

Energy-efficient computing for HPC workloads on Heterogeneous Chips

Akhil Langer, Ehsan Totoni, Udatta Palekar*, Laxmikant (Sanjay) V. Kale Parallel Programming Laboratory, Department of Computer Science *Department of Business Administration University of Illinois at Urbana-Champaign http://charm.cs.uiuc.edu/research/energy

> PMAM 2015 6th International Workshop on Programming Models and Applications for Multicores and Manycores February 7-8, 2015

Outline

- Introduction
- Background
- Problem Statement
- DApproach

Results

Introduction

- Motivation
 - Huge energy consumption of data centers
 - 20MW power @ \$0.15 per KWh, costs \$2.2 M per month
 - Energy efficiency identified as a major exascale challenge by DoE
 - Consider charging users in energy units (KWh) instead (or in addition) of SUs

Introduction

- Low voltage operation
 - For high energy efficiency
 - For example, 10x increase in energy efficiency near threshold voltage
- But
 - Variation in CMOS manufacturing process
 - Low voltage operation introduces variability on chip
 - Cores have different frequencies and power consumption

Process Variation

Low voltage operation

Programming Systems*

- Problem
 - HPC applications are highly synchronized
 - Speed determined by speed of slowest processor
- Solution
 - Do overdecomposition of work (e.g. Charm++)
 - Load Balance according to core speeds
- Result
 - Overdecomposition ratio of 16 => 2-6% load imbalance
 - No changes required in application code

*Under Review

Problem Statement

- Not optimal to use all cores on chip for execution
 - Shared resources cause contention
 - High energy consumption
- A configuration is defined as the cores on which the application is run

Determine optimal configuration that minimizes energy consumption (with optional timing constraints) of the chip for a given application

Performance Modeling*

- Exhaustive evaluation of configurations infeasible
- Model 1

– Sum of individual core performance

– Memory contention not modeled

- Model 2
 - Add memory access time
 - # of active cores not accounted

$$T = \frac{T_{cpu}}{\sum_{i \in c} f_i} + T_{mem}$$

 $S = \sum s_i$

 $i \in c$

*Under Review

Performance Modeling*

- Model 3
 - One model each for configurations with same number of cores
 - Performance is linear function of frequency
 - Total #cores (n) models
 - k is number of cores in configuration c
 - a_k, b_k are line constants
 - f_i is frequency of core i
 - Average prediction error less than 1.6%
 - Dynamic power consumption can be modeled in same way

*Under Review

 $S = a_k(\sum f_i) + b_k$

 $i \in c$

Energy Optimization Approach

Energy-efficient operation of Heterogeneous Chips

Energy Optimization Approach

- Convert cubic program to n quadratic programs
- Each corresponding to all configurations with fixed number of cores
- Select best configuration across n quadratic programs

Energy Optimization Approach

- Quadratic programs hard to solve using non-linear methods
- Replace quadratic terms of form x₁x₂ with binary variables y₁₂ and add following constraints

$$y_{12} \le x_1$$

 $y_{12} \le x_2$
 $y_{12} \ge x_1 + x_2 - 1$

• Add timing constraint

 $a_{K}^{t}F + b_{K}^{t} \leq Pt_{min}$, where F is sum of frequencies, and P is allowed time penalty

Setup

- Sniper Simulator
 - $-V_{dd} = 0.765V$
 - 36 cores on chip
 - Results across 25 chips
- Applications
 - miniMD
 - Molecular dynamics mini application
 - Computationally intensive
 - Jacobi
 - 3D stencil code
 - Memory intensive
- Heuristics
 - Min heuristic
 - Max heuristic
- Integer Linear Program (ILP) Solver
 - Gurobi
 - Uses variant of branch-and-bound method

Results

Results

Energy Savings

<u>vs</u> <u>Exhaustive Evaluation:</u> 74 hours

Conclusions

- Negligible overhead
 - O(n) samples required
 - Performance models developed with negligible overhead
- ILP solvers to optimize energy consumption with timing constraints
 - Significant energy savings as compared to sub-optimal heuristics
- No extra compute resources required
 - Solve ILPs on respective chips prior to job execution

Future Work

- Further improvement of performance models
- Evaluate approach with even larger number of cores
- Optimization methods to further improve solution time
- Apply to other HPC applications

QUESTIONS!

http://charm.cs.uiuc.edu/research/energy

Energy-efficient computing for HPC workloads on Heterogeneous Chips

Akhil Langer, Ehsan Totoni, Udatta Palekar*, Laxmikant V. Kale Parallel Programming Laboratory, Department of Computer Science *Department of Business Administration University of Illinois at Urbana-Champaign

PMAM 2015

6th International Workshop on Programming Models and Applications for Multicores and Manycores February 7-8, 2015 San Francisco Bay Area, USA