
Energy-‐efficient	 compu1ng	 for	 HPC	
workloads	 on	 Heterogeneous	 Chips	
	 Akhil	 Langer,	 Ehsan	 Totoni,	 Uda.a	 Palekar*,	 Laxmikant	 (Sanjay)	 V.	 Kale	

Parallel	 Programming	 Laboratory,	 Department	 of	 Computer	 Science	
*Department	 of	 Business	 AdministraJon	
University	 of	 Illinois	 at	 Urbana-‐Champaign	
h?p://charm.cs.uiuc.edu/research/energy	

	
PMAM	 2015	

6th	 InternaJonal	 Workshop	 on	 Programming	 Models	 and	 	
ApplicaJons	 for	 MulJcores	 and	 Manycores 	 	

February	 7-‐8,	 2015	
	
	

Outline	

q IntroducJon	 	
q Background	
q Problem	 Statement	
q Approach	
q Results	

3/2/15	 Energy-‐efficient	 operaJon	 of	 Heterogeneous	 Manycore	 Chips	 2	

IntroducJon	

•  MoJvaJon	
– Huge	 energy	 consumpJon	 of	 data	 centers	
– 20MW	 power	 @	 $0.15	 per	 KWh,	 costs	 $2.2	 M	 per	
month	

– Energy	 efficiency	 idenJfied	 as	 a	 major	 exascale	
challenge	 by	 DoE	

– Consider	 charging	 users	 in	 energy	 units	 (KWh)	
instead	 (or	 in	 addiJon)	 of	 SUs	

3/2/15	 Energy-‐efficient	 operaJon	 of	
Heterogeneous	 Chips	 3	

IntroducJon	

•  Low	 voltage	 operaJon	
–  For	 high	 energy	 efficiency	
–  For	 example,	 10x	 increase	 in	 energy	 efficiency	 near	
threshold	 voltage	

•  But	
– VariaJon	 in	 CMOS	 manufacturing	 process	
–  Low	 voltage	 operaJon	 introduces	 variability	 on	 chip	
–  Cores	 have	 different	 frequencies	 and	 power	
consumpJon	

3/2/15	 Energy-‐efficient	 operaJon	 of	
Heterogeneous	 Chips	 4	

Process	 VariaJon	

•  Low	 voltage	 operaJon	

3/2/15	 Energy-‐efficient	 operaJon	 of	
Heterogeneous	 Chips	 5	

0.8f% f% 0.5f% 0.6f%

0.7f% 0.8f% f% 0.8f%

f% 0.7f% 0.6f% 0.9f%

0.5f% 0.8f% 0.5f% f%

Programming	 Systems*	

•  Problem	
– HPC	 applicaJons	 are	 highly	 synchronized	
–  Speed	 determined	 by	 speed	 of	 slowest	 processor	

•  Solu+on	
– Do	 overdecomposiJon	 of	 work	 (e.g.	 Charm++)	
–  Load	 Balance	 according	 to	 core	 speeds	

•  Result	
– OverdecomposiJon	 raJo	 of	 16	 =>	 2-‐6%	 load	 imbalance	
–  	 No	 changes	 required	 in	 applicaJon	 code	

3/2/15	 Energy-‐efficient	 operaJon	 of	
Heterogeneous	 Chips	 6	

*Under	 Review	

Problem	 Statement	

•  Not	 opJmal	 to	 use	 all	 cores	 on	 chip	 for	 execuJon	
–  Shared	 resources	 cause	 contenJon	
– High	 energy	 consumpJon	

•  A	 configuraJon	 is	 defined	 as	 the	 cores	 on	 which	
the	 applicaJon	 is	 run	

	
Determine	 op+mal	 configura+on	 that	 minimizes	
energy	 consump+on	 (with	 op+onal	 +ming	
constraints)	 of	 the	 chip	 for	 a	 given	 applica+on	
	 3/2/15	 Energy-‐efficient	 operaJon	 of	

Heterogeneous	 Chips	 7	

Performance	 Modeling*	

•  ExhausJve	 evaluaJon	 of	 configuraJons	 infeasible	
•  Model	 1	
– Sum	 of	 individual	 core	 performance	
– Memory	 contenJon	 not	 modeled	

•  Model	 2	
– Add	 memory	 access	 Jme	
– #	 of	 acJve	 cores	 not	 accounted	

3/2/15	 Energy-‐efficient	 operaJon	 of	
Heterogeneous	 Chips	 8	

*Under	 Review	

individual cores in the configuration (c).

S =
X

i2c

si (1)

where, si is the performance (instructions per cycle) of core
i for the focal application when the application was run only
on core i, and S is the predicted performance (instructions
per cycle) for configuration c for the focal application. This
model will predict performance accurately only for compu-
tationally intensive applications in which there is no memory
contention. For memory-intensive applications, this perfor-
mance model will fail to predict the performance for a con-
figuration because it just adds the core performance which
was obtained when they were running individually, and does
not model the contention for the shared resources, e.g. mem-
ory, when multiple cores are running simultaneously.

Model 2: The application execution time is divided into
two components: Tcpu corresponding to CPU time and
Tmem corresponding to memory time (as in [14, 15, 21,
43]). And the performance is modeled as

T =
TcpuX

i2c

fi

+ Tmem (2)

where, fi is the frequency of core i, and T is the pre-
dicted execution time of the application. The weakness of
this model is that it fails to incorporate the number of cores
that are accessing the memory, and treats the memory time
as constant irrespective of the cores that are accessing the
memory.

