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Abstract—Minimizing energy and power consumption of large
scale data centers is one of the biggest challenges faced by the
high performance computing community. In an overprovisioned
data center, nodes are power capped to run below their Thermal
Design Power (TDP) value and therefore, an overprovisioned data
center has more nodes than a conventional data center with the
same power budget. In this work, we study the energy versus
time trade-off in a power overprovisioned HPC data center.
We show that overprovisioning with the goal of maximizing
performance can lead to excessive energy consumption. However,
careful selection of configuration, that is number of nodes and
power cap, can lead to significant savings in energy consumption
with very small penalty on execution time of the application. We
achieve up to 15% savings in energy consumption with only 2.8%
increase in execution time as compared to a configuration that
yields the best execution time.

I. INTRODUCTION

Reducing power and energy consumption of the data cen-
ters is one of the major challenges faced by the High Perfor-
mance Computing (HPC) community. As size of data centers is
increasing, their energy consumption is also increasing. Power
is the instantaneous rate at which energy is provided to the
data center, while energy is the total power consumption over
a period of time. In this work, we focus on optimizing energy
consumption of power-budgeted data centers while minimizing
its impact on application performance.

Traditionally, equipment cost has been a limiting factor
in achieving high performance in data centers. However, as
we move towards exascale machines, the thrust is shifting
from equipment cost to power/energy cost. In other words,
future large-scale HPC data centers will be power limited as
compared to equipment limited. This is because high power
requirements mean huge infrastructure required to supply
large amounts of instantaneous power. Therefore, DoE has set
20MW as the power budget for exascale machines. Recent
research has focused on making efficient utilization of the
available power budget. Power capping makes it possible to
constrain CPU power consumption of the nodes to value below
the CPU Thermal Design Power (TDP) value, where TDP
is the maximum amount of power that a node can draw.
Power capping feature is supported by some of the recent
processor architectures, such as Intel SandyBridge [1], IBM
Power6 [2], Power7 [3] and AMD Bulldozer [4] architectures.
Power capping makes it possible to add more nodes to the
data center, each node running below its TDP value, while

staying within the overall power budget of the data center.
This is also called as an overprovisioned data center. Since
application performance does not scale proportionately with
increase in CPU frequency, appropriate power capping can
lead to significant power savings without significantly affecting
execution time of the application. In fact, performance can
be improved by using the saved power to turn-on more
nodes and scaling-up the application. Previous work [5], [6]
shows that significant speedups can be obtained by using
such overprovisioning of the data centers when compared with
a traditional/conventional data center with the same power
budget. Therefore, overprovisioning is a promising solution to
achieve exascale with a given power budget, as also proposed
by [7], [8]. The performance benefits due to overprovisioning
vary from application to application. Some applications are
computationally intensive and benefit from using the power to
increase CPU frequency, while other applications are memory
intensive and benefit from using the power to turn-on more
nodes each running at below their maximum frequency.

Even though overprovisioning of data centers gives signifi-
cant improvement in performance for a given power budget, it
can also lead to increased energy consumption because of the
addition of nodes. Therefore it is also important to control the
energy consumption in order to reduce the electricity costs. In
this work, we analyze the energy consumption of applications
in an overprovisioned system. We study how careful selection
of the nodes and power cap can lead to significant savings in
energy with minimal penalty in execution time.

The work is divided in to 6 sections. In Section II, we do a
literature review of work on energy consumption optimization
of data centers using hardware features such as DVFS. We
also review the work so far that utilizes the power capping
feature supported by recent hardware architectures. Section III
gives background and motivation for this work. Section IV,
Section V explain the experimental setup and results, respec-
tively. Finally, the conclusions are given in Section VI.

II. LITERATURE REVIEW

Performance of HPC applications does not increase pro-
portionately with increase in CPU frequencies. On the other
hand, dynamic power consumption of the CPU is proportional
to cubic power of the CPU frequency. Therefore, previous
research has suggested reducing CPU frequencies to decrease
the energy consumption while having acceptable penalty on



the execution time of the jobs [9], [10]. This is achieved
using Dynamic Voltage and Frequency Scaling (DVFS). Op-
timal frequency selection in DVFS-based energy consumption
minimization has been studied by Rizvandi et al [11]. Wange
et al [12] propose heuristics to identify slack in non-critical
tasks, They use this information to reduce the frequencies
of processors running non-critical tasks without affecting the
overall execution time of the job. In the context of DVFS,
Freeh et al [13] have shown that for some NAS benchmarks,
it is possible to save energy and to reduce time by running
the application on more nodes at lower frequency rather than
running on fewer nodes at higher frequency. In this work,
we focus on HPC data centers with strict power budget, and
use power capping capability to optimize energy consumption
while minimizing its impact on execution time of HPC appli-
cations.

