICS

to tune them. For each benchmark, we describe what control points are added in the

benchmarks, how these are related to performance, and how they are steered by PICS.

8.1 Message Pipeline

In this benchmark, processor A sends a 2MB message to processor B. Before sending the

message, processor A performs some amount of computation. After B receives the message,

it performs computation too. The 2MB message can be broken into multiple pieces to be

pipelined. Whenever a portion of computation is finished, one piece of the message can be

sent out. Whenever process B receives the message, it performs the corresponding portion

of computation. In this case, the runtime must determine how many pieces the 2MB data

should be broken into. Depending on the amount of work and the platform, the optimal

value varies. Therefore, the control point in this benchmark is the number of pipeline

messages. It affects the overlap of the computation and communication. Increasing its

value improves the overlap, while it also increases the overhead. Every time the value is

changed, the basic adjustment unit is 1. This means that the number of pipeline messages
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can be increased or decreased by 1. List 8.1 shows the code to register control point, obtain

new value from PICS, tell the applications patterns and callback function.

Listing 8.1: Control point in message pipeling

PICS_registerTunableParameterFields("PIPELINE_NUM", TP_INT, dv, minv, maxv

, 1, PICS_EFF_GRAINSIZE, -1, OP_ADD, TS_SIMPLE);

int frags = (int)PICS_getTunedParameter("PIPELINE_NUM", &valid);

PICS_startStep(true);

PICS_startPhase(true, 0);

//do work

PICS_endPhase(true);

PICS_endStepResumeCb(true, CkCallbackResumeThread());

Figure 8.1 illustrates the process of using PICS to find the optimal number of pipeline

messages for two cases with different amount of computation. When the number of pipeline

messages is small, the program characteristic PICS observes is the high idle time, the

computation is not overlapping communication enough. The corresponding solution is to

increase the number of pipeline messages. Figure 8.2 compares how pipelining improves

the overlap of computation and communication causing a decrease in time per step. In the

figure, white represents the idle time. Blue represents work on the sender side and yellow

stands for work on the receiver side. However, when the number is large, high overhead is

observed which suggests that the number of pipeline messages should be decreased. During

this process, PICS saves the configurations and their performance results for each tuning

step. When configurations are repeatedly searched three times, the best configurations

among the previous runs will be chosen. For the case with little computation, the optimal

performance is achieved when using 4 pipeline messages. Meanwhile, for the case with more

computation, the optimal performance is obtained using 9 pipeline messages. In both cases,

the optimal values are found within 20 steps and the configurations are used for the rest of
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Figure 8.1: Tuning the number of pipeline messages to optimize performance

(a) 1 pipeline message

(b) 10 pipeline messages

Figure 8.2: Timeline of pipeline transferring using 1 message and 10 messages

the run.

8.2 Message Compression

Compressing communication data reduces the network load and accelerates the communi-

cation, possibly improving the performance. However, whether it really benefits the per-

formance depends on multiple factors, compression/decompression speed, compression/de-

compression ratio, and network bandwidth. In order to demonstrate how PICS can be

applied to tune message compression, we have developed a synthetic all-to-all benchmark.

Each processor sends two messages to all the other processors. These two messages have
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different patterns and potentially have different compression ratio based on their content.

In our runtime system, we have 5 compression algorithms. Some of them have high com-

pression ratio but slow speed, like zlib. Others have fast speed but low compression ratio.

No compression is also considered as a possibility. The goal of applying PICS is to deter-

mine whether to use compression and what compression algorithm to use for each type of

messages. These are control points in the runtime system. In this benchmark, we have two

control points associated with these two types of messages.

Listing 8.2: Control point in message compression

TunableParameter *tp_compress_algo = new TunableParameter( "

RTS_compression_algo", TP_INT, 1, 0, 4, 1, OP_ADD, UNKNOWN, 1,

TS_EXHAUSTIVE);

CkpvAccess(allParametersDatabase)->insert( "RTS_compression_algo",

tp_compress_algo);

int compress_algo_index = (int)PICS_getTunedParameter( "

RTS_compression_algo", &valid);

Figure 8.3 shows the process of steering the benchmark and finding the optimal per-

formance for 128KB all-to-all running on 128 cores of Vesta. Different curves represent

cases of messages with different compression ratio, which is controlled by r parameter. The

lower the r is, the higher compression ratio the messages have. The program characteristic

PICS identified in this benchmark is that byte per message is high so as to suggest using

compression to reduce communication. However, it is unclear how well each compression

algorithm performs on each type of messages. Therefore, PICS tries exhaustive search for

possible configurations. PICS tunes the first control point for one message type, and de-

termines the best value for it. After this best configuration for one control point is fixed,

PICS steers another control point for the best value. In all three cases shown in the figure,

the final performance is stable and improved. However, the best configurations for using

compression in three cases vary.
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Figure 8.3: Steering the compression algorithm for all-to-all benchmark

8.3 Jacobi3D Stencil Code

This experiment is to steer the grain size of a Jacobi3D relaxation kernel code. Traditionally,

the number of tasks equals the number of processor-cores. However, this might not provide

the best performance in some cases.