Model 3: In this model, we construct as many model
functions as there are number of cores on the chip. There
is one model for all the configurations with the same num-
ber of cores. For instance, if there are 36 cores on a chip, 36
functions are developed. In this way, this model incorporates
the number of active cores in performance prediction. Each
of these functions is a linear function of the sum of frequen-
cies of the cores in the configuration. The performance (in-
structions per cycle) function for all the configurations with
k cores is modeled as:

S = ak(
X

i2c

fi) + bk (3)

where, ak, bk are line constants for all configurations with
k cores, and S is the instructions per cycle of the configu-
ration. Only two performance data samples are required to
get the value of the constants, ak and bk, for this function.
These samples correspond to instructions per cycle for any
two configurations with k cores. Since there are n functions,
2n samples are sufficient to develop the complete model for
an application (although more samples can increase the ac-
curacy of the model). The overhead of sampling the data to
generate the model is negligible as compared to the execu-
tion time of HPC applications, which can be from hours to

Table 1: Constrained Optimization Program Terminology

Symbol Description

N total number of cores on the chip
c a configuration
k number of cores in a configuration
nk binary variable indicating whether the selected

configuration has k cores
xi a binary variable indicating whether core i

is selected or not in a configuration
fi frequency of core i

si static power consumption of core i

a

t
k, b

t
k line constants for performance model

of configurations with k cores
a

p
k, b

p
k line constants for dynamic power model

of configurations with k cores
tmin minimum execution time of the application

across all the configurations on the chip
tp penalty in execution time, maximum allowed

execution time is (1 + tp
100)⇥ tmin

days. In previous work [47], it is shown that the prediction
accuracy of Model 3 is very high. The average prediction
error in performance is less than 1.6%, and 0.7% for a com-
putationally intensive and a memory intensive application,
respectively. Simulated performance was obtained using the
Sniper simulator, discussed in detail in Section 5. Similar to
performance, the dynamic power consumption of a configu-
ration could be modeled accurately using Model 3, that is,

P = Ak(
X

i2c

fi) +Bk

where P is the dynamic power of configuration c, Ak and Bk

are line constants. It has been shown in previous work [47]
that the maximum prediction error of Model 3 for dynamic
power is less than 2%.

4. Energy Optimization Approach
In this section, we describe our approach for optimizing
the energy consumption during application execution. The
total energy is computed as the power consumption inte-
grated over the duration of execution of the application, that
is, power consumption multiplied by the execution time of
the application. We use Model 3, described in the previous
section, to model the execution time and dynamic power
consumption of any configuration. According to Model 3,
the linear function for performance and dynamic power con-
sumption of a configuration depends on the number of cores
in the configuration. Therefore, the energy consumption can
be defined as
NX

k=1

(nk ⇤ (apk
X

i

xifi + b

p
k +

X

i

sixi) ⇤ (atk
X

i

xifi + b

t
k))

individual cores in the configuration (c).

S =
X

i2c

si (1)

where, si is the performance (instructions per cycle) of core
i for the focal application when the application was run only
on core i, and S is the predicted performance (instructions
per cycle) for configuration c for the focal application. This
model will predict performance accurately only for compu-
tationally intensive applications in which there is no memory
contention. For memory-intensive applications, this perfor-
mance model will fail to predict the performance for a con-
figuration because it just adds the core performance which
was obtained when they were running individually, and does
not model the contention for the shared resources, e.g. mem-
ory, when multiple cores are running simultaneously.

Model 2: The application execution time is divided into
two components: Tcpu corresponding to CPU time and
Tmem corresponding to memory time (as in [14, 15, 21,
43]). And the performance is modeled as

T =
TcpuX

i2c

fi

+ Tmem (2)

where, fi is the frequency of core i, and T is the pre-
dicted execution time of the application. The weakness of
this model is that it fails to incorporate the number of cores
that are accessing the memory, and treats the memory time
as constant irrespective of the cores that are accessing the
memory.

Model 3: In this model, we construct as many model
functions as there are number of cores on the chip. There
is one model for all the configurations with the same num-
ber of cores. For instance, if there are 36 cores on a chip, 36
functions are developed. In this way, this model incorporates
the number of active cores in performance prediction. Each
of these functions is a linear function of the sum of frequen-
cies of the cores in the configuration. The performance (in-
structions per cycle) function for all the configurations with
k cores is modeled as:

S = ak(
X

i2c

fi) + bk (3)

where, ak, bk are line constants for all configurations with
k cores, and S is the instructions per cycle of the configu-
ration. Only two performance data samples are required to
get the value of the constants, ak and bk, for this function.
These samples correspond to instructions per cycle for any
two configurations with k cores. Since there are n functions,
2n samples are sufficient to develop the complete model for
an application (although more samples can increase the ac-
curacy of the model). The overhead of sampling the data to
generate the model is negligible as compared to the execu-
tion time of HPC applications, which can be from hours to

Table 1: Constrained Optimization Program Terminology

Symbol Description

N total number of cores on the chip
c a configuration
k number of cores in a configuration
nk binary variable indicating whether the selected

configuration has k cores
xi a binary variable indicating whether core i

is selected or not in a configuration
fi frequency of core i

si static power consumption of core i

a

t
k, b

t
k line constants for performance model

of configurations with k cores
a

p
k, b

p
k line constants for dynamic power model

of configurations with k cores
tmin minimum execution time of the application

across all the configurations on the chip
tp penalty in execution time, maximum allowed

execution time is (1 + tp
100)⇥ tmin

days. In previous work [47], it is shown that the prediction
accuracy of Model 3 is very high. The average prediction
error in performance is less than 1.6%, and 0.7% for a com-
putationally intensive and a memory intensive application,
respectively. Simulated performance was obtained using the
Sniper simulator, discussed in detail in Section 5. Similar to
performance, the dynamic power consumption of a configu-
ration could be modeled accurately using Model 3, that is,

P = Ak(
X

i2c

fi) +Bk

where P is the dynamic power of configuration c, Ak and Bk

are line constants. It has been shown in previous work [47]
that the maximum prediction error of Model 3 for dynamic
power is less than 2%.