Recent research has focused on maximizing performance
under a fixed power budget. As we move towards exascale
computing, adding new nodes to the data center will not be as
constraining as compared to cost and infrastructure required to
supply power to run all the nodes. Kontorinis et al [14] propose
an architecture for distributed UPSs (Uninterrupted Power Sup-
plier) that store energy during low activity periods (low power
requirements) and supply energy during high activity period,
thus allowing installation of more servers within the same
power budget. In this work, we use power capping that makes
it possible to constrain power consumption of the nodes to
below their TDP value. For a given power budget, this makes it
possible to turn-on more nodes as compared to a conventional
data center where all the nodes are allocated TDP amount
of power. This is also called as overprovisioning. Sarood et
al [15] show that up to 5.2x improvement in throughput can
be obtained in an overprovisioned data center as compared
to a conventional data center with the same power budget.
Balaji et al [16] study the energy proportionality of enterprise
benchmarks using power capping of different subsystems. In
contrast, our work is focused on scientific workloads. Laors et
al [17] have developed a new vendor-neutral API for power
management and control of large systems.

Modeling application performance given a power cap has
also been studied. These models can be used to determine
optimal power cap for the desirable user objective. Balaji et
al [18], propose non-linear models to capture the relationships
between the throughput, response time, and subsystem-level
power limits for SPECpower and SPECweb enterprise bench-
marks [19]. Storlie et al [20] propose a statistical model for
modeling the power draw of jobs that can be used to optimally
allocate power to jobs according to a given criterion, for
example, maximizing data center throughput, user priorities,
etc. They study these models for jobs submitted to a HPC
data center. In this work, we do not focus on performance
modeling for HPC applications under a given power budget,
but modeling ideas as proposed in [6], [15] can be used for
automated selection of configurations with desirable properties.

III. BACKGROUND AND MOTIVATION

Modern processors have different performance states, also
called as P-states. A P-state corresponds to the processor’s
frequency and voltage. For example, Intel Xeon 5160 processor
has four P-states - P0, P1, P2, and P3 corresponding to

core frequency of 3.0, 2.66, 2.33, 2 GHz, respectively. P0
is the highest performance state with maximum frequency
but also higher power consumption. Higher P-state numbers
represent lower frequency and lower power consumption. P-
state of the processor can be changed to lower its power
consumption. Clock throttling is another method for lowering
power consumption of processor. In clock throttling, processor
is forced to be idle a fixed number of cycles per second. This
lowers processor frequency and reduces thermal effects. Since
voltage is not changed in clock throttling, it has little effect
in reducing the power consumption. However, clock idling
significantly increases the execution time of the application,
leading to higher energy costs. Power capping is achieved
by using P-states and/or clock throttling. P-states can lower
the power consumption only to a certain point, after which
clock throttling is used to further lower the power consump-
tion. Power capping guarantees that power consumption of
processor will not exceed a user-specified threshold. The power
management system carefully observes the power consumption
to keep it below the user-specified power cap.

Exascale centers are expected to have huge power require-
ments. Special infrastructure is required to support such large
amount of instantaneous power to the data centers. Therefore,
the data centers will have a power budget that the infrastructure
can support. Power capping allows us to constrain power con-
sumption of nodes, and add more nodes to the data center while
remaining within the power budget of the data center. Having
large number of nodes running at lower power/frequency gives
better execution time for many applications than running them
on fewer nodes each with higher power/frequency. Therefore,
overprovisioning improves the overall performance of the data
center. Power capping ensures that the power consumption
remains below the power budget and hence prevent circuit
breakers from tripping. CPU power management can control
power consumption at the granularity of milliseconds which is
sufficient because the capacitance on the mother board and the
power supply smoothes out the power draw at a much greater
granularity.

Currently, users/customers of data centers are charged com-
putational power in the units of node hours or core hours. Large
data centers will have very high electricity costs. For example,
if we assume that electricity costs USD 0.07 per KWh [21],
an exascale data center with 20MW power consumption will
cost about USD 1 million per month in electricity costs only.
Therefore, in the future, it is very likely that users will be
charged in the units of energy consumption as compared to
the traditional way of charging in the units of core hours.
This will also encourage users to run their jobs in an energy-
efficient manner rather than running for the best execution
time. Injudicious overprovisioning can lead to very high energy
costs. Therefore, selecting the right configuration (number
of nodes, and power cap) is very important for desirable
energy-vs-time trade-off. We study the performance and energy
consumption of various HPC mini-applications for different
configurations and show how significant energy savings can
be made by intelligent selection of configuration.
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Fig. 1: (a) Impact of power capping on performance of the four applications running on 4 nodes. Performance is normalized with
respect to performance at the highest power cap (55W), (b) CPU frequencies at different power caps for the four applications
running on 4 nodes.

