
A Batch System with Efficient Adaptive Scheduling
for Malleable and Evolving Applications

Suraj Prabhakaran∗†, Marcel Neumann∗†, Sebastian Rinke∗†, Felix Wolf ∗†, Abhishek Gupta‡, Laxmikant V. Kale‡
∗German Research School for Simulation Sciences, Aachen, Germany

Email: {s.prabhakaran, m.neumann, s.rinke}@grs-sim.de.com
†Technische Universität Darmstadt, Darmstadt, Germany

Email: wolf@cs.tu-darmstadt.de
‡Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA

Email: {gupta59, kale}@illinois.edu

Abstract—The throughput of supercomputers depends not
only on efficient job scheduling but also on the type of jobs
that form the workload. Malleable jobs are most favorable
for a cluster as they can dynamically adapt to a changing
allocation of resources. The batch system can expand or shrink a
running malleable job to improve system utilization, throughput,
and response times. In the past, however, the rigid nature of
commonly used programming models like MPI made writing
malleable applications a daunting task, which is why it remained
largely unrealized. This is now changing. To improve fault
tolerance, load imbalance, and energy efficiency in emerging
exascale systems, more adaptive programming paradigms such
as Charm++ enter the scene. Although they offer better support
for malleability, current batch systems still lack management
facilities for malleable jobs and are therefore incapable of
leveraging their potential. In this paper, we present an extension
of the Torque/Maui batch system for malleability. We propose
a novel malleable job scheduling strategy and show the first
batch system capable of efficiently managing rigid, malleable, and
evolving jobs together. We demonstrate that our strategy achieves
consistently superior performance in comparison to every other
state-of-the-art malleable job scheduling strategy under varying
dynamics of the workload.

Keywords-malleable jobs; evolving jobs; adaptive scheduling;
adaptive resource management; batch systems

I. INTRODUCTION

A batch system is an important middleware for managing
supercomputing resources. It consists of a scheduler and a
resource manager which work together to run parallel jobs
on a cluster. In addition to just executing jobs, it is also
responsible for efficient job management such as maintaining
high system utilization and throughput (system perspective)
while also ensuring faster response times and fairness among
the jobs (user perspective). However, achieving the stated
performance not only depends on efficient job scheduling, but
also on the workload and the types of jobs it comprises.

As defined by Feitelson and Rudolph [1], jobs can be
classified in four categories based on their flexibility. The first
and the most common type is the rigid job, which requires
a fixed number of processors throughout its execution. The
second type is called the moldable job, whose resource set can
be molded or modified by the batch system before starting the
job (e.g., to effectively fit alongside other rigid jobs). Once

started, its resource set cannot be changed anymore. Since
the allocation of rigid and moldable jobs must be finalized
before the job starts, it is termed static allocation. The third
type is called the evolving job, which requests a resource
allocation expansion or shrinkage during the job execution.
Applications that use multiscale analysis [2] like Quadflow [3]
or adaptive mesh refinement (AMR) [4] often exhibit evolving
behavior typically due to unexpected increases in computations
or having reached hardware limits (e.g., memory) on a node.
Finally, the fourth class of jobs is called the malleable job.
In contrast to evolving jobs, the expansion and shrinking
of resources on a malleable job are initiated by the batch
system. The application adapts itself to the changing resource
set. This property of expanding or shrinking evolving and
malleable jobs (together termed adaptive jobs) at runtime is
called dynamic allocation.

Malleable jobs hold a strong potential to obtain high sys-
tem performance. Batch systems can substantially improve
the system utilization, throughput and response times with
efficient shrink/expand strategies for malleable jobs. Similarly,
applications also profit when expanded with additional re-
sources as this can increase application speedup and improve
load balance across the job’s resource set. Enabling malleable
jobs in cluster systems requires three major components: (i) a
parallel runtime that is able to adapt to a changing resource
set, (ii) a batch system with dynamic allocation facilities, and
(iii) a communication mechanism between the two. Tradi-
tionally, all batch systems supported only static allocations.
This is primarily due to the rigid nature of commonly used
programming models like MPI, which made writing malleable
jobs a laborious undertaking. Enabling malleability with MPI
required the user to implement functionalities to listen to
expand/shrink messages and manually manage the complex
MPI communicators for the changing environment in the
application. Although some efforts to produce malleable MPI
applications with minimal programming overhead have been
proposed [5] [6], malleable jobs remain largely unrealized in
present cluster systems.

However, to meet the needs of improved fault tolerance, load
imbalance, and energy efficiency in emerging exascale sys-
tems, adaptive programming paradigms (such as Charm++ [7]

and OmpSS [8]) are foreseen to play a significant role [9] [10].
For example, the Charm++ runtime can autonomically manage
resources where it can identify and ameliorate load imbalance,
adapt the application to a changing resource set, as well as
cope with the intermittent loss of resources due to component
failures. A fault-tolerant version of MPI slated to be released
in the near future to fit exascale systems will also bring
adaptiveness to its runtime system. Applications using these
paradigms are automatically malleable. Using such program-
ming paradigms paves the way for power-aware adaptive
scheduling which has the ability to handle the energy chal-
lenge for future systems [10]. Furthermore, these paradigms
become the first choice for writing evolving simulations as
programmers do not have to manage the dynamically allocated
resources manually.

Thus, it is an urgent necessity for batch systems to support
dynamic allocation facilities and manage a mix of job types
in order to reduce resource wastage, increase throughput and
address the ever increasing user demand for faster response
times. To this end, this paper advances the state of the art in
batch job management by proposing an extended Torque/Maui
batch system with a novel and an efficient scheduling and
resource management strategy for malleable jobs. By com-
bining it with our previous work on supporting unpredictably
evolving applications [11], we present the first production
batch system for the combined scheduling of rigid, malleable,
and evolving jobs unlike past works which either simulated
malleable jobs [12], [13] or demonstrated prototype/demo
schedulers [14], [15], [16]. Towards establishing a next gener-
ation batch system and a tight coupling with parallel runtime,
our main contributions are:

• An extended Torque/Maui batch system that is capable
of shrinking/expanding malleable jobs

• A novel malleable job scheduling strategy
• A communication protocol between the batch system

and the Charm++ runtime which enables malleability of
applications [15]

• The integration with a scheduling algorithm for evolving
jobs to support combined scheduling of rigid, malleable,
and evolving jobs.