4. Energy Optimization Approach
In this section, we describe our approach for optimizing
the energy consumption during application execution. The
total energy is computed as the power consumption inte-
grated over the duration of execution of the application, that
is, power consumption multiplied by the execution time of
the application. We use Model 3, described in the previous
section, to model the execution time and dynamic power
consumption of any configuration. According to Model 3,
the linear function for performance and dynamic power con-
sumption of a configuration depends on the number of cores
in the configuration. Therefore, the energy consumption can
be defined as
NX

k=1

(nk ⇤ (apk
X

i

xifi + b

p
k +

X

i

sixi) ⇤ (atk
X

i

xifi + b

t
k))

Performance	 Modeling*	

•  Model	 3	
– One	 model	 each	 for	 configuraJons	 with	 same	 number	
of	 cores	

–  Performance	 is	 linear	 funcJon	 of	 frequency	
–  Total	 #cores	 (n)	 models	

•  k	 is	 number	 of	 cores	 in	 configuraJon	 c	
•  ak,	 bk	 are	 line	 constants	
•  fi	 is	 frequency	 of	 core	 i	

– Average	 predicJon	 error	 less	 than	 1.6%	
– Dynamic	 power	 consumpJon	 can	 be	 modeled	 in	 same	
way	

3/2/15	 Energy-‐efficient	 operaJon	 of	
Heterogeneous	 Chips	 9	

*Under	 Review	

individual cores in the configuration (c).

S =
X

i2c

si (1)

where, si is the performance (instructions per cycle) of core
i for the focal application when the application was run only
on core i, and S is the predicted performance (instructions
per cycle) for configuration c for the focal application. This
model will predict performance accurately only for compu-
tationally intensive applications in which there is no memory
contention. For memory-intensive applications, this perfor-
mance model will fail to predict the performance for a con-
figuration because it just adds the core performance which
was obtained when they were running individually, and does
not model the contention for the shared resources, e.g. mem-
ory, when multiple cores are running simultaneously.

Model 2: The application execution time is divided into
two components: Tcpu corresponding to CPU time and
Tmem corresponding to memory time (as in [14, 15, 21,
43]). And the performance is modeled as

T =
TcpuX

i2c

fi

+ Tmem (2)

where, fi is the frequency of core i, and T is the pre-
dicted execution time of the application. The weakness of
this model is that it fails to incorporate the number of cores
that are accessing the memory, and treats the memory time
as constant irrespective of the cores that are accessing the
memory.

Model 3: In this model, we construct as many model
functions as there are number of cores on the chip. There
is one model for all the configurations with the same num-
ber of cores. For instance, if there are 36 cores on a chip, 36
functions are developed. In this way, this model incorporates
the number of active cores in performance prediction. Each
of these functions is a linear function of the sum of frequen-
cies of the cores in the configuration. The performance (in-
structions per cycle) function for all the configurations with
k cores is modeled as:

S = ak(
X

i2c

fi) + bk (3)

where, ak, bk are line constants for all configurations with
k cores, and S is the instructions per cycle of the configu-
ration. Only two performance data samples are required to
get the value of the constants, ak and bk, for this function.
These samples correspond to instructions per cycle for any
two configurations with k cores. Since there are n functions,
2n samples are sufficient to develop the complete model for
an application (although more samples can increase the ac-
curacy of the model). The overhead of sampling the data to
generate the model is negligible as compared to the execu-
tion time of HPC applications, which can be from hours to

Table 1: Constrained Optimization Program Terminology

Symbol Description

N total number of cores on the chip
c a configuration
k number of cores in a configuration
nk binary variable indicating whether the selected

configuration has k cores
xi a binary variable indicating whether core i

is selected or not in a configuration
fi frequency of core i

si static power consumption of core i

a

t
k, b

t
k line constants for performance model

of configurations with k cores
a

p
k, b

p
k line constants for dynamic power model

of configurations with k cores
tmin minimum execution time of the application

across all the configurations on the chip
tp penalty in execution time, maximum allowed

execution time is (1 + tp
100)⇥ tmin

days. In previous work [47], it is shown that the prediction
accuracy of Model 3 is very high. The average prediction
error in performance is less than 1.6%, and 0.7% for a com-
putationally intensive and a memory intensive application,
respectively. Simulated performance was obtained using the
Sniper simulator, discussed in detail in Section 5. Similar to
performance, the dynamic power consumption of a configu-
ration could be modeled accurately using Model 3, that is,

P = Ak(
X

i2c

fi) +Bk

where P is the dynamic power of configuration c, Ak and Bk

are line constants. It has been shown in previous work [47]
that the maximum prediction error of Model 3 for dynamic
power is less than 2%.

4. Energy Optimization Approach
In this section, we describe our approach for optimizing
the energy consumption during application execution. The
total energy is computed as the power consumption inte-
grated over the duration of execution of the application, that
is, power consumption multiplied by the execution time of
the application. We use Model 3, described in the previous
section, to model the execution time and dynamic power
consumption of any configuration. According to Model 3,
the linear function for performance and dynamic power con-
sumption of a configuration depends on the number of cores
in the configuration. Therefore, the energy consumption can
be defined as
NX

k=1

(nk ⇤ (apk
X

i

xifi + b

p
k +

X

i

sixi) ⇤ (atk
X

i

xifi + b

t
k))

individual cores in the configuration (c).

S =
X

i2c

si (1)

where, si is the performance (instructions per cycle) of core
i for the focal application when the application was run only
on core i, and S is the predicted performance (instructions
per cycle) for configuration c for the focal application. This
model will predict performance accurately only for compu-
tationally intensive applications in which there is no memory
contention. For memory-intensive applications, this perfor-
mance model will fail to predict the performance for a con-
figuration because it just adds the core performance which
was obtained when they were running individually, and does
not model the contention for the shared resources, e.g. mem-
ory, when multiple cores are running simultaneously.