IV. EVALUATION SETUP

A. Computational Testbed

Our experiments were performed on a 38-node Dell Pow-
erEdge R620 cluster. It is installed in a room with a com-
puter room air conditioning (CRAC) unit that monitors and
maintains the temperature, air distribution and humidity in the
room. CRAC temperature is set to 23.3 ◦C. Each node in the
cluster contains an Intel Xeon E5-2620 Sandy Bridge server
with 6 physical cores running at 2GHz, 2-way SMT with 16GB
of RAM. These servers support on-board power measurement
and power capping. We use the Runtime Average Power Limit
(RAPL) interface [22] to measure and constrain CPU power.

In this testbed, CPU power can be capped in the range
[25-95]W. Our empirical observations show that CPU power
consumption for the focal applications never goes beyond 55W.
When the CPU is power capped below 30W, execution time
for the applications increases significantly even with small
reduction in power cap. This is because at these low power
caps, the power management has exhausted the P-states and
starts using CPU throttling to reduce the power consumption.
Power caps less than 30W will therefore not be used for
most practical purposes. In our experiments, we apply power
caps from the set [31, 34, 37, 40, 43, 46, 49, 52, 55]W to
all the applications. In all our experiments, memory power
consumption never exceeds 15W, while the TDP value of
memory is 35W. In this work, we only focus on CPU power
capping and do not apply power capping to memory. Idle
power or the base power consumption of the node, excluding
the CPU and memory power consumption, is 38W. Using CPU
and Memory’s TDP values, the maximum power a node can
consume is (38 + 35 + 95)W = 168W.

B. Applications

Four applications were used. These applications repre-
sent the kernels of different high performance computing
applications typically used on many of the world’s largest

supercomputers. We call these programs as mini-applications.
They vary from computationally intensive to memory intensive
applications. The description of these applications and their
input parameters used in our experiments are as follows:

1) Wave - This program solves a wave equation of the
following form,

∂2p

∂p2
= c2∇2p (1)

using a finite difference scheme over a 2D mesh.
It calculates the pressure in the grid resulting from
an initial set of perturbations. Our experiments were
conducted on a mesh of size 20000 × 20000, with 5
initial perturbations simulated for 40 iterations.

2) Lulesh - It is a shock hydrodynamics application [23],
[24] that represents the numerical algorithms, data
motion, and programming style typical in scientific
C/C++ based applications. Lulesh is one of the five
challenge problems in the DARPA UHPC program,
and was defined and implemented by Lawrence Liv-
ermore National Laboratory (LLNL). For our experi-
ments, we run LULESH on a grid of size 512 × 512
× 512.

3) Adaptive Mesh Refinement (AMR) - This is a mini-
application for oct-tree based structured adaptive
mesh refinement simulations. It benchmarks motion
of a circular fluid advected by a constant velocity
fluid and is described by the following hyperbolic
partial differential equation,

∂u

∂t
+ v∇u = 0 (2)

In AMR simulations, works is dynamically created
and destroyed during runtime and load balancing is
done every few iterations to balance the load across
the processors. More details about the algorithms
used for implementing AMR can be found in [25],
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Fig. 2: Execution time and energy consumption for different configurations plotted against the power budget for four different
applications. Solid lines (——) correspond to execution time, while the dotted lines (. . . . . .) correspond to energy consumption.
Different colors correspond to the number of nodes in the configuration. Legend for colors is shown at the top of the figure.
Markers on each line correspond to the CPU power caps in the set [31, 34, 37, 40, 43, 46, 49, 52, 55]W. To determine the best
performing configuration for a given power budget draw a vertical line at the power budget and chose the configuration to the
left that has the minimum execution time.

[26]. In our simulations, the initial mesh size was
256 × 256 × 256, with maximum allowed depth
of 9. The simulation is run for 15 iterations, with
mesh restructuring after every 3 iterations, and load
balancing after every 6 iterations.

4) LeanMD - It is a parallel molecular dynamics sim-
ulation program that simulated behavior of atoms
based on Lennard-Jones potential. It involves calcu-
lating forces in all atoms during each time-step, and
updating the position, velocities and acceleration of
the atoms using these forces. It is implemented in
Charm++ [27] and has force structure very similar to
NAMD [28]. We simulate a total of 36 × 36 × 36

particles, for a total of 10 time steps.

V. RESULTS

In this section, we present our observations on impact of
power capping on the focal applications, and we analyze the
energy-vs-time trade-off for these applications.