In this experiment, three changes are made to the Jacobi3D code to use PICS. The first is

to register the control points. The three control points are the sub-problem size in X, Y, and

Z dimensions. The effect associated with the control points are the granularity. When the

values of the control points increase, the granularity of tasks increases too. In this problem,

every time when the value is changed, it either multiplies by 2 or 0.5 to make the sub-block

size a power of 2. The second change is to call the autoPerfGlobalNextStep() API function

to perform the steering at a global synchronization point. Third, the application needs to

implement the redistribute() function to re-distribute data into the new decomposition. In

this example, either the original data block is split into small blocks or multiple small blocks

are merged into one bigger block. The data distribution is relatively regular and simple.

So far, we ask the developers to implement this function because only developers have the

knowledge of their data decomposition and layout and know how to redistribute the data.

Figure 8.4 illustrates how PICS steers Jacobi3D in determining the best sub-block sizes.
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Figure 8.4: Jacobi3d performance steering on 64 cores for problem of 1024

The test is running on 64 cores JYC. Three major factors are taken into account for the

performance steering: cache misses, idle time and the runtime overhead associated with

parallel objects. When the grain size decreases, data may fit in the cache, which improves

performance. However, as the grain size decreases and the number of tasks increases, the

runtime overhead may dominate leading to degraded performance. In the figure, when

there is not enough tasks for the 64 cores, the idle time is high. When the sub block size

decreases, the idle time decreases due to better load balancing. Also due to small sub-block

problem, cache miss decreases so that the CPU time decreases. However, when there are

too many tasks, the overhead overcomes the benefit of locality and over-decomposition.

Therefore, the overall performance decreases. At the end, the optimal value is 64 tasks per

core, which gives best cache locality, least idle time, and relatively low overhead.

8.4 Message Aggregation Benchmark

Another important use case of PICS is to control communication, for example, for message

aggregation. Message aggregation as well as a few other communication optimizations

including dynamic routing have been implemented in TRAM library [35] in Charm++.

TRAM combines multiples small messages into big messages and chooses the optimal virtual
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Listing 8.3: Register control points

//register the call back function when performance steering is done
CkCallback cb(CkIndex_Main::newRun(), mainProxy);
registerAutoPerfDone( cb, false);

//register X dimension sub-block size as the tunable parameter
ControllableParameter blockXMsg;
strcpy(blockXMsg.name, "blockDimX");
blockXMsg.datatype = TP_INT;
blockXMsg.defaultValue = blockDimX;
blockXMsg.minValue = 1;
blockXMsg.maxValue = arrayDimX;
blockXMsg.moveUnit = 2 ;
blockXMsg.moveOP = OP_MUL;
blockXMsg.effect = GRAINSIZE;
blockXMsg.effectDirection = 1;
//This is important for multiple chare arrays --
blockXMsg.chareArray = jacobi;
registerTunableParameter(&blockXMsg);

ControllableParameter blockYMsg;
strcpy(blockYMsg.name, "blockDimY");
blockYMsg.datatype = TP_INT;
blockYMsg.defaultValue = blockDimY;
blockYMsg.minValue = 1;
blockYMsg.maxValue = arrayDimY;
blockYMsg.moveUnit = 2 ;
blockYMsg.moveOP = OP_MUL;
blockYMsg.effect = GRAINSIZE;
blockYMsg.effectDirection = 1;
registerTunableParameter(&blockYMsg);

ControllableParameter blockZMsg;
strcpy(blockZMsg.name, "blockDimZ");
blockZMsg.datatype = TP_INT;
blockZMsg.defaultValue = blockDimZ;
blockZMsg.minValue = 1;
blockZMsg.maxValue = arrayDimZ;
blockZMsg.moveUnit = 2 ;
blockZMsg.moveOP = OP_MUL;
blockZMsg.effect = GRAINSIZE;
blockZMsg.effectDirection = 1;
registerTunableParameter(&blockZMsg);

Listing 8.4: Obtain new configurations

blockDimX = (int)getTunedParameter("blockDimX");
blockDimY = (int)getTunedParameter("blockDimY");
blockDimZ = (int)getTunedParameter("blockDimZ");

newarray.redistribute(....)
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Listing 8.5: Data redistribution interface

void redistribute(CProxy_Jacobi newarray, double splitFactor) {
if(splitFactor > 1 ) { //split
distribute its data into sub array elements

}else //merge
{
calculate the merged index and send data into merged elements

}
}

topology for routing. However, it can not automatically decide the optimal buffer size and

virtual topology, instead, it relies on the user input.