Model 2: The application execution time is divided into
two components: Tcpu corresponding to CPU time and
Tmem corresponding to memory time (as in [14, 15, 21,
43]). And the performance is modeled as

T =
TcpuX

i2c

fi

+ Tmem (2)

where, fi is the frequency of core i, and T is the pre-
dicted execution time of the application. The weakness of
this model is that it fails to incorporate the number of cores
that are accessing the memory, and treats the memory time
as constant irrespective of the cores that are accessing the
memory.

Model 3: In this model, we construct as many model
functions as there are number of cores on the chip. There
is one model for all the configurations with the same num-
ber of cores. For instance, if there are 36 cores on a chip, 36
functions are developed. In this way, this model incorporates
the number of active cores in performance prediction. Each
of these functions is a linear function of the sum of frequen-
cies of the cores in the configuration. The performance (in-
structions per cycle) function for all the configurations with
k cores is modeled as:

S = ak(
X

i2c

fi) + bk (3)

where, ak, bk are line constants for all configurations with
k cores, and S is the instructions per cycle of the configu-
ration. Only two performance data samples are required to
get the value of the constants, ak and bk, for this function.
These samples correspond to instructions per cycle for any
two configurations with k cores. Since there are n functions,
2n samples are sufficient to develop the complete model for
an application (although more samples can increase the ac-
curacy of the model). The overhead of sampling the data to
generate the model is negligible as compared to the execu-
tion time of HPC applications, which can be from hours to

Table 1: Constrained Optimization Program Terminology

Symbol Description

N total number of cores on the chip
c a configuration
k number of cores in a configuration
nk binary variable indicating whether the selected

configuration has k cores
xi a binary variable indicating whether core i

is selected or not in a configuration
fi frequency of core i

si static power consumption of core i

a

t
k, b

t
k line constants for performance model

of configurations with k cores
a

p
k, b

p
k line constants for dynamic power model

of configurations with k cores
tmin minimum execution time of the application

across all the configurations on the chip
tp penalty in execution time, maximum allowed

execution time is (1 + tp
100)⇥ tmin

days. In previous work [47], it is shown that the prediction
accuracy of Model 3 is very high. The average prediction
error in performance is less than 1.6%, and 0.7% for a com-
putationally intensive and a memory intensive application,
respectively. Simulated performance was obtained using the
Sniper simulator, discussed in detail in Section 5. Similar to
performance, the dynamic power consumption of a configu-
ration could be modeled accurately using Model 3, that is,

P = Ak(
X

i2c

fi) +Bk

where P is the dynamic power of configuration c, Ak and Bk

are line constants. It has been shown in previous work [47]
that the maximum prediction error of Model 3 for dynamic
power is less than 2%.

4. Energy Optimization Approach
In this section, we describe our approach for optimizing
the energy consumption during application execution. The
total energy is computed as the power consumption inte-
grated over the duration of execution of the application, that
is, power consumption multiplied by the execution time of
the application. We use Model 3, described in the previous
section, to model the execution time and dynamic power
consumption of any configuration. According to Model 3,
the linear function for performance and dynamic power con-
sumption of a configuration depends on the number of cores
in the configuration. Therefore, the energy consumption can
be defined as
NX

k=1

(nk ⇤ (apk
X

i

xifi + b

p
k +

X

i

sixi) ⇤ (atk
X

i

xifi + b

t
k))

Energy	 OpJmizaJon	 Approach	

3/2/15	 Energy-‐efficient	 operaJon	 of	
Heterogeneous	 Chips	 10	

where, nk is a binary variable indicating whether the se-
lected configuration has k cores (nk can be 1 only for one
value of k) , xi is a binary variable indicating whether ith

core is selected, apk
X

i

xifi + b

p
k is the dynamic power con-

sumption of the configuration, si is the static power con-
sumption of core i,

X

i

sixi is the total static power con-

sumption, and a

t
k

X

i

xifi + b

t
k is the execution time of the

application. Energy minimization problem can then be for-
mulated as a constrained optimization problem. The formu-
lation is given below in Equations (4)-(8). Terminology used
in this section is defined in Table 1.
Objective Function

min

nX

k=1

nk ⇤ (apk
n�1X

i=0

xifi + b

p
k +

n�1X

i=0

sixi) ⇤ (atk
n�1X

i=0

xifi + b

t
k)

(4)

Select One Value of k

nX

k=1

nk = 1 (5)

Total Number of Cores Equals k

n�1X

i=0

xi =
nX

k=1

nkk (6)

Variables Range

8i 2 [0, n), xi 2 {0, 1} (7)
8k 2 (0, n], nk 2 {0, 1} (8)

Constraints in the above formulation are linear constraints
that ensure that a valid configuration is selected. However,
the objective function has a cubic expression. This con-
strained optimization problem can be readily solved by solv-
ing n quadratic integer programs. Each of these quadratic
integer programs chooses the best configuration amongst all
the configurations with the same number of cores. The best
performing configuration is then chosen from amongst the
optimal configurations returned by the n quadratic integer
program optimizations. In this way, the global optimal con-
figuration can be found by optimizing n quadratic programs
(Algorithm 1). The quadratic program that selects the best
configuration from amongst all the configurations with k

cores is given below in Equations (9)-(11).
Objective Function

min (apK

n�1X

i=0

xifi + b

p
K +

n�1X

i=0

sixi) ⇤ (atK
n�1X

i=0

xifi + b

t
K)

(9)

Algorithm 1 Algorithm for obtaining the globally optimal
configuration by solving n quadratic programs

1 for k 2 [1, n]:
2 //Obtain the best configuration amongst
3 //all configurations with k cores
4 Ck = EnergyQP(k)
5
6 //energy(CK) is the total energy consumption of configuration Ck

7 Optimal Configuration
= {Ck|energy(Ck) is minimum for k 2 [1, n]}

Total Number of Cores Equals K

n�1X

i=0

xi = K (10)

Variables Range

8i 2 [0, n), xi 2 {0, 1} (11)

Quadratic programs must have positive semi-definite ma-
trices to be solved using convex optimization. The resulting
quadratic programs above are not positive semi-definite and
hence can be computationally very hard to solve using non-
linear optimization methodologies.