Evaluation of the batch system shows that our malleable job
scheduling strategy consistently delivers superior performance
in comparison to all other state-of-the-art strategies under
varying dynamics of the workload.

The remainder of this paper is organized as follows. Sec-
tion II discusses notable past work on scheduling malleable
jobs. In Section III, we discuss the main objective of malleable
job scheduling and outline the goal of our approach. In
Section IV, we present the extended Torque/Maui batch system
with shrink/expand facilities, the communication mechanism
with Charm++, and the efficient scheduling strategy. We
evaluate the batch system in Section V. Finally, we conclude
the paper and discuss future work in Section VI.

II. RELATED WORK

The advantages of malleable jobs were theoretically iden-
tified several years back. For this reason, frameworks for
writing malleable applications were already introduced [17]
[18] years ago. Kale et. al. [19] developed an adaptive runtime
system for Charm++ and showed the benefits of malleable jobs
compared to rigid ones with an experimental scheduler and
equipartitioning policy.

Efficient resource management and scheduling for malleable
jobs has been studied actively since then. Most of the work
in this field pertains to theoretical aspects of scheduling and
evaluation with simulations. For example, Carrol et. al [12]
proposed a method for online scheduling of malleable jobs
where the main goal was to assign resources to jobs such
that the total running time is reduced. Users submit a job
along with an indication of the amount of time that will be
required by the job to run on a single processor. To ensure
that users do not manipulate the scheduler by misreporting
the job’s parameters, incentives were given to users if their
job was completed on the specified deadline. Sun et. al. [13]
proposed a scheduling strategy whereby resources are dis-
tributed to malleable jobs using the equipartitioning technique
but periodically adjusted based on application feedback of its
scaling pattern. Similar approaches were taken by Mounie et
al. [20] and Blazewicz et al. [21].

Below, we discuss notable prototypical/demo schedulers
for malleable jobs. Their scheduling methodology follows
a standard approach according to which, when the queued
job with the next highest priority cannot be started anymore
due to the lack of resources, the scheduler attempts to find
nodes for the job by shrinking already expanded malleable
jobs. When the next queued job cannot make use of any
resources even by shrinking other jobs, then an expand phase
is started where available idle resources are distributed across
the running malleable jobs to improve system utilization and
throughput. The order of jobs selected for shrinking and expan-
sion varies according to the policy. Hungershöfer [16] showed
that moldable and malleable jobs can significantly improve the
response times through the equipartitioning strategy for shrink
and expand. Utrera et. al. [14] proposed an FCFS-malleable
strategy which distributes available nodes to malleable jobs
in earliest-started-job-first order. They also investigated other
strategies such as earliest deadline first, latest deadline first
and the one with the least CPU utilization first. They showed
that for a cluster composed only of malleable jobs, the earliest
started first strategy generally performed better and improved
the average response time by 31% in comparison to well-
known EASY backfilling. The OAR resource manager [22]
was also extended to support malleable MPI jobs. However,
the problem of scheduling multiple malleable jobs was not
discussed.

In the context of grids, Buisson et. al. [23] introduced
malleability in the KOALA multicluster grid scheduler with an
equigrow and equishrink policy, a different flavor of equipar-
titioning. While the equipartition policy tries to equalize the

amount of malleable nodes held by each running malleable
job, the equigrow policy simply distributes the current set
of idle resources equally among the malleable jobs. Thus,
irrespective of the number of nodes held malleably by a job,
it will be expanded by an equal proportion of idle nodes when
the scheduler starts an expansion phase.

In general, naive equipartitioning was often employed and
benefits were shown through prototypical schedulers. In this
paper, we present a production batch system for malleable
jobs and show its benefits with Charm++ applications that
become automatically malleable when run under the proposed
batch system. We also evaluate a new malleable job scheduling
strategy and compare it with naive equipartitioning, earliest
started first, earliest deadline first and latest deadline first.

III. BASIC APPROACH

In this section, we discuss the various aspects of scheduling
malleable jobs and define the goal behind the approach taken
in this paper.

A. Resource Utilization and Throughput

Malleable jobs help to considerably reduce the resource
wastage by using idle resources when expanded. However,
increased resource utilization does not always imply higher
throughput. With a cluster running several malleable jobs,
an inefficient selection of jobs for expansion and shrinkage
can lead to higher resource utilization without any increase in
throughput. In certain cases it may even be counterproductive
to a gain in throughput. Such scenarios are shown in Section V
with the evaluation of some of the scheduling strategies.
Therefore, a malleable job scheduling scheme must analyze
job and resource dependencies to deliver a better overall
performance.

B. Fairness

Enabling some amount of fairness in expand/shrink is essen-
tial as it can motivate users to write more malleable applica-
tions as opposed to rigid ones. Equipartitioning is a reasonably
good strategy towards enabling fair dynamic (de)allocations.
However, equipartitioning alone cannot improve the global
system throughput and response times for the same reason
that it can contradict the best malleable job selection for
expand/shrink. This is also exemplified with experiments in
Section V. Therefore, a good malleable scheduling strategy
must target system efficiency along with as much fairness as
can be delivered.

C. Communication with the Parallel Runtime System

Apart from powerful scheduling schemes, enabling mal-
leability also requires a scalable shrink/expand mechanism.
Typically, expansion can happen almost instantaneously as the
parallel runtime may be able to spawn new parallel tasks as
soon as it obtains the fresh nodes. However, shrinking may
require more time since the task running on the nodes to be
removed needs to be completed (usually until the end of an
iteration in iterative applications), data required by the rest of

the application needs to be retrieved and the process must be
killed. To facilitate immediate release, it is also possible to use
the internal checkpointing mechanism of Charm++ to abort the
processes immediately and restart the application from the lat-
est checkpoint. For simplicity, we follow the former policy in
this work. Another aspect of communicating with the runtime
system is the option of making scheduling decisions based
on application feedback. Typically, when running iterative
applications, communicating the iteration times regularly to
the batch system can help it select more responsive and well-
scaling applications for shrink/expand. However, feedback
mechanisms introduce other overheads such as too frequent
communication, inconsistency (as iteration times are not al-
ways constant), and increased complexity for non-iterative
malleable applications. Thus, efficient feedback mechanisms
for malleable applications have been exclusively studied by
many [24], [25]. Scheduling based on feedback from applica-
tion on its scaling pattern is our interest for investigation in
the future and is out of scope of this work.