In this experiment, we apply our PICS techniques to automate the selection of the fol-

lowing library parameters. The first parameter we add is to control the aggregated message

size. When the size is small, it can not fully utilize the benefit of aggregation. When the

size is big, the overlap of communication and computation can not be fully achieved. Fig-

ure 8.5(a) shows the results of using PICS to achieve optimized performance. We can see

that without using PICS, the performance becomes stable and much better than the initial

performance.

Figure 8.5(b) shows how we use PICS to select the optimal virtual topology. The test

is run on a BGQ machine. The BGQ network is a 5-D torus. Based on this physical

topology and the way to combine the dimensions, we have around total of 10 different

virtual topologies to evaluate. It is challenging to apply the guided search approach to

determine the best virtual topology because of the lack of correlation between a particular

virtual topology and the overall performance. However, since the search space is relatively

small with only 10 possible virtual topologies to compare, PICS can use the exhaustive

search to find the optimal configuration.
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Chapter 9
Real-world Applications Study

The ultimate goal of PICS is to be applied to real-world applications. In the previous

chapter we have shown that PICS can effectively tune simple benchmarks and mini apps.

This chapter discusses the utility of PICS on several real applications to handle more

complex scenarios.

9.1 ParSSSE Tuning

As described in Section 2.4, state space search problems are commonly encountered in var-

ious fields. Two important features of this type of application are that it requires huge

amount of computation and they are inherently parallel. There has been a great deal of in-

terest in developing parallel methods [7,36] for such problems. We have developed ParSSSE

- a Parallel State Space Search Engine - to improve both the programming productivity

and performance [33,34].

In ParSSSE, adaptive grain size control has been proposed and implemented to improve

the parallel performance. The idea of adaptive grain size control is to split the sequential

execution based on a threshold value, which is the maximum allowable execution time for

single task. Figure 9.1 shows an example of searching the tree and spawning the parallel

tasks. Even we have developed adaptive grain size control technique, there is still one

question about when to split the sequential queue to multiple tasks. If we split the queue

when the amount of sequential execution is too small, there is too much overhead associated
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Figure 9.1: Adaptive grain size control in ParSSSE

Number of groups 1 2 4 8 16

Time(sec) 9.7 8.5 8.1 9.4 14.9

Table 9.1: Execution time using different number of groups

with splitting and creating new tasks. If we split the queue when the amount of execution

is too large, there is not enough parallel tasks. As a result the idle time can be high.

Therefore, this directly affects the granularity of task execution. We have added a library

control point. List 9.1 shows the code to add this control point and how the tuned value is

used in the library. Since this control point is added in the ParSSSE library, all state space

search applications benefit from this feature without any modification.

Figure 9.2(a) illustrates the change of utilization and overhead percentage during steering.

Figure 9.2(b) illustrates the change of the grain size control point. With the steering, the

overall utilization increases while the overhead decreases.

Here, the grain size value does not have to be the same on each processor. Therefore,

we have applied parallel evaluation to steer. Table 9.1 compares the total execution time

when using different number of groups for parallel evaluation. Figure 9.3(a) and 9.3(b)

shows the control point change when using 1 group and 4 groups. It can be clearly seen

that when parallel evaluations are used, the optimal value is found much quicker.
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Listing 9.1: Control point in ParSSSE

PICS_registerTunableParameterFields("ParSSSE_entryGrain", TP_DOUBLE,
preDefinedEntryGrain, 0.0001, 10, 1.4, PICS_EFF_GRAINSIZE, 1, OP_MUL,
TS_SIMPLE, 2);

// use the tuned value
double entryGrain = PICS_getTunedParameter("ParSSSE_entryGrain", &valid);
while((state=solver->dequeue()) != NULL)
{
if(processed_nodes == 20)
{
avgentrytime = (CkWallTimer() - instrument_start)/20;

}
f2(state, solver, parallel);
accumulate_time += avgentrytime;
if(accumulate_time > picsEntryGrain)
{
solver-> dequeue_multiple(avgentrytime, processed_nodes);

}
processed_nodes++;

}

(a) Utilization and Overhead

(b) Grain Size

Figure 9.2: Performance variance during Steering
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(a) Using 1 group

(b) Using 4 groups

Figure 9.3: Control point steering using 1 group and 4 groups

9.2 Cosmology Application - ChaNGa

Communication bottleneck problem

In some applications, due to the physical requirement or task mapping, some processors

get much more communication requests than the others. This is called the communication

bottleneck. In order to solve it, one solution is to forward the requests to other processors

to evenly distribute the communication. In our system, we generalized a “mirroring” idea

to solve this problem. Besides the original tasks and data, we keep several copies of tasks

and data. Therefore, when the data is requested, it is forwarded to mirror copies instead

of all going to the original tasks. By carefully selecting the task processor mapping and

the number of mirrors each task has, we can minimizing the communication deviation on

various processors. Depending on the specific applications, how many mirrors each original

task should have is a reconfigurable parameter in our system. We apply the PICS control

system to find the optimal value for the number of mirrors for different applications.

