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IntroducJon	  

•  MoJvaJon	  
– Huge	  energy	  consumpJon	  of	  data	  centers	  
– 20MW	  power	  @	  $0.15	  per	  KWh,	  costs	  $2.2	  M	  per	  
month	  

– Energy	  efficiency	  idenJfied	  as	  a	  major	  exascale	  
challenge	  by	  DoE	  

– Consider	  charging	  users	  in	  energy	  units	  (KWh)	  
instead	  (or	  in	  addiJon)	  of	  SUs	  
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IntroducJon	  

•  Low	  voltage	  operaJon	  
–  For	  high	  energy	  efficiency	  
–  For	  example,	  10x	  increase	  in	  energy	  efficiency	  near	  
threshold	  voltage	  

•  But	  
– VariaJon	  in	  CMOS	  manufacturing	  process	  
–  Low	  voltage	  operaJon	  introduces	  variability	  on	  chip	  
–  Cores	  have	  different	  frequencies	  and	  power	  
consumpJon	  
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Process	  VariaJon	  

•  Low	  voltage	  operaJon	  
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Programming	  Systems*	  

•  Problem	  
– HPC	  applicaJons	  are	  highly	  synchronized	  
–  Speed	  determined	  by	  speed	  of	  slowest	  processor	  

•  Solu+on	  
– Do	  overdecomposiJon	  of	  work	  (e.g.	  Charm++)	  
–  Load	  Balance	  according	  to	  core	  speeds	  

•  Result	  
– OverdecomposiJon	  raJo	  of	  16	  =>	  2-‐6%	  load	  imbalance	  
–  	  No	  changes	  required	  in	  applicaJon	  code	  
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Problem	  Statement	  

•  Not	  opJmal	  to	  use	  all	  cores	  on	  chip	  for	  execuJon	  
–  Shared	  resources	  cause	  contenJon	  
– High	  energy	  consumpJon	  

•  A	  configuraJon	  is	  defined	  as	  the	  cores	  on	  which	  
the	  applicaJon	  is	  run	  

	  
Determine	  op+mal	  configura+on	  that	  minimizes	  
energy	  consump+on	  (with	  op+onal	  +ming	  
constraints)	  of	  the	  chip	  for	  a	  given	  applica+on	  
	  3/2/15	   Energy-‐efficient	  operaJon	  of	  

Heterogeneous	  Chips	   7	  



Performance	  Modeling*	  

•  ExhausJve	  evaluaJon	  of	  configuraJons	  infeasible	  
•  Model	  1	  
– Sum	  of	  individual	  core	  performance	  
– Memory	  contenJon	  not	  modeled	  

•  Model	  2	  
– Add	  memory	  access	  Jme	  
– #	  of	  acJve	  cores	  not	  accounted	  
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individual cores in the configuration (c).

S =
X

i2c

si (1)

where, si is the performance (instructions per cycle) of core
i for the focal application when the application was run only
on core i, and S is the predicted performance (instructions
per cycle) for configuration c for the focal application. This
model will predict performance accurately only for compu-
tationally intensive applications in which there is no memory
contention. For memory-intensive applications, this perfor-
mance model will fail to predict the performance for a con-
figuration because it just adds the core performance which
was obtained when they were running individually, and does
not model the contention for the shared resources, e.g. mem-
ory, when multiple cores are running simultaneously.

Model 2: The application execution time is divided into
two components: Tcpu corresponding to CPU time and
Tmem corresponding to memory time (as in [14, 15, 21,
43]). And the performance is modeled as

T =
TcpuX

i2c

fi

+ Tmem (2)

where, fi is the frequency of core i, and T is the pre-
dicted execution time of the application. The weakness of
this model is that it fails to incorporate the number of cores
that are accessing the memory, and treats the memory time
as constant irrespective of the cores that are accessing the
memory.

Model 3: In this model, we construct as many model
functions as there are number of cores on the chip. There
is one model for all the configurations with the same num-
ber of cores. For instance, if there are 36 cores on a chip, 36
functions are developed. In this way, this model incorporates
the number of active cores in performance prediction. Each
of these functions is a linear function of the sum of frequen-
cies of the cores in the configuration. The performance (in-
structions per cycle) function for all the configurations with
k cores is modeled as:

S = ak(
X

i2c

fi) + bk (3)

where, ak, bk are line constants for all configurations with
k cores, and S is the instructions per cycle of the configu-
ration. Only two performance data samples are required to
get the value of the constants, ak and bk, for this function.
These samples correspond to instructions per cycle for any
two configurations with k cores. Since there are n functions,
2n samples are sufficient to develop the complete model for
an application (although more samples can increase the ac-
curacy of the model). The overhead of sampling the data to
generate the model is negligible as compared to the execu-
tion time of HPC applications, which can be from hours to

Table 1: Constrained Optimization Program Terminology

Symbol Description

N total number of cores on the chip
c a configuration
k number of cores in a configuration
nk binary variable indicating whether the selected

configuration has k cores
xi a binary variable indicating whether core i

is selected or not in a configuration
fi frequency of core i

si static power consumption of core i

a

t
k, b

t
k line constants for performance model

of configurations with k cores
a

p
k, b

p
k line constants for dynamic power model

of configurations with k cores
tmin