IV. THE ADAPTIVE BATCH SYSTEM

In this section, we describe the dynamic allocation facilities
in the Torque/Maui batch system and scheduling strategy for
malleable jobs. We start by providing an overview and proceed
to discuss the extensions.

A. Overview of Torque/Maui

The Torque/Maui batch system is one of the most commonly
used middleware for batch job control. The Torque resource
manager [26] is based on the PBS project [27], extended
to improve scalability and fault tolerance, and is currently
maintained by Adaptive Computing. Torque is usually in-
tegrated with sophisticated schedulers such as Maui [28],
which provides advanced scheduling features such as job
prioritization, fairshare, and backfill scheduling.

A Torque/Maui cluster consists of a headnode, a fron-
tend, and many compute nodes. The headnode runs the
pbs_server daemon (server) and the Maui scheduler dae-
mon. The compute nodes run the pbs_mom daemon (mom).
Users are provided with a number of client commands to
communicate with the server for tasks such as job submission,
alteration, and checking the status of a job. They are installed
on the frontend. Figure 1 illustrates the typical workflow
of the Torque/Maui batch system. The client submits a job
through the qsub command by specifying the number of
nodes, the number of processors per node, the duration for
which resources are required (walltime of the job), and other
software or hardware requirements. The job is then queued
at the server. When Maui allocates resources for this job,
the list of nodes is sent to the server, which forwards it
to one of the nodes called for the job that assumes the
role of mother superior. The mother-superior node and the
other allocated nodes perform a join operation, after which
the user application starts execution. The Maui scheduler
communicates with the server and schedules jobs iteratively.
A scheduling iteration is followed by a period of sleeping or

Mom	
0	

Mom	
1	

Mom	
2	

Mom	
3	 Maui	 Server	

Client	

Mother	 Superior	

JOIN_JOB	

Start	 execu>on	

Submit	 job	
	 	 	 	 	 qsub	

Schedule	 job	

	 Send	 job	

1

2 3

4

5

Fig. 1. Workflow of the Torque/Maui batch system. Circled numbers indicate
the sequence of steps.

Algorithm 1 Maui Iteration
1: while TRUE do
2: Obtain resource information from Torque
3: Obtain workload information from Torque
4: Update statistics
5: Refresh reservations
6: Select jobs eligible for priority scheduling
7: Prioritize eligible jobs
8: Schedule the jobs in priority order and create reservations
9: Backfill jobs

10: end while

processing external commands. Maui will instantly start a new
iteration when (i) a job or resource state change occurs, (ii) a
reservation boundary event occurs, (iii) an external command
to resume scheduling is issued, or (iv) a configurable timer
expires. The steps of a scheduling iteration are detailed in
Algorithm 1.

During each iteration, Maui obtains the most recent infor-
mation about resources and jobs from Torque and updates
the historical statistics and usage information of all the jobs.
Then, jobs meeting a minimum scheduling criterion, based on
throttling policies and job states, are selected and considered
for scheduling. The selected jobs are prioritized according to
various policies and scheduled in the order of their priorities.
During this process, two types of jobs are created according
to the reservations: StartNow and StartLater. StartNow jobs
are jobs with reservations that start immediately. StartLater
jobs are jobs with reservations made to start at a later point
in time due to the lack of resources preventing immedi-
ate job start. These reservations are created for the earliest
time at which the resources will become available for the
jobs. The number of StartLater jobs that need to be created
can be configured by an administrator-configurable parameter
ReservationDepth. Jobs that are not reserved are then
backfilled out of order. Backfilling is a strategy of increasing
resource utilization by running low-priority jobs out of order
as long as they do not disturb the high-priority reservations.
A higher ReservationDepth leads to a more conservative
backfilling while a lower ReservationDepth allows more
jobs to be backfilled. Maui considers various aspects for job
prioritization such as the fairness, resource requirements, and
waiting time of a job. A detailed description of these features
is available in [28].

B. Shrink/Expand for Malleable Charm++ Jobs

Given the structure of the Torque/Maui batch system, the
following features were implemented in Torque to enable

shrink/expand facilities:
• An extended qsub command to submit a malleable job
• Functionality to shrink/expand a resource set at the server

based on Maui’s instruction
• Functionality to associate/disassociate nodes at the mom

based on the server’s instruction
• A communication mechanism between the mom and the

Charm++ runtime system for malleability interaction
A malleable job can be submitted with the extended qsub
command as shown in the example below:

$ qsub -l nodes=2:ppn=8,walltime=3600 \
> -L max=6,type=charm++ jobscript.sh

A user indicates the minimum number of nodes required for
a job, the fixed number of processors required per node and
the duration of the job with the minimum number of nodes
through the -l option. To indicate the malleability of the job,
the user must specify the -L option indicating the maximum
number of nodes that can be used by the job and a job
type. In general the shrink/expand facilities can be used for
any job. However, as there is no standard way of interacting
between the batch system and the parallel runtime, it requires
development and integration of appropriate communication
for every programming paradigm. The job type indicates to
the batch system the type of programming paradigm used
by the job so that the right mechanism can be chosen for
communication. In the current version, only Charm++ jobs
are fully supported.

For malleability interactions, the Converse Client-Server
interface (CCS) [29] in the Charm++ runtime system was
leveraged and a shrink/expand specific handler was developed.
A separate management thread of a Charm++ job acts as a
CCS-server that listens to shrink/expand via TCP/IP as soon
as the application begins executing. The corresponding CCS-
client has been integrated into the mom. Before starting the
application through the charmrun command from the job
script, the mother-superior assigns a unique port at which the
CCS-server must listen by appending the highlighted code
shown below:

> charmrun +p8 ./exec \
++server ++server-port=1234

Users are not permitted to manually activate the CCS-server.
This allows the mother-superior to assign unique port numbers
to all Charm++ applications that may run on the same space-
shared node. Figures 2 and 3 illustrate the steps of an expand
and shrink process in the Torque RMS, respectively. When the
scheduler initiates an expand operation, it sends the new list of
hosts to be added for the job to the server. The server updates
the internal information and forwards the list to the mother-
superior executing the job. The mother-superior modifies the
nodes list (hostfile) and performs a dyn join operation to
dynamically associate the new nodes with the job. It then
sends the CCSExpand message through the CCS-client API
to inform the application. The reply to this message from
the CCS-server is immediate and the Charm++ runtime starts

Mom	
0	

Mom	
1	

Mom	
2	

Mom	
3	 Maui	 Server	

Mother	 	
superior	

Schedule	
Expansion	

Send	 Info	

Change	
hos>ile	

App	

CCSExpand	

App	

3
DYN_JOIN_JOB	

1 2

4

Fig. 2. Expanding a job by adding nodes 2 and 3. Circled numbers indicate
the sequence of steps.