Mirroring API design

We have designed a minimum set of APIs for application developers to use the mirroring
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void setMirror(true);

void ArrayElement::syncMirror( CkCallback& cb);

entry [expedited,mirror] void fillRequestParticles( CkCacheRequestMsg<
KeyType> *msg);

void ArrayElement::unmirrorData(CkMirrorSyncMessage* buffer, int size) { }

char* ArrayElement::mirrorData(int *size) { }

void TreePiece(CkMigrateMessage* m)
{
useAsMirror = true;

}

solution. First, users need to annotate the object to tell that the objects can be mirrored.

Secondly, users need to annotate what messages need to be forwarded to the mirror objects.

The requirement for these functions are that they only read the data without modification.

Thirdly, users need to implement two functions to pack the original data so that the runtime

can send them to the mirrors, and to unpack them in the mirrors. Last, the application

needs to insert code to call a sync API to synchronize the mirror data with the original

objects.

The following shows the APIs for user to apply the mirroring idea. SetMirror(bool) sets

whether the array will be mirrored or not. By default mirroring is not used. SyncMir-

ror(CkCallback) implies the application to synchronize the data from the original array

with their mirrors. The application is blocked until all the mirrors are updated. The call-

back function will proceed once the synchronization is done. Only the requests to the entry

methods with the mirror attribute are distributed among originals and mirrors. All the

other requests to the methods without mirrorr attribute are only sent to the original array.

The mirrorData() and unmirrorData() need to be added to tell what and how to pack/un-

pack data from original array to the mirroring array. In order for the mirroring array not

to migrate, we set the useAsMirror to be true while the original array to be false.

Design and implementation in Charm++

Here, we have generalized the idea and make the number of mirrors a runtime control

point. One particular real application that shows this communication bottleneck problem is
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class ArrayElement : public CkMigratable
{
virtual char* mirrorData(int *size);

virtual void unmirrorData(CkMirrorSyncMessage *buffer, int size);

virtual void recvSyncMirrorData(CkMirrorSyncMessage *);

void recvAck();

void syncMirror(CkCallback& cb);
};

class MirrorUpdate : public CBase_MirrorUpdate
{
};

ChaNGa [18], which is a parallel N-Body cosmology simulation application implemented in

Charm++. The problem is found in calculating gravity phases and solved by replicating

objects. In this experiment, we show how tuning the number of mirrors improves the

performance. Figure 9.4 compares the time cost of calculating gravity without using mirror

and with using various number of mirrors. The top red curve is the time cost without using

mirror while the bottom green curve shows the cost of using mirrors. The optimal value we

found here is to use 2 mirrors.

9.3 Molecular Dynamics Application - NAMD

NAMD [15] is a molecular dynamics application that was developed in the mid-1990’s.

Unlike its contemporaries at that time, NAMD was designed from scratch to be a parallel

program. Over many years, a lot of efforts have been made to scale NAMD to hundreds

of thousands cores. My previous work [25,37] discussed how various manual optimizations

helped improve NAMD performance. The improvement is significant but it requires a lot

of expert knowledge and tuning efforts. The PICS is applied in NAMD. There are two

goals of using PICS in NAMD. The first is to detect performance problems when there are

no known control points to tune it. The second is to dynamically steer the applications by

adjusting the values of control points, which affect the performance.

Visualize the performance and detect the performance problems
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Figure 9.4: Time cost of calculating gravity for various mirrors and no mirror on 16k cores
on Blue Gene/Q

Over the years we have been able to scale NAMD to hundreds of thousands cores [38].

At this scale, performance visualization and analysis becomes very challenging due to huge

amount of data. For example, running NAMD on 64K cores can easily generate tens

of Gigabytes tracing data. It takes both space to store the data and time to transfer

data among computers. Even worse, it is almost impossible to figure out the performance

problems by visualizing the data manually. Here, instead of generating detail tracing data,

the performance summary data generated by PICS can be used to have an overview of

the performance. The high level performance data including idle percentage, utilization

percentage, communication are all included in the summary. The summary data can be

visualized in Projections as described in section 4.4.