In order to reduce the quadratic objective function to a
linear expression, we use the scheme proposed by Glover
and Woosley [19]. In this scheme, the cross-product terms
in the objective function are replaced by adding new contin-
uous variables. The value of these new variables are deter-
mined by adding new constraints. For example, a quadratic
product term x1x2, where x1, x2 are binary variables, can
be replaced by a new variable y12 such that y12 x1, y12
x2, and y12 � x1 + x2 � 1. We multiply the terms in the ob-
jective function (Equation 9) and replace the product terms
of the form xixj with new continuous variables yij . The re-
sulting ILP is given below in Equations (12)-(15).
Objective Function

min

n�1X

i=0

n�1X

j=0

(apKfi + si)(a
t
Kfj)yij + b

t
K

n�1X

i=0

(apKfi + si)xi

+b

p
Ka

t
K

n�1X

j=0

fjxj + b

p
Kb

t
K

(12)

Total Number of Cores Equals K

n�1X

i=0

xi = K (13)

New variable constraints

yij xi, 8i, j 2 [0, n), j i

yij xj , 8i, j 2 [0, n), j i

yij � xi + xj � 1, 8i, j 2 [0, n), j i (14)

where, nk is a binary variable indicating whether the se-
lected configuration has k cores (nk can be 1 only for one
value of k) , xi is a binary variable indicating whether ith

core is selected, apk
X

i

xifi + b

p
k is the dynamic power con-

sumption of the configuration, si is the static power con-
sumption of core i,

X

i

sixi is the total static power con-

sumption, and a

t
k

X

i

xifi + b

t
k is the execution time of the

application. Energy minimization problem can then be for-
mulated as a constrained optimization problem. The formu-
lation is given below in Equations (4)-(8). Terminology used
in this section is defined in Table 1.
Objective Function

min

nX

k=1

nk ⇤ (apk
n�1X

i=0

xifi + b

p
k +

n�1X

i=0

sixi) ⇤ (atk
n�1X

i=0

xifi + b

t
k)

(4)

Select One Value of k

nX

k=1

nk = 1 (5)

Total Number of Cores Equals k

n�1X

i=0

xi =
nX

k=1

nkk (6)

Variables Range

8i 2 [0, n), xi 2 {0, 1} (7)
8k 2 (0, n], nk 2 {0, 1} (8)

Constraints in the above formulation are linear constraints
that ensure that a valid configuration is selected. However,
the objective function has a cubic expression. This con-
strained optimization problem can be readily solved by solv-
ing n quadratic integer programs. Each of these quadratic
integer programs chooses the best configuration amongst all
the configurations with the same number of cores. The best
performing configuration is then chosen from amongst the
optimal configurations returned by the n quadratic integer
program optimizations. In this way, the global optimal con-
figuration can be found by optimizing n quadratic programs
(Algorithm 1). The quadratic program that selects the best
configuration from amongst all the configurations with k

cores is given below in Equations (9)-(11).
Objective Function

min (apK

n�1X

i=0

xifi + b

p
K +

n�1X

i=0

sixi) ⇤ (atK
n�1X

i=0

xifi + b

t
K)

(9)

Algorithm 1 Algorithm for obtaining the globally optimal
configuration by solving n quadratic programs

1 for k 2 [1, n]:
2 //Obtain the best configuration amongst
3 //all configurations with k cores
4 Ck = EnergyQP(k)
5
6 //energy(CK) is the total energy consumption of configuration Ck

7 Optimal Configuration
= {Ck|energy(Ck) is minimum for k 2 [1, n]}

Total Number of Cores Equals K

n�1X

i=0

xi = K (10)

Variables Range

8i 2 [0, n), xi 2 {0, 1} (11)

Quadratic programs must have positive semi-definite ma-
trices to be solved using convex optimization. The resulting
quadratic programs above are not positive semi-definite and
hence can be computationally very hard to solve using non-
linear optimization methodologies.

In order to reduce the quadratic objective function to a
linear expression, we use the scheme proposed by Glover
and Woosley [19]. In this scheme, the cross-product terms
in the objective function are replaced by adding new contin-
uous variables. The value of these new variables are deter-
mined by adding new constraints. For example, a quadratic
product term x1x2, where x1, x2 are binary variables, can
be replaced by a new variable y12 such that y12 x1, y12
x2, and y12 � x1 + x2 � 1. We multiply the terms in the ob-
jective function (Equation 9) and replace the product terms
of the form xixj with new continuous variables yij . The re-
sulting ILP is given below in Equations (12)-(15).
Objective Function

min

n�1X

i=0

n�1X

j=0

(apKfi + si)(a
t
Kfj)yij + b

t
K

n�1X

i=0

(apKfi + si)xi

+b

p
Ka

t
K

n�1X

j=0

fjxj + b

p
Kb

t
K

(12)

Total Number of Cores Equals K

n�1X

i=0

xi = K (13)

New variable constraints

yij xi, 8i, j 2 [0, n), j i

yij xj , 8i, j 2 [0, n), j i

yij � xi + xj � 1, 8i, j 2 [0, n), j i (14)

Power	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Time	

StaJc	 Power	
Dynamic	 Power	

Cubic	 Objec1ve	
Func1on!	 	

where, nk is a binary variable indicating whether the se-
lected configuration has k cores (nk can be 1 only for one
value of k) , xi is a binary variable indicating whether ith

core is selected, apk
X

i

xifi + b

p
k is the dynamic power con-

sumption of the configuration, si is the static power con-
sumption of core i,

X

i

sixi is the total static power con-

sumption, and a

t
k

X

i

xifi + b

t
k is the execution time of the

application. Energy minimization problem can then be for-
mulated as a constrained optimization problem. The formu-
lation is given below in Equations (4)-(8). Terminology used
in this section is defined in Table 1.
Objective Function

min

nX

k=1

nk ⇤ (apk
n�1X

i=0

xifi + b

p
k +

n�1X

i=0

sixi) ⇤ (atk
n�1X

i=0

xifi + b

t
k)