Mom	
0	

Mom	
1	

Mom	
2	

Mom	
3	 Maui	 Server	

Mother	 	
superior	 Change	

hos7ile	

App	 App	

3

2

5
DYN_DISJOIN_JOB	

4

Send	
shrink	

CCSShrink	

App	 App	

Ack	

1
6

Ack	
7
Ack	

Fig. 3. Shrinking a job by removing nodes 2 and 3. Circled numbers indicate
the sequence of steps.

using these resources after the next synchronization point
in the application (typically between iterations). A similar
process is carried out during a shrink operation, except that
after the mother-superior sends the CCSShrink message to the
application, the reply is not immediate. The CCS-server replies
only after the data from the shrinking nodes are retrieved
and the processes are cleaned during the next synchronization
point.

C. Malleable Scheduling with Maui

By design, the Maui scheduler supports only rigid jobs. In
our previous work [11], we extended the Maui scheduler to
support evolving applications. To maintain fairness between
evolving requests and static requests (jobs queued through
qsub), new dynamic fairness policies were introduced. In this
work, we further extended the Maui scheduler in the following
ways:

• We enhanced the resource allocation mechanism to ex-
pand and shrink a resource allocation set

• We devised a dependency-based expand/shrink (DBES)
algorithm for efficient scheduling of malleable jobs

• We enriched Maui’s iteration with combined scheduling
of rigid, malleable, and evolving jobs

All malleable jobs are always allocated according to their
minimum requirements and later expanded. The DBES algo-
rithm consists of two expansion steps. The first expansion step,
contrary to other strategies, is based on analyzing job and
resource dependencies, and targets increasing throughput. The
earliest start time of a StartLater job is the deadline of that
running job after whose completion all the resources requested
by the StartLater job become available. For example, consider
a four-node system with two running jobs A and B using one

Algorithm 2 Maui Iteration
1: while TRUE do
2: Obtain resource information from Torque
3: Obtain workload information from Torque
4: Update statistics
5: Refresh reservations
6: Prioritize eligible static requests
7: Prioritize eligible evolving requests
8: Schedule static requests in priority order and create reserva-

tions (without job start)
9: for each evolving request do

10: Allocate idle resources
11: if Enough idle nodes not available then
12: Shrink expanded malleable jobs to find resources
13: end if
14: if Enough idle nodes found then
15: Apply fairness policies and determine if job expansion

is allowed
16: if Expansion is allowed then
17: Allocate resources for evolving job
18: else
19: Reject the dynamic request
20: end if
21: else
22: Reject the dynamic request
23: end if
24: end for
25: Reschedule static requests and create reservations (with job

start)
26: Update job dependencies according to the new system state
27: for each reserved job do
28: Prioritize malleable jobs in the order: (i) malleable job ex-

panded for this reserved job, (ii) malleable job expanded
for no specific reserved job, (iii) malleable job expanded
for other reserved jobs

29: Analyze if expanded malleable jobs can be shrunk in the
above order to make enough nodes available to start the
reserved job

30: if enough nodes were found then
31: Shrink the selected malleable jobs
32: Start the reserved job
33: end if
34: end for
35: Reschedule static requests and create reservations
36: Update job dependencies according to the new system state
37: for each reserved job do
38: if job depends on one malleable job then
39: Expand the malleable job with the available nodes
40: else if job depends on more than one malleable job then
41: Equipartition available resources among these mal-

leable jobs
42: end if
43: end for
44: Update job dependencies
45: Backfill non-reserved static requests from the job queue
46: Equipartition available idle nodes among other running mal-

leable jobs
47: end while

node each for a scheduled period of 1 hour and 1/2 hour,
respectively. If a queued job C requires 3 nodes for execution,
it can start as soon as B is completed because two nodes are
already available. On the other hand, if C requires 4 nodes
for execution, it has to wait longer until the completion of
job A. In our approach, we determine the dependencies of
all StartLater jobs in the order of their priority. If the job on
which a StartLater job depends is malleable, it is expanded
using the available resources up to its user-specified maximum.
Jobs expanded in this step maintain information about the
dependent job in the queue for which the expansion was

made. The second expansion step targets improving resource
utilization and fairness, thereby equipartitioning the available
resources across malleable jobs.

The complete Maui iteration for the combined scheduling of
rigid, evolving, and malleable jobs is shown in Algorithm 2. In
the first step, all the static and evolving requests are prioritized
separately (line 6-7). Static requests are scheduled, which
creates the StartNow and StartLater jobs (line 8). At this
point (lines 9-24), StartNow jobs are not yet started. Evolving
requests are now scheduled, which may steal resources from
the StartNow jobs, thereby causing delay to the StartNow
as well as to the StartLater jobs. In our previous work, we
designed dynamic fairness policies for the Maui scheduler
to ensure fairness between such unpredictably evolving re-
quests and static requests, which were based on administrator-
configurable parameters [11]. With these policies, it was
shown that evolving jobs can be served (as long as idle nodes
are available) with fairness by controlled and admissible delay
that can also take historic delays for users into consideration.
This strategy improved the system utilization and throughput
as well as job response times. These fairness policies are
applied at this point to decide if the evolving request should
be satisfied or rejected. When no idle nodes are available, the
system determines whether shrinking expanded malleable jobs
can serve the evolving requests. At this point, the malleable
jobs expanded in the second expansion step are considered
first. If not enough nodes can be extracted from these jobs, the
other malleable jobs expanded as part of the first expansion
step are considered. If sufficient nodes are found, the mal-
leable jobs are instructed to shrink to release the nodes. The
dynamic fairness policies are then applied again to determine
whether the evolving request can be satisfied with the newly
available nodes. If yes, the evolving job is granted these nodes.
Otherwise, the nodes obtained from the shrink operation are
used later for expansion or backfilling. In the future, we plan
to improve the system to enable it to apply dynamic fairness
policies without having to shrink the jobs so as to reduce the
overhead.