Secondly, as it is described in chapter 4, the decision tree based automatic performance

analysis helps detect NAMD performance problems and provide possible solutions. During

the execution the PICS has performed the automatic analysis. The results of analysis are

recorded in the files, which can be read by developers or visualization tools. List 9.2 shows

the results of analysis when running NAMD to simulate DHFR system using 512 cores on

Blue Gene/Q Vesta. From the list, it can be seen that there are a few performance problems,

including high overhead, load imbalance, communication imbalance. The possible solutions
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Listing 9.2: Results of PICS performance analysis on BGQ

Condition High_Overhead 2 -1 AVG_OverheadPercentage 0.213-0.08>0.0 0.213
Condition High_Idle 1 -1 AVG_IdlePercentage 0.132-0.080>0.0 0.132
Condition Load_Imbalance 36 8 MAX_LoadPerPE/AVG_LoadPerPE> 1.10 0.13 70
Condition FEW_ENTRIES 5 8 AVG_EntryMethodDuration-AVG_LoadPerPE< 0.0 0.132
Solution Down PICS_EFF_GRAINSIZE
Solution UP PICS_EFF_LDBFREQUENCY
Condition Few_Obj_Per_PE 9 -1 AVG_NumObjectsPerPE 0.25-3.0<0.0 0.13
Condition Large_Bytes_Per_Obj 40 20 MAX_BytesPerObject/AVG_NumMsgRecv >

1.2 0.13 0
Condition Load_Imbalance 36 8 MAX_LoadPerPE/AVG_LoadPerPE> 1.1 0.13 70
Condition Comm_Imbalance 50 20 MAX_NumMsgRecv/AVG_NumMsgRecv > 1.5 0.0 95
Solution Down PICS_EFF_GRAINSIZE
Solution UP PICS_EFF_REPLICA
Solution Down PICS_EFF_GRAINSIZE

Listing 9.3: Decomposition control point in NAMD

PICS_registerTunableParameterFields("DECOMP_AWAY",
TP_INT, default_decomp, 0, 3, 1,
PICS_EFF_GRAINSIZE_1, -1, OP_ADD, TS_SIMPLE, 1, "WorkDistrib"

);

include decreasing the grain size, increasing load balancing frequency, or using replicas for

communication imbalance.

Steering NAMD with control points

Based on our previous study and experience, we have found that the performance highly

depends on the setting of various configurations. The following control points are extracted

and used to optimize performance.

1. Decomposition degree: including 1-Away, 2-Away X, 2-Away XY, 2-Away XYZ. In

section 4.4 we have presented the performance of running same simulation with 1-

Away decomposition and 2-Away decompositions. That example illustrates that prop-

erly chosen decomposition is required to obtain the best performance. We have make

this as a control point, which has four possible values. The effect of this control point

is the grain size. The code to register this control point is shown in List 9.3.

2. The number of PME pencils used in long range calculation. As described in the

background, the long range calculation in NAMD is implemented using pencil de-

composition of 3D FFT. When there is too few pencils, execution time of each entry
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Listing 9.4: PME pencil control point in NAMD

PICS_registerTunableParameterFields("FFT_PENCIL_NUM",
TP_INT, 1, 1, 2, 1, PICS
_EFF_GRAINSIZE_2, -1, OP_ADD, TS_SIMPLE, 1, "PmePencil");

method might be too large. This might lead to heavy load on the processors with

PME pencils. However, if the number of pencils is large, each pencil has small amount

of computation, small amount of communication. This leads to small messages, small

entry execution. This leads to high computation overhead and high communication

latency. Therefore, depending on the molecular systems, the number of processor

cores the system is running with, the number of FFT pencils should be adaptive. We

have added this as a control point. The registration for it is shown in List 9.4.

In the above, both control points have the effects on the grain size. However, the

associated objects they affect are different. Therefore, the name of the objects is

added to tell the object they have impact on.

3. The compression related control points. Besides the complexity in compression itself,

NAMD has its own challenge. There are two major kinds of messages in NAMD,

short-range messages among neighbors and long-range messages over all the proces-

sors. Since short-range messages communicate with neighbors, they do not cause

global network contention. Therefore, it might not benefit from compression. On the

other hand, long-range messages might need to be compression to reduce the network

contention. Therefore, we need to distinguish these two types of messages.

4. The load balancing frequency. Load balancing in NAMD can significantly impact the

performance. When there is high load imbalance, load balancing should be performed

to improve the performance. However, if it is done too frequently, the overhead of

load balancing might over weigh the benefit of it. Also when running on large number

of cores, load balancing overhead becomes worse. Depending on the degree of load

imbalance in the system, the overhead of load balancing, the benefit of load balancing,

load balancing frequency should be adaptive and dynamically tuned during execution.