(4)

Select One Value of k

nX

k=1

nk = 1 (5)

Total Number of Cores Equals k

n�1X

i=0

xi =
nX

k=1

nkk (6)

Variables Range

8i 2 [0, n), xi 2 {0, 1} (7)
8k 2 (0, n], nk 2 {0, 1} (8)

Constraints in the above formulation are linear constraints
that ensure that a valid configuration is selected. However,
the objective function has a cubic expression. This con-
strained optimization problem can be readily solved by solv-
ing n quadratic integer programs. Each of these quadratic
integer programs chooses the best configuration amongst all
the configurations with the same number of cores. The best
performing configuration is then chosen from amongst the
optimal configurations returned by the n quadratic integer
program optimizations. In this way, the global optimal con-
figuration can be found by optimizing n quadratic programs
(Algorithm 1). The quadratic program that selects the best
configuration from amongst all the configurations with k

cores is given below in Equations (9)-(11).
Objective Function

min (apK

n�1X

i=0

xifi + b

p
K +

n�1X

i=0

sixi) ⇤ (atK
n�1X

i=0

xifi + b

t
K)

(9)

Algorithm 1 Algorithm for obtaining the globally optimal
configuration by solving n quadratic programs

1 for k 2 [1, n]:
2 //Obtain the best configuration amongst
3 //all configurations with k cores
4 Ck = EnergyQP(k)
5
6 //energy(CK) is the total energy consumption of configuration Ck

7 Optimal Configuration
= {Ck|energy(Ck) is minimum for k 2 [1, n]}

Total Number of Cores Equals K

n�1X

i=0

xi = K (10)

Variables Range

8i 2 [0, n), xi 2 {0, 1} (11)

Quadratic programs must have positive semi-definite ma-
trices to be solved using convex optimization. The resulting
quadratic programs above are not positive semi-definite and
hence can be computationally very hard to solve using non-
linear optimization methodologies.

In order to reduce the quadratic objective function to a
linear expression, we use the scheme proposed by Glover
and Woosley [19]. In this scheme, the cross-product terms
in the objective function are replaced by adding new contin-
uous variables. The value of these new variables are deter-
mined by adding new constraints. For example, a quadratic
product term x1x2, where x1, x2 are binary variables, can
be replaced by a new variable y12 such that y12 x1, y12
x2, and y12 � x1 + x2 � 1. We multiply the terms in the ob-
jective function (Equation 9) and replace the product terms
of the form xixj with new continuous variables yij . The re-
sulting ILP is given below in Equations (12)-(15).
Objective Function

min

n�1X

i=0

n�1X

j=0

(apKfi + si)(a
t
Kfj)yij + b

t
K

n�1X

i=0

(apKfi + si)xi

+b

p
Ka

t
K

n�1X

j=0

fjxj + b

p
Kb

t
K

(12)

Total Number of Cores Equals K

n�1X

i=0

xi = K (13)

New variable constraints

yij xi, 8i, j 2 [0, n), j i

yij xj , 8i, j 2 [0, n), j i

yij � xi + xj � 1, 8i, j 2 [0, n), j i (14)

Energy	 OpJmizaJon	 Approach	

3/2/15	 Energy-‐efficient	 operaJon	 of	
Heterogeneous	 Chips	 11	

Power	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Time	

StaJc	 Power	
Dynamic	 Power	

Quadra1c	 Objec1ve	
Func1on!	 	

where, nk is a binary variable indicating whether the se-
lected configuration has k cores (nk can be 1 only for one
value of k) , xi is a binary variable indicating whether ith

core is selected, apk
X

i

xifi + b

p
k is the dynamic power con-

sumption of the configuration, si is the static power con-
sumption of core i,

X

i

sixi is the total static power con-

sumption, and a

t
k

X

i

xifi + b

t
k is the execution time of the

application. Energy minimization problem can then be for-
mulated as a constrained optimization problem. The formu-
lation is given below in Equations (4)-(8). Terminology used
in this section is defined in Table 1.
Objective Function

min

nX

k=1

nk ⇤ (apk
n�1X

i=0

xifi + b

p
k +

n�1X

i=0

sixi) ⇤ (atk
n�1X

i=0

xifi + b

t
k)

(4)

Select One Value of k

nX

k=1

nk = 1 (5)

Total Number of Cores Equals k

n�1X

i=0

xi =
nX

k=1

nkk (6)

Variables Range

8i 2 [0, n), xi 2 {0, 1} (7)
8k 2 (0, n], nk 2 {0, 1} (8)

Constraints in the above formulation are linear constraints
that ensure that a valid configuration is selected. However,
the objective function has a cubic expression. This con-
strained optimization problem can be readily solved by solv-
ing n quadratic integer programs. Each of these quadratic
integer programs chooses the best configuration amongst all
the configurations with the same number of cores. The best
performing configuration is then chosen from amongst the
optimal configurations returned by the n quadratic integer
program optimizations. In this way, the global optimal con-
figuration can be found by optimizing n quadratic programs
(Algorithm 1). The quadratic program that selects the best
configuration from amongst all the configurations with k

cores is given below in Equations (9)-(11).
Objective Function

min (apK

n�1X

i=0

xifi + b

p
K +

n�1X

i=0

sixi) ⇤ (atK
n�1X

i=0

xifi + b

t
K)

(9)

Algorithm 1 Algorithm for obtaining the globally optimal
configuration by solving n quadratic programs

1 for k 2 [1, n]:
2 //Obtain the best configuration amongst
3 //all configurations with k cores
4 Ck = EnergyQP(k)
5
6 //energy(CK) is the total energy consumption of configuration Ck

7 Optimal Configuration
= {Ck|energy(Ck) is minimum for k 2 [1, n]}

Total Number of Cores Equals K

n�1X

i=0

xi = K (10)

Variables Range

8i 2 [0, n), xi 2 {0, 1} (11)

Quadratic programs must have positive semi-definite ma-
trices to be solved using convex optimization. The resulting
quadratic programs above are not positive semi-definite and
hence can be computationally very hard to solve using non-
linear optimization methodologies.