Depending upon their CPU and memory sensitivity, per-
formance of different applications is affected differently by
power capping. Figure 1a shows the performance of the four
applications running on 48 cores (4 nodes) at various power
caps (all nodes are power capped at the same value). The
performance is normalized with respect to the performance



at the highest power cap, i.e. 55W. Performance of LeanMD
is affected the least as power cap is decreased, while the
performance of Wave is affected the most. Correlation between
CPU frequencies and application sensitivity to power capping
is not direct (Figure 1b). LeanMD is least affected by power
capping and has the highest frequency of all the applications.
AMR, which is the next application that is affected the least
by power capping, has very low frequency. Wave and Lulesh,
which have similar sensitivity to power capping, have very
different frequencies. This implies that power is a complex
interplay of power consumption by the cores and by other on-
chip activity like cache accesses, memory controller, etc.

We define a configuration, (n, p), as a combination of num-
ber of nodes (n) and CPU power cap per node (p). Experiments
were performed for configurations with n ∈ [4, 8, 12, 16], and
p ∈ [31, 34, 37, 40, 43, 46, 49, 52, 55]W . Power budget for a
configuration is computed as n ∗ (p+15+ 38)W, where 15W
is the maximum memory power consumption and 38W is the
maximum idle power of a node. Total energy consumption of a
configuration for an application is calculated by measuring the
actual memory and CPU power consumption integrated over
the execution period of the application. Figure 2 shows the
energy consumption and execution time of the four applica-
tions for various configurations. They are plotted against the
power budget of the configurations. Colors correspond to the
different values of n. Solid lines represent execution times, and
dotted lines represent energy consumption. A line corresponds
to all configurations with the same number of nodes. Markers
along a line correspond to the different power caps of the
configuration with the leftmost marker on a line corresponding
to the smallest power cap (i.e. 31W).

In a Conventional Data Center (CDC), TDP amount of
power is allocated to each node so that the circuit breakers do
not trip on the occasion that the power consumption reaches
TDP. Given a power budget of P Watts, a CDC will be able to
use P

168 nodes, where 168W is the maximum possible power
draw of a compute node (Section IV-A). An Overprovisioned
Data Center (ODC) uses power capping and has more nodes
than a CDC while remaining within the same power budget.
An ODC with a configuration that maximizes the performance
(pODC) will have very high energy consumption (Figure 2),
and hence it is not very desirable. As can be observed in
Figure 2, energy consumption can be minimized by running
at a configuration with least number of nodes (four, in this
case). However, such configurations have very large execution
time and are therefore also not desirable. We examine various
scenarios and show how careful selection of configuration (let
us call it iODC) can lead to significant energy savings as
compared to pODC with minimal impact on execution time:

• Given a total power budget of P = 1450W and AMR
application, in pODC, configuration (16, 43) gives
the best execution time of 90.5 seconds. This is 30%
improvement in execution time with 22% increase in
energy consumption over a CDC which can enable
only 8 nodes for the given power budget. However,
energy consumption of the ODC can be reduced by
14.9% by using the configuration (12, 55) with mere
0.001% increase in execution time as compared to the
configuration (16, 43) with the best execution time.
In other words, in iODC, by intelligent selection of

the configuration, a 30% improvement in execution
time can be achieved with only 4% increase in energy
consumption as compared to a CDC setting.

• Given P = 1200W and LeanMD, configuration (12,
55) gives the best execution time. However, by run-
ning with configuration (12, 46), we can obtain 7.7%
savings in energy while having only 1.4% penalty in
execution time.

• Given P = 1500W and Lulesh, configuration (16, 43)
yields the best execution time, while the configuration
(12, 52) gives savings of 15.3% in energy with only
2.8% increase in the execution time.

• Given P = 1550W and Wave, configuration (16, 46)
gives the best execution time, but a 12% savings in
energy consumption can be obtained with 6% increase
in execution time by using the configuration (12, 55).

In this analysis, our choices were limited by the sample
configurations for which the application performance was
empirically profiled. However, by modeling application per-
formance with power cap and number of nodes, more optimal
configurations can be selected using the model function. It
requires collecting profile information for minimum number
of samples required to build the model, and then using the
model to predict the quality of any configuration. This has
been left for future work.

VI. CONCLUSION

Although overprovisioned data centers have promise for
maximizing power efficiency for a given power budget, it
also has the disadvantage of excessive energy consumption. In
this work, we analyzed the energy-vs-time trade-off for power
overprovisioned HPC data centers. We showed that careful
selection of configurations can lead to significant savings in
energy consumption with little impact on the execution time.
For some applications, running at fewer nodes and a higher
power cap can lead to 15.3% savings in energy with only 2.8%
increase in execution time as compared to a configuration that
yields the best execution time.
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on thousands of processors,” in Workshop: Scaling to New Heights,
Pittsburgh, PA, May 2002.