We have added this as a control point.
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Listing 9.5: Load balancing frequency control point in NAMD

PICS_registerTunableParameterFields("LDB_FREQ",
TP_INT, 400, 40, 10000, 1,
PICS_EFF_LDBFREQUENCY, -1, OP_ADD, TS_SIMPLE, 1);

Number of cores 8 128 2048 8192

run 1 (ms/step) 444 42.2 17.7 19.5

run 2 (ms/step) 444 39.8 10.2 9.8

run 3 (ms/step) 444 40.2 6.9 6.5

run 4 (ms/step) 444 40.2 6.9 4.9

Table 9.2: Time step of simulating DHFR using different number of cores with PICS steering

Once we have registered the above control points, the next step is to reconfigure the

applications to use the new values from PICS. For the control points of decomposition

method, number of PME pencils, it is not easy to directly use the values. This is mainly

because all the data structures depend on their values. The data structures are constructed

at the beginning so they are difficult to change during execution. Although in theory we

can destruct all the data and re-construct during execution, it costs too much programming

efforts to write this part of code. Instead, we come out with an easier way. The simulation

is run for small number of steps and PICS steering is applied for these steps. Then the

run finishes and the results of PICS are used to modify the configuration file for NAMD

simulation. The program is restarted with the new configurations in the simulation file.

Table 9.2 shows the time step of simulating DHFR using different number of cores. For each

set of processor number, we did four consecutive run. The first run starts with using 1 Away

decomposition. And then the following run uses the tuned configurations from the previous

run. It can be seen that on different number of processor cores, the time step decreases.

Examining the configurations that are used, 1 Away decomposition is the configuration for

the best performance. 2 Away X is best for the run using 128 cores. For 8192 cores run,

2 Away X Y Z is the best configuration. PICS is able to find all the best configurations

regardless of the starting configuration.

The listing 9.6 shows the analysis result of simulating DHFR on 2048 cores with 1Away

and PME being 32. It can be seen that the idle percentage and overhead is high. The high

idle percentage is caused by the load imbalancing and long function execution of short range
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Listing 9.6: Performance analysis of NAMD

Condition High_Overhead 2 -1 AVG_OverheadPercentage-0.070>0.0
Condition High_Idle 1 -1 AVG_IdlePercentage-0.10>0.000
Condition Long_Entry_1 60 12 MAX_EntryMethodDuration_1/AVG_LoadPerPE>1.20
Condition Load_Imbalance 40 12 MAX_LoadPerPE/AVG_LoadPerPE 0.0058>1.10
Solution UP PICS_EFF_LDBFREQUENCY
Solution Down PICS_EFF_GRAINSIZE_1
Condition Small_Entry_2 7 -1 AVG_EntryMethodDuration_2-0.00006<0.00
Solution UP PICS_EFF_GRAINSIZE_2

calculation. The high overhead percentage is caused by the fine grain PME calculation. The

solutions for this are to decrease the grain size of short range calculation and to increase to

the grain size of PME calculation. This example demonstrates that we are able to adjust

the grain size differently for multiple objects.

95



Chapter 10
Related Work

Autonomic computing and adaptive systems have been proposed as one method to deal

with the rising complexity of computer systems [39–41]. Adaptive techniques have been

built to provide performance in web servers [42].

10.1 Compiler Autotuning on Multicore Architectures

Traditionally compiler based autotuning is the most common approach to optimize the

parallel program performance. Such systems generate in parallel a set of alternative im-

plementations of code. These implementations run in parallel and are evaluated to select

the best one. The selection is either done manually or automatically. The examples of

such systems include PERI [43], POET [44], SPIRAL [45], FFTW [46], ATLAS [47], and

PHiPAC [48]. These system work with single node multicore execution.

PERI [43] studies a set of multicore optimizations for three programs of Sparse Matrix

Vector Multiplication (SpMV), the explicit heat equation PDE on a regular grid (Stencil),

and a lattice Boltzmann application (LBMHD). It then employs a code generate to produce

multiple versions of the computational kernels using a set of optimizations with varying

parameter settings. These implementation are tested to figure out the optimal version of

code on the platform. They have demonstrated that auto-tuning is essential in achieving

good performance.

Stencil computation is the kernel code for many scientific applications. Therefore, its
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optimization and auto-tuning on multicore architectures has been widely studied by many

researchers [49–53]. The authors in [49] described various optimizations including hierarchi-

cal blocking, unrolling, reordering, and prefetching, etc. Autotuning is applied to choose the

best combinations of parameters. They believe the application-specific auto-tuners are the

most practical near-term approach for obtaining high performance on multicore systems.

Overall, a lot of progress is achieved for stencil code optimization.