In order to reduce the quadratic objective function to a
linear expression, we use the scheme proposed by Glover
and Woosley [19]. In this scheme, the cross-product terms
in the objective function are replaced by adding new contin-
uous variables. The value of these new variables are deter-
mined by adding new constraints. For example, a quadratic
product term x1x2, where x1, x2 are binary variables, can
be replaced by a new variable y12 such that y12 x1, y12
x2, and y12 � x1 + x2 � 1. We multiply the terms in the ob-
jective function (Equation 9) and replace the product terms
of the form xixj with new continuous variables yij . The re-
sulting ILP is given below in Equations (12)-(15).
Objective Function

min

n�1X

i=0

n�1X

j=0

(apKfi + si)(a
t
Kfj)yij + b

t
K

n�1X

i=0

(apKfi + si)xi

+b

p
Ka

t
K

n�1X

j=0

fjxj + b

p
Kb

t
K

(12)

Total Number of Cores Equals K

n�1X

i=0

xi = K (13)

New variable constraints

yij xi, 8i, j 2 [0, n), j i

yij xj , 8i, j 2 [0, n), j i

yij � xi + xj � 1, 8i, j 2 [0, n), j i (14)

•  Convert	 cubic	 program	 to	 n	 quadraJc	 programs	
•  Each	 corresponding	 to	 all	 configuraJons	 with	 fixed	 number	 of	 cores	
•  Select	 best	 configuraJon	 across	 n	 quadraJc	 programs	

Energy	 OpJmizaJon	 Approach	

3/2/15	 Energy-‐efficient	 operaJon	 of	
Heterogeneous	 Chips	 12	

•  QuadraJc	 programs	 hard	 to	 solve	 using	 non-‐linear	 methods	
•  Replace	 quadraJc	 terms	 of	 form	 x1x2	 with	 binary	 variables	 y12	

and	 add	 following	 constraints	
y12	 ≤	 x1	
y12	 ≤	 x2	

y12	 ≥	 x1+x2-‐1	
•  Add	 Jming	 constraint	

aKtF	 +	 bKt	 ≤	 Ptmin,	 	
where	 F	 is	 sum	 of	 frequencies,	
and	 P	 is	 allowed	 Jme	 penalty	

Setup	
•  Sniper	 Simulator	

–  Vdd	 =	 0.765V	
–  36	 cores	 on	 chip	
–  Results	 across	 25	 chips	

•  ApplicaJons	
–  miniMD	

•  Molecular	 dynamics	 mini	 applicaJon	 	
•  ComputaJonally	 intensive	

–  Jacobi	 	
•  3D	 stencil	 code	
•  Memory	 intensive	

•  HeurisJcs	
–  Min	 heurisJc	
–  Max	 heurisJc	

•  Integer	 Linear	 Program	 (ILP)	 Solver	
–  Gurobi	
–  Uses	 variant	 of	 branch-‐and-‐bound	 method	

3/2/15	 Energy-‐efficient	 operaJon	 of	
Heterogeneous	 Chips	 13	

Results	

3/2/15	 Energy-‐efficient	 operaJon	 of	
Heterogeneous	 Chips	 14	

(a) With no time constraint (b) Maximum 15% time penalty (c) Maximum 5% time penalty

Figure 3: Percentage savings in energy with MIN, MAX heuristics, and the ILP method for the two applications, miniMD
and Jacobi3d, with respect to the configuration with best execution time. The bars correspond to the average benefits, while
the vertical lines correspond to the minimum and maximum benefits obtained from the corresponding heuristic across the
25 chips. In (a), configuration that minimizes energy consumption is sought irrespective of penalty in execution time of the
application. In (b) and (c), the best configuration that minimizes energy while the execution time penalty is less than 15% and
5%, respectively, is sought using the MIN, MAX heuristic, and ILP method.

Figure 4: An example of a configuration selected by the ILP
optimization method for Jacobi application. Circle markers
correspond to the cores selected by ILP. A total of 21 cores
were selected by the ILP method. MIN, MAX heuristic se-
lected 26, 27 cores, respectively.

• Jacobi An average of 1.6%, 1.2%, 6.4% savings in
energy with MIN, MAX heuristic, ILP, respectively is
achieved.

Since miniMD is a computationally intensive application,
the number of cores in the optimal configuration selected for
miniMD are more than the number of cores in the optimal
configuration for Jacobi. In Jacobi, large number of cores
lead to increase in the memory contention and hence are sub-
optimal. Figure 4 shows an example solution obtained from
ILP optimization, MIN heuristic, and MAX heuristic.

6.2 Solution Time
The proposed methodology requires optimizing n�2 proper
ILPs, where n is the total number of cores on the chip. Each
ILP has 702 variables, and 2000 constraints. The ILP opti-
mizations are independent of each other and can therefore
be very easily parallelized by launching them in parallel on
multiple cores of a compute node and/or on multiple com-
pute nodes. For the experiments, we use a Dell 2.67 GHz
Dual Westmere Xeon E5640 processor with a total of 8 cores
and 16 SMT threads. The ILP optimizations required for a
given chip and a application were launched in parallel on the
machine. We now consider the solution time for each of the
three cases presented in Section 6.1.

1. When there is no execution time penalty constraint, it
took an average of 400 seconds and 1090 seconds for
obtaining the optimal result for miniMD and Jacobi, re-
spectively. An average of 4.08e7 and 3.27e8 simplex it-
erations (summed across all the BnB vertices explored)
were performed by the ILP solver for miniMD and Ja-
cobi, respectively.