After all the evolving requests have either been satisfied
or rejected, a new schedule of static requests is performed
as the state of the system and job dependencies may have
changed (line 25). StartNow jobs produced at this step are
started immediately. Any expanded malleable jobs maintaining
invalid job dependencies are cleared (line 26). Now a shrink
phase is initiated to attempt to locate nodes for StartLater jobs
(lines 27-34). Starting from the highest priority StartLater job,
the scheduler analyzes whether shrinking expanded malleable
jobs can produce enough nodes to start the StartLater job. Mal-
leable jobs are considered for shrinking in the following order:
(i) expanded malleable jobs that are dependency jobs of this
StartLater job, (ii) malleable jobs expanded during the second
expansion step (i.e., expanded for no specific StartLater job),
and (iii) malleable jobs expanded for other StartLater jobs
which have lower priority than this StartLater job. If enough
nodes are found, the malleable jobs are instructed to shrink
to release the required resources and are allocated to the

StartLater job to start immediately. The same procedure is
then applied to the next StartLater job until enough resources
can be located for a StartLater job. At this point, the iteration
proceeds to the next phase.

Since there might have been changes in the system state
again (due to starting more jobs), a new schedule of the queued
jobs is initiated to create ReservationDepth number of
StartLater jobs, and job dependencies are recomputed (lines
35-36). The first expansion step is initiated where the com-
puted job dependencies are used to expand the malleable jobs
each StartLater job depends on, as explained already (lines
37-43). During this step, nodes can also be stolen from other
malleable jobs that were (i) either expanded for no specific
StartLater job (i.e., in the second expansion step) or (ii)
expanded for a StartLater job that has lower priority than the
currently considered StartLater job. Such a transfer of nodes
allows a malleable job to be expanded as much as possible
to increase its speedup and allow the StartLater job to be
started early. In some cases, a StartLater job may also depend
on two malleable jobs having the same completion time. In
this case, the available resources are equipartitioned among
these malleable jobs. Running malleable jobs on which no
StartLater job depends are not expanded in this step. After
the first expansion step, a backfill step is initiated which
ensures that only those jobs are started that will not delay
any StartLater job (line 45). Finally, after the backfill step, a
second expansion phase begins where the malleable jobs on
which no other job depends are expanded with the available
resources through equipartitioning (line 46).

One of the important differences between the proposed
algorithm and other approaches is that it gives due importance
to backfilling with a two-step expansion process. As mentioned
in Section II, other methods only perform a shrink operation
if the next job in the queue cannot be started. This is
followed by an expand phase where running malleable jobs are
expanded. As a final step, backfilling is performed with nodes
available after expansion. Some approaches such as [14] ignore
backfilling, which may be suitable for a workload with 100%
malleable jobs but not for a workload that also consists of
rigid jobs. In our approach, we perform a “needful” expansion,
followed by backfilling and equipartitioned expansion. Also,
in every iteration, dependencies are recomputed only if there is
a change of state in the system, thereby avoiding unnecessary
and frequent dependency computations. In the presence of
evolving jobs, our approach attempts to its best to select those
malleable jobs for shrinking that will least affect the through-
put. Furthermore, since the number of StartLater jobs can be
configured by the ReservationDepth parameter, admin-
istrators can modify it to control the behavior of the scheduler
according to the site’s workload characteristics. At a site with
large number of malleable jobs, the ReservationDepth
can be increased to gain more from dependency-based expan-
sion, while at a site with a generally low number of malleable
jobs, it can be reduced to favor more backfilling. The resources
are charged only for the amount of time they are used. In
the future, we also plan to provide administrator commands

TABLE I
PROPERTIES OF ALL JOB TYPES OF THE MODIFIED ESP BENCHMARK

Job Size Count Static Malleable Evolving
Type [% of Execution

System] Time Number Execution
[secs] of Cells Time [secs]

A 0.03125 75 267 6x6x6 -
B 0.06250 9 322 8x8x8 -
C 0.50000 3 534 15x15x15 -
D 0.25000 3 616 10x10x10 -
E 0.50000 3 315 15x15x15 -
F 0.06250 9 1846 8x8x8 1230
G 0.12500 6 1334 9x9x9 1067
H 0.15820 6 1067 11x11x11 896
I 0.03125 24 1432 6x6x6 -
J 0.06250 24 725 8x8x8 -
K 0.09570 15 487 7x7x7 -
L 0.12500 36 366 8x8x8 -
M 0.25000 15 187 10x10x10 -
Z 1.00000 2 100 4x4x4 -

to manually shrink or expand jobs, which is useful for fault
tolerance and easy proactive migration.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed batch system and
analyze its performance with respect to throughput, system
utilization, and overhead.

A. Experimentation Setup

All the experiments were conducted on a 15-node cluster
system equipped with 2 Intel Xeon X5570 processors per node
running at 2.93 Ghz (8 cores per node). A separate 16th node
was used as the headnode running the extended Torque version
4.1.0 and Maui version 3.3.1. For a fair comparison, all the
experiments were performed with ReservationDepth in
Maui set to 5.

Common benchmark workloads for the evaluation of sched-
ulers contain only rigid jobs. We are not aware of any
benchmark with malleable or evolving jobs. Therefore, we
modified the well-known ESP benchmark [30] to contain
various percentages of rigid, malleable, and evolving jobs.
The original ESP benchmark is composed of 230 jobs with
14 different job types running the same synthetic application.
Each job type has a unique fixed execution time and uses a
fraction of the total resources. To evaluate the DBES strategy,
the synthetic application was replaced by a Charm++ mini-
application LeanMD. LeanMD is a Molecular Dynamics (MD)
mini-application which performs a simplified version of the
force calculations of NAMD [31], a widely used MD code.
LeanMD uses two Charm++ object arrays: (i) cells - a collec-
tion of atoms in 3D space, and (ii) computes - perform force
calculation on atoms. To comply with the benchmark, each
LeanMD mini-application was executed with varying numbers
of cells and iterations to fit the job type’s running time. As
an evolving job, a synthetic MPI application with an evolving
pattern similar to the real-world application Quadflow [3] was
introduced. Quadflow is an MPI-based CFD flow solver that

solves the compressible Navier-Stokes equations using a cell-
centered fully adaptive finite volume method on a locally
refined grid. Our synthetic application imitates a typical high-
enthalpy stagnation point problem of supersonic flow around
a 2D Cylinder at Mach 5.28. The application evolves after
16% percent of its static runtime and requests 4 additional
cores. If the resources are not available at that point, the job
continues and requests resources again after 25% of the total
static running time as a second chance to obtain resources. If
both attempts fail, the job continues with the current allocation
until its completion. However, if the evolving request was
satisfied, a linear reduction of the execution time is assumed
for the evolving job. Table I shows the various job types of
the modified ESP benchmark, the fraction of resources each
job uses in a cluster, the total number of jobs for each type,
the static execution time of each job type, the number of cells
used when the job type was converted to malleable job and
the execution time of the job as an evolving job if granted
resources during the evolution.