10.2 Autotuning in Distributed System

Now there has been more and more work studying performance tuning and optimization

for the large scale distributed systems and supercomputers. Due to the complexities of

the hardware system and applications, so far no unified solution is found to be best. Each

approach has its advantage and limitation.

Performance tuning has been intensively studied for communication libraries like MPI.

Authors [54] have well tuned the MPI library implementation over InifiniBand network.

Due to the importance of MPI collectives, more research has been done to optimize the

collectives. In paper [11], Thakur and Gropp reports their work on improving the perfor-

mance of collective operations in MPICH on clusters connected by switched networks. For

each collective operation, multiple algorithms are discussed depending on the message size,

with the goal of minimizing latency for short messages and minimizing bandwidth usage

for long messages. Their results show that the new algorithms significantly outperform the

old algorithms. There are other work about MPI collectives optimization [55–59].

Besides MPI tuning, in the high performance computing areas, there has been project

focusing on adaptive optimizations for various applications. Three most important ones of

these projects are Autopilot [60], Active Harmony [61] and MATE [62].

Autopilot is a system that gathers performance data for grid applications through sensors,

either accessing program variables directly or calling functions that have been added to a

program. Information provided by these sensors can be analyzed by a set of fuzzy logic

rules to trigger actuators that adapt the behavior of a program. In Autopilot, the sensors

and actuators used by Autopilot are written specifically for each application. However, in
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our control point system, the concept and APIs are general purpose for both applications

and the runtime system.

Active Harmony allows parallel programs to expose a list of integer tunable parameters.

The parameters can be tuned across multiple runs [61] or in an online manner [63]. The

tuning algorithms used in Active Harmony include various direct search methods such as

Nelder-Mead Simplex and a new algorithm called Parallel Rank Ordering [63]. Our PICS

focuses on steering by analysis and the effects of control points while Active Harmony

focuses on the optimization methods.

MATE tunes the parallel/distributed applications by monitoring, analysis, and tuning

the environments. It does either automatic tuning for the libraries or dynamic performance

tuning for applications. For application tuning, it explicitly asks users to define the perfor-

mance models, which can be hard for real applications. Our PICS does not require this so

as to reduce the burden of programmers.

Nowadays with power and energy becoming concern in HPC areas, researchers start

to automatically control or reduce the energy cost by adaptive methods. The SEEC - a

General and Extensible Framework for Self-Aware Computing project [41, 64] proposes a

novel approach that is capable of addressing the power and energy constraints by adding a

self-awareness dimension to computational models. Given a set of goals and actions, SEEC

uses analysis and decision engines (e.g., adaptive feedback control systems and machine

learning) to monitor application progress and select actions to meet goals optimally (e.g.

meeting performance goals with minimal power consumption).
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Chapter 11
Conclusion Remarks

This thesis aims at improving both the parallel program performance and productivity. It

proposes a design of an introspective control system that supports dynamic performance

steering. The application developers provide tuning knobs and related knowledge to guide

the control system. The tuning knobs are represented as control points, which are the

interface between the control system and the applications or runtime system. Meanwhile,

the control system collects the program behaviors, analyzes the performance and dynam-

ically steer the program execution. Expertise knowledge rules based performance analysis

are applied to accelerate the process of automatic performance steering at runtime. This

thesis also investigates how the parallel runtime system and applications can become more

adaptive and controllable by exposing abstractions to the introspective control system. In

order to make approach more feasible in practice, scalable techniques are developed so as

to handle large-scale run analysis and steering.

The ideas and techniques are implemented in the PICS framework - Performance-analysis-

based Introspective Control System. It is based on the Charm++ runtime system. Dif-

ferent control points have been added to several synthetic benchmarks and real-world ap-

plications. The relationships between these control point values and the resulting program

performance and measurable effects are discussed. For all control points, it is shown that

it is often possible to determine the correct direction to turn each knob to improve perfor-

mance by examining various types of measurements.

99



There still remain more categories of control points to be examined. It is still an open

problem to determine the most effective and general purpose tuning scheme for large ap-

plications with many control points. To more fully address all of these issues, more control

points should be added to more applications. The costs of benefits of various tuning schemes

will be further analyzed in the future.