2. When the maximum execution time penalty of 15% is en-
forced, the configuration search space for ILP optimiza-
tion is reduced significantly. It took an average of 14.8s,
37s to find the optimal solution for miniMD, Jacobi, re-
spectively.

3. With the maximum execution time penalty of 5%, the
search space is further reduced, and it took only 8s, 10.2s
to find the optimal solution for miniMD, Jacobi, respec-
tively.

We compare these results with exhaustive evaluation of
the performance and power models for all the configurations
on the same machine. The configurations can be evaluated in
parallel. The total number of configurations to be evaluated

Results	

3/2/15	 Energy-‐efficient	 operaJon	 of	
Heterogeneous	 Chips	 15	

(a) With no time constraint (b) Maximum 15% time penalty (c) Maximum 5% time penalty

Figure 3: Percentage savings in energy with MIN, MAX heuristics, and the ILP method for the two applications, miniMD
and Jacobi3d, with respect to the configuration with best execution time. The bars correspond to the average benefits, while
the vertical lines correspond to the minimum and maximum benefits obtained from the corresponding heuristic across the
25 chips. In (a), configuration that minimizes energy consumption is sought irrespective of penalty in execution time of the
application. In (b) and (c), the best configuration that minimizes energy while the execution time penalty is less than 15% and
5%, respectively, is sought using the MIN, MAX heuristic, and ILP method.

Figure 4: An example of a configuration selected by the ILP
optimization method for Jacobi application. Circle markers
correspond to the cores selected by ILP. A total of 21 cores
were selected by the ILP method. MIN, MAX heuristic se-
lected 26, 27 cores, respectively.

• Jacobi An average of 1.6%, 1.2%, 6.4% savings in
energy with MIN, MAX heuristic, ILP, respectively is
achieved.

Since miniMD is a computationally intensive application,
the number of cores in the optimal configuration selected for
miniMD are more than the number of cores in the optimal
configuration for Jacobi. In Jacobi, large number of cores
lead to increase in the memory contention and hence are sub-
optimal. Figure 4 shows an example solution obtained from
ILP optimization, MIN heuristic, and MAX heuristic.

6.2 Solution Time
The proposed methodology requires optimizing n�2 proper
ILPs, where n is the total number of cores on the chip. Each
ILP has 702 variables, and 2000 constraints. The ILP opti-
mizations are independent of each other and can therefore
be very easily parallelized by launching them in parallel on
multiple cores of a compute node and/or on multiple com-
pute nodes. For the experiments, we use a Dell 2.67 GHz
Dual Westmere Xeon E5640 processor with a total of 8 cores
and 16 SMT threads. The ILP optimizations required for a
given chip and a application were launched in parallel on the
machine. We now consider the solution time for each of the
three cases presented in Section 6.1.

1. When there is no execution time penalty constraint, it
took an average of 400 seconds and 1090 seconds for
obtaining the optimal result for miniMD and Jacobi, re-
spectively. An average of 4.08e7 and 3.27e8 simplex it-
erations (summed across all the BnB vertices explored)
were performed by the ILP solver for miniMD and Ja-
cobi, respectively.

2. When the maximum execution time penalty of 15% is en-
forced, the configuration search space for ILP optimiza-
tion is reduced significantly. It took an average of 14.8s,
37s to find the optimal solution for miniMD, Jacobi, re-
spectively.

3. With the maximum execution time penalty of 5%, the
search space is further reduced, and it took only 8s, 10.2s
to find the optimal solution for miniMD, Jacobi, respec-
tively.

We compare these results with exhaustive evaluation of
the performance and power models for all the configurations
on the same machine. The configurations can be evaluated in
parallel. The total number of configurations to be evaluated

26%	 18.4%	 13.4%	

Energy	 Savings	

ILP	 Solu+on	 Time:	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 745	 seconds	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 26	 seconds	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 9seconds	
vs	
Exhaus+ve	 Evalua+on:	 	 74	 hours	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Conclusions	 	

•  Negligible	 overhead	
– O(n)	 samples	 required	
–  Performance	 models	 developed	 with	 negligible	
overhead	

•  ILP	 solvers	 to	 opJmize	 energy	 consumpJon	 with	
Jming	 constraints	
–  Significant	 energy	 savings	 as	 compared	 to	 sub-‐opJmal	
heurisJcs	

•  No	 extra	 compute	 resources	 required	
–  Solve	 ILPs	 on	 respecJve	 chips	 prior	 to	 job	 execuJon	

3/2/15	 Energy-‐efficient	 operaJon	 of	
Heterogeneous	 Chips	 16	

Future	 Work	

•  Further	 improvement	 of	 performance	 models	
•  Evaluate	 approach	 with	 even	 larger	 number	 of	
cores	

•  OpJmizaJon	 methods	 to	 further	 improve	
soluJon	 Jme	

•  Apply	 to	 other	 HPC	 applicaJons	

3/2/15	 Energy-‐efficient	 operaJon	 of	
Heterogeneous	 Chips	 17	

Energy-‐efficient	 compu1ng	 for	 HPC	
workloads	 on	 Heterogeneous	 Chips	

	 Akhil	 Langer,	 Ehsan	 Totoni,	 Uda.a	 Palekar*,	 Laxmikant	 V.	 Kale	
Parallel	 Programming	 Laboratory,	 Department	 of	 Computer	 Science	

*Department	 of	 Business	 AdministraJon	
University	 of	 Illinois	 at	 Urbana-‐Champaign	

	
PMAM	 2015	

6th	 InternaJonal	 Workshop	 on	 Programming	 Models	 and	 	
ApplicaJons	 for	 MulJcores	 and	 Manycores 	 	

February	 7-‐8,	 2015	
San	 Francisco	 Bay	 Area,	 USA	

	
	

QUESTIONS!	
h?p://charm.cs.uiuc.edu/research/energy	