B. Scheduling Malleable Jobs

Figure 4 shows the comparison of the total execution time
of the ESP workload with varying amounts of malleable and
rigid jobs with the earliest started first (ESF), earliest deadline
first (EDF), latest deadline first (LDF), naive equipartitioning
(EP) and DBES strategies. The rigid strategy executes the
workload without any expand/shrink operations—irrespective
of the number of malleable jobs present. It can be observed
that the DBES strategy has a lower execution time in all
cases compared to the other strategies. With 100% malleable
jobs, the DBES strategy performs best with about 32%
higher throughput than rigid scheduling and about 7% higher
throughput than the best-performing state of the art strategy
(in this case, EP). For large systems with longer workloads,
this impact will be of higher magnitude. Furthermore, it can
be observed that DBES is consistent in achieving the best
total execution time unlike the other strategies. For example,
while the equipartitioning strategy is the one that performs
best among the state of the art strategies for a workload
with 60% malleable jobs, it delivers the worst performance
with 10% and 30% malleable jobs, and second worst with
90% malleable jobs. Similarly, the ESF strategy performs best
amongst the state of the art strategies for a workload with 20%
malleable jobs, but worst with 50% malleable jobs. In certain
cases the other strategies can perform even worse than rigid
scheduling. For instance, the EDF strategy with 20% malleable
jobs and EP strategy with 30% malleable jobs took longer
execution times than rigid scheduling. This is a direct effect of
inefficient job selection for expansion and shrinking whereby
the nodes are allocated to malleable jobs which becomes
ineffective while the rigid scheduling gains by backfilling
rather than by expanding/shrinking. The DBES strategy never
shows such a pattern as the dependency-based analysis ensures
that malleable jobs are expanded only if this may facilitate
an earlier start time for queued jobs. Otherwise, backfilling
is given precedence to improve throughput. Thus, it extracts

 180

 200

 220

 240

 260

 280

 300

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

E
x
e
c
u
ti
o
n
 T

im
e
 [
m

in
s
]

Percentage of Malleable Jobs

Rigid ESF EDF LDF EP DBES

Fig. 4. Time for completion of the modified ESP workload with varying amounts of rigid and malleable jobs.

 0

 5

 10

 15

 20

 25

 30

 35

 40

F I J K L

N
u
m

b
e
r

o
f
E

x
p
a
n
d
e
d
 M

a
lle

a
b
le

 J
o
b
s ESF

EDF
LDF
EP

DBES

Fig. 5. Comparison of the number of expanded malleable jobs belonging each
category under various strategies for 50% malleable jobs. The total number
of actual malleable jobs in each category is indicated by a horizontal line.

the best of malleability and backfilling, which other strategies
fail to achieve. Overall, this implies that for a site with either
a predictable number of malleable jobs or an unpredictable
variation in the number of malleable jobs at a given point of
time, the DBES strategy can be confidently applied to obtain
the best throughput.

The reason behind the behavior of all these strategies and
their resulting performance can be better understood by a
deeper analysis of the pattern of expansion of all the strategies.
As an example, Figure 5 shows the number of different types
of malleable jobs expanded at some point in time during
execution when run under each strategy. As ESF prefers to
expand the job which started earliest, much of the expansion
was made to type J jobs and it was not able to fully expand the
long running F and I jobs which led to the least throughput.
LDF preferred to expand jobs with long running times and
therefore all F and I jobs were expanded at a very early stage.
But this did not allow enough J, K and L jobs to be expanded
to see a throughput gain. Similarly, along with F, I and J, EDF
also expanded a few more L jobs but was not able to expand
enough K jobs which actually have short running time. This
was mainly due to the unavailability of idle resources when
the majority of the K jobs were running. This was a result of
backfilled A jobs using all the resources. As short jobs finished
ahead of their walltime limit with more resources, they were
used directly to start queued jobs instead of expanding running
ones. Thus, due to a good use of resources, EDF performed
best amongst ESF, LDF, and EP albeit by expanding only a

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

U
ti
liz

a
ti
o
n
 %

Percentage of Malleable Jobs

DBES
EP

ESF
EDF

LDF
STATIC

Fig. 6. Comparison of the average system utilization achieved by all the
strategies for the ESP workload with various percentages of malleable and
rigid jobs.

smaller number of malleable jobs. EP performed worst after
ESF although it expanded the greatest number of malleable
jobs of all the strategies. This is due to the equal distribution
of resources and frequent expansion without giving priority to
backfilling. We can observe that DBES has a similar expansion
pattern to EP but still has about 7% higher throughput than EP.
This is not only because it expands a reasonably large number
of malleable jobs, but also because it does so in the right
order and at an effective point in time while giving priority to
backfilling when a gain cannot be obtained from expansion.

Figure 6 compares the overall average system utilization
maintained by the strategies for workloads with various per-
centages of malleable jobs. It can be seen that in general the
DBES strategy maintains the highest system utilization. On
the other hand, other strategies also achieve average utilization
close to or even slightly better than DBES in some cases, but
still have lower throughput. For example, with 40% malleable
jobs, the EDF strategy maintained a slightly better average
system utilization than DBES but still had about 5% less
throughput than DBES. Thus, DBES not only increases system
utilization but also assures increased throughput.