As computers are moving towards more complex, larger parallel systems, and with Exas-

cale computing ahead, we believe that automatic tuning of parallel programs will become

necessary. Our work on control points investigates one such avenue for dynamically reconfig-

uring applications and the runtime system. Many open questions exist about the generality,

costs, and benefits of automatic tuning, and whether automatic tuning will eliminate some

of the need for human experts in developing complex applications. The answers to these

questions will likely influence the designs of future parallel programming languages, runtime

systems, and even the architectures of machines.
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Appendix A
Rules for Decision Trees

Listing A.1: Certainty Tree

-1 Root

0 CPU_Util AVG UtilizationPercentage SUB -1 0.94 GT 1 Root

0 High_Overhead AVG OverheadPercentage SUB -1 0.08 GT 1 Root

0 High_Idle AVG IdlePercentage SUB -1 0.08 GT 1 Root

0 Small_Message AVG BytesPerMsg SUB -1 300 LT 1 High_Overhead

0 High_CacheMissRate AVG CacheMissRate SUB -1 0.1 GT 1 CPU_Util

0 LOW_CacheMissRate AVG CacheMissRate SUB -1 0.1 LT 1 CPU_Util

0 Small_Entry AVG EntryMethodDuration SUB -1 0.00006 LT 1 High_Overhead

0 Long_Entry MAX EntryMethodDuration DIV 0 AVG LoadPerPE GT 1.2 1

High_Idle

0 Long_Object MAX LoadPerObject DIV 0 AVG LoadPerPE GT 1.2 1 High_Idle

0 Load_Imbalance MAX LoadPerPE DIV 0 AVG LoadPerPE GT 1.1 1 High_Idle

0 Long_Critical_Path MAX CriticalPathLength DIV 0 AVG LoadPerPE GT 1.2 1

High_Idle

0 FEW_INVOC AVG NumInvocations SUB -1 1 LT 1 High_Idle

0 FEW_ENTRIES AVG EntryMethodDuration SUB 0 AVG LoadPerPE LT 0 1 High_Idle

1 Leaf_Up_Grainsize UP PICS_EFF_GRAINSIZE 1 Small_Entry

1 Leaf_Down_Grainsize DOWN PICS_EFF_GRAINSIZE 5 Long_Entry Long_Object

Long_Critical_Path FEW_ENTRIES FEW_INVOC

1 Leaf_Up_Aggregation UP PICS_EFF_AGGREGATION 1 Small_Message

1 Leaf_Up_LDB_Frequency UP PICS_EFF_LDBFREQUENCY 1 Load_Imbalance

1 Leaf_Up_Msgsize UP PICS_EFF_MESSAGESIZE 1 Small_Message
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Listing A.2: Fuzzy Tree

#inter-leaf key avg-min-max key_in_int OP flag value/index symbol parent

-1 Root

0 CPU_Util AVG UtilizationPercentage SUB -1 0.94 GT 1 Root

0 High_Overhead AVG OverheadPercentage SUB -1 0.08 GT 1 Root

0 High_Idle AVG IdlePercentage SUB -1 0.08 GT 1 Root

0 Small_Message AVG BytesPerMsg SUB -1 300 LT 1 High_Overhead

0 High_CacheMissRate AVG CacheMissRate SUB -1 0.1 GT 1 CPU_Util

0 LOW_CacheMissRate AVG CacheMissRate SUB -1 0.1 LT 1 CPU_Util

0 Few_Obj_Per_PE AVG NumObjectsPerPE SUB -1 3 LT 1 High_Idle

0 Large_Bytes_Per_Obj MAX BytesPerObject DIV 0 AVG NumMsgRecv GT 1.2 1

High_Idle

0 Large_Bytes_PerMsg AVG BytesPerMsg SUB -1 100000 GT 1 High_Idle

0 Load_Imbalance MAX LoadPerPE DIV 0 AVG LoadPerPE GT 1.1 1 High_Idle

0 Comm_Imbalance MAX NumMsgRecv DIV 0 AVG NumMsgRecv GT 1.5 1 High_Idle

0 Much_External_Comm AVG ExternalBytePerPE DIV 0 AVG BytesMsgRecv GT 0.8 2

High_Idle High_Overhead

1 Leaf_Up_Grainsize UP PICS_EFF_GRAINSIZE 2 Small_Message High_Overhead

1 Leaf_Down_Grainsize DOWN PICS_EFF_GRAINSIZE 3 Few_Obj_Per_PE

High_CacheMissRate Load_Imbalance

1 Leaf_Down_LDB_Frequency DOWN PICS_EFF_LDBFREQUENCY 1 High_Overhead

1 Leaf_Up_Nodesize UP PICS_EFF_NODESIZE 1 Much_External_Comm

1 Leaf_Down_Aggregation DOWN PICS_EFF_AGGREGATION 1 Large_Bytes_PerMsg

1 Leaf_Down_Msgsize DOWN PICS_EFF_MESSAGESIZE 1 Large_Bytes_PerMsg

1 Leaf_Up_Compression UP PICS_EFF_COMPRESSION 1 Large_Bytes_PerMsg

1 Leaf_Perf_Good UP PICS_EFF_PERFGOOD 1 LOW_CacheMissRate

1 Leaf_Up_Replica UP PICS_EFF_REPLICA 1 Large_Bytes_Per_Obj
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