Note that the execution time of the workload with 50%
malleable jobs was slower than that containing only 40%. This
is because the workload for 40% malleable jobs was formed
by making jobs F, G, H, I, K, and L malleable, while the 50%
was made with F, I, J, K, and L. The non-malleability of long
running G and H jobs caused the longer execution time of
the workload with 50% malleable jobs. Thus, the presence of

 200

 220

 240

 260

 280

 300

RIGID ESF EDF LDF EP DBES

E
x
e
c
u
ti
o
n

 T
im

e
 [
m

in
s
]

Various Strategies

Fig. 7. Time for completion of the modified ESP workload under various
strategies with 10% evolving jobs, 40% malleable jobs and 50% rigid jobs.

TABLE II
COMPARISON OF EACH TYPE OF EVOLVING JOBS SATISFIED WITH

VARIOUS STRATEGIES.

DBES EP ESF EDF LDF

Total no. of 11 11 13 17 12
evolving jobs satisfied

Jobs shrunk to 9 9 9 10 8
satisfy evolving jobs

larger numbers of malleable jobs does not always mean better
performance than the presence of only a smaller number.

C. Combined Scheduling of Rigid, Malleable, and Evolving
Jobs

We demonstrate and analyze the combined scheduling of
rigid, malleable and evolving jobs with ESP workload con-
taining 10% evolving (F, G and H), 40% malleable (I, J, K
and L), and 50% rigid jobs. We are not aware of any other
work that consists of a comprehensive scheduling method for
the combined scheduling of the above job types. Therefore,
we combined our evolving job scheduling strategy along with
DBES and other strategies to compare the execution time.
This is shown in Figure 7. We can see that DBES again has
the fastest execution time with an increase in throughput of
about 6% in comparison to the best performing state-of-the-art
strategy (in this case, LDF). Table II presents the total number
of evolving jobs that were satisfied in each case and the
corresponding number of malleable jobs that were shrunk to
obtain the resources for the evolving jobs. While EDF and ESF
satisfied more evolving jobs, all strategies needed to shrink
roughly an equal number of malleable jobs to obtain resources.
This implies that a greater number of idle nodes were present
in EDF and ESF during job evolution compared to other
strategies. In other words, the inefficient system utilization
was advantageously employed for the evolving jobs. Out of
9 malleable jobs that were shrunk in the DBES strategy, 5
malleable jobs had been expanded in the second expansion
step (through equipartioning) and 4 malleable jobs had been
expanded in the first expansion step (through dependency
analysis). Thus, the improved performance is a combined
result of the DBES strategy handling the malleable jobs and
the choice of malleable jobs for shrinking to make resources

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14

T
im

e
 [

m
s
e
c
s
]

Nodes

Expand
Shrink

Fig. 8. The time taken for (i) adding 1 - 14 additional nodes to a job initially
using 1 node (expansion), and (ii) removing 1 - 14 nodes from a job initially
using 15 nodes (shrinking).

available for the evolving jobs. The DBES strategy avoids
as far as possible selecting malleable jobs expanded through
the dependency analysis. Therefore, while almost the same
number of evolving jobs were satisfied in all the strategies
except EDF, the DBES still achieves better performance.

D. Overhead

Figure 8 shows the overhead of expand and shrink opera-
tions. For expansion, the total time required to expand a single
node job with 1 to 14 additional nodes is plotted. Naturally,
the time required for expansion increases with am increasing
number of nodes due to communication with a larger number
of nodes during the dyn join operation. However, the time
stays below 20 milliseconds for expansion with up to 14
additional nodes, which is fast and efficient. For shrinking, the
plot shows the total time required for immediately removing 1
to 14 nodes from a job using 15 nodes. By “immediately”, we
mean that nodes are released instantly after receiving a shrink
message. The total time taken for such an operation increases
with a larger number of nodes to shrink but remains in the
millisecond range. This is generally faster than expansion
since dyn disjoin communicates much less data. However, as
explained in Section III, the time taken for a shrink operation
depends on the time required for the task running on the
shrinking nodes to complete. Since the shrink message can
be initiated at any time, the time required for the task to
be completed cannot be predicted beforehand. Therefore, in
reality shrinking usually takes longer than expansion. In the
future, we plan to extend the communication mechanism to
also include minimal application feedback in order to initiate
shrink messages at a convenient point in time so as to reduce
the waiting time until task completion.

VI. CONCLUSION AND OUTLOOK

As we move towards the next generation of supercomput-
ers, the presence of malleable and evolving jobs is growing
stronger. With adaptive programming paradigms taking the
center stage, malleability of applications is a natural by-
product. Similarly, as the complexity of applications increases,
unpredictably evolving jobs are also often seen to be on
the rise. Thus adaptive resource management and scheduling

is fundamental to support malleable and evolving jobs and
thereby gain higher throughput and serve the ever increas-
ing demand for faster response times. For many years, the
technical challenge that had to be overcome before supporting
adaptive jobs and the rigid nature of programming models
prohibited the implementation of a fully fledged adaptive batch
system in reality.

In this paper, we proposed the first production batch system
that is capable of combined scheduling of rigid, malleable,
and evolving jobs. We proposed a novel malleable scheduling
strategy called DBES that expands and shrinks malleable
jobs based on dependency analysis and combines it with
backfilling to gain best performance for varying dynamics of
the workload. Furthermore, the equipartitioning strategy was
applied for fairness with resources that remained unused under
both dependency-based expand/shrink and backfilling. Our
results show that the DBES strategy demonstrates consistently
superior performance in comparison to other state of the art
scheduling strategies and that it is also the best strategy to
be applied together with scheduling unpredictably evolving
applications.

Adaptive resource management and scheduling is not only
important for supporting malleable and evolving jobs, but also
for fault tolerance. With small extensions, the facilities of the
proposed batch system can be used for dynamic replacement
of nodes during node failures and proactive migration. Also,
to improve the gain that can be obtained from malleable
jobs, a minimal application feedback can be established and
a dependency-based malleable job scheduling with feedback
considerations can be employed. In the future, we plan to
enrich the batch system with the these features and also to
support efficient combined scheduling with moldable jobs.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under Grant Agreement n◦ 287530.

REFERENCES

[1] D. G. Feitelson and L. Rudolph, “Towards convergence in job schedulers
for parallel supercomputers,” in Proceedings of the Workshop on Job
Scheduling Strategies for Parallel Processing. Springer-Verlag, 1996.

[2] S. Müller, Adaptive Multiscale Schemes for Conservation Laws., ser.
Lecture Notes in Computational Science and Engg. Springer, 2003.

[3] F. Bramkamp, P. Lamby, and S. Müller, “An adaptive multiscale finite
volume solver for unsteady and steady state flow computations,” J.
Comput. Phys., Jul. 2004.

[4] V. W. Tomasz Plewa, Timur Linde, “Adaptive mesh refinement: Theory
and applications.” Springer, 2003.

[5] G. Utrera, J. Corbalan, and J. Labarta, “Implementing Malleability on
MPI Jobs,” in Proceedings of the 13th International Conference on
Parallel Architectures and Compilation Techniques. IEEE Computer
Society, 2004.

[6] K. El Maghraoui, T. J. Desell, B. K. Szymanski, and C. A. Varela,
“Malleable Iterative MPI Applications,” Concurr. Comput. : Pract.
Exper., vol. 21, 2009.

[7] L. Kalé and S. Krishnan, “CHARM++: A Portable Concurrent Object
Oriented System Based on C++,” in Proceedings of OOPSLA’93. ACM
Press, September 1993.

[8] J. Bueno, L. Martinell, A. Duran, M. Farreras, X. Martorell, R. M.
Badia, E. Ayguade, and J. Labarta, “Productive cluster programming
with ompss,” in Proceedings of the 17th International Conference on
Parallel Processing - Volume Part I, ser. Euro-Par’11. Springer, 2011.

[9] J. Dongarra and et al., “The international exascale software project
roadmap,” International Journal on High Performance Computing Ap-
plications, 2011.

[10] ETP4HPC. Strategic research agenda. http://www.etp4hpc.eu/strategy/
strategic-research-agenda/.

[11] S. Prabhakaran, M. Iqbal, S. Rinke, C. Windisch, and F. Wolf, “A
batch system with fair scheduling for evolving applications,” in Proc.
of the 43rd International Conference on Parallel Processing (ICPP),
Minneapolis, MN, USA, Sep. 2014.

[12] T. Carroll and D. Grosu, “Incentive compatible online scheduling of
malleable parallel jobs with individual deadlines,” in 39th International
Conference on Parallel Processing (ICPP), 2010.

[13] H. Sun, Y. Cao, and W.-J. Hsu, “Fair and efficient online adaptive
scheduling for multiple sets of parallel applications,” in IEEE 17th
International Conference on Parallel and Distributed Systems, 2011.

[14] G. Utrera, S. Tabik, J. Corbalan, and J. Labarta, “A job scheduling
approach for multi-core clusters based on virtual malleability,” in Euro-
Par 2012 Parallel Processing, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012.

[15] A. Gupta, B. Acun, O. Sarood, and L. Kale, “Towards Realizing the
Potential of Malleable Jobs,” in 21st IEEE International Conference on
High Performance Computing, 2014.

[16] J. Hungershofer, “On the combined scheduling of malleable and rigid
jobs,” in 16th Symposium on Computer Architecture and High Perfor-
mance Computing, Oct 2004.

[17] S. S. Vadhiyar and J. J. Dongarra, “SRS - A Framework for Developing
Malleable and Migratable Parallel Applications for Distributed Systems,”
in In: Parallel Processing Letters. Volume, 2002.

[18] J. Buisson, F. André, and J. Pazat, “A framework for dynamic adaptation
of parallel components,” in Proc. of the International Conference on
Parallel Computing (ParCo) 2005.

[19] L. V. Kalé, S. Kumar, and J. DeSouza, “A malleable-job system for time-
shared parallel machines,” in 2nd IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGrid), May 2002.

[20] G. Mounie, C. Rapine, and D. Trystram, “Efficient approximation
algorithms for scheduling malleable tasks,” in Proc. of the Eleventh
Annual ACM Symposium on Parallel Algorithms and Architectures.
ACM, 1999.

[21] J. Blazewicz, M. Machowiak, G. Mouni, and D. Trystram, “Approxima-
tion algorithms for scheduling independent malleable tasks,” in Euro-
Par 2001 Parallel Processing, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2001.

[22] M. C. Cera, Y. Georgiou, O. Richard, N. Maillard, and P. O. A.
Navaux, “Supporting Malleability in Parallel Architectures with Dy-
namic CPUSETs Mapping and Dynamic MPI,” in Proceedings of the
11th International Conference on Distributed Computing and Network-
ing. Springer-Verlag, 2010.

[23] J. Buisson, O. Sonmez, H. Mohamed, W. Lammers, and D. Epema,
“Scheduling malleable applications in multicluster systems,” in IEEE
International Conference on Cluster Computing, Sept 2007.

[24] K. Agrawal, Y. He, W. J. Hsu, and C. E. Leiserson, “Adaptive scheduling
with parallelism feedback,” in Proc. of the Eleventh ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 2006.

[25] H. Sun, Y. Cao, and W.-J. Hsu, “Efficient adaptive scheduling of
multiprocessors with stable parallelism feedback,” IEEE Transactions
on Parallel and Distributed Systems, 2011.

[26] G. Staples, “Torque resource manager,” in Proceedings of the 2006
ACM/IEEE conference on Supercomputing. ACM, 2006.

[27] R. L. Henderson, “Job scheduling under the portable batch system,” in
Proceedings of the Workshop on Job Scheduling Strategies for Parallel
Processing. Springer-Verlag, 1995.

[28] D. B. Jackson, Q. Snell, and M. J. Clement, “Core algorithms of the
maui scheduler,” in Revised Papers from the 7th International Workshop
on Job Scheduling Strategies for Parallel Processing. Springer, 2001.

[29] F. Gioachin, C. W. Lee, and L. V. Kalé, “Scalable Interaction with
Parallel Applications,” in Proceedings of TeraGrid’09, 2009.

[30] A. T. Wong, L. Oliker, W. T. C. Kramer, T. L. Kaltz, and D. H. Bailey,
“ESP: A System Utilization Benchmark,” in Proc. of the ACM/IEEE
Conference on Supercomputing. IEEE Computer Society, 2000.

[31] A. Bhatele, S. Kumar, C. Mei, J. Phillips, G. Zheng, and L. Kale,
“Overcoming scaling challenges in biomolecular simulations across
multiple platforms,” in IEEE International Symposium on Parallel and
Distributed Processing, 2008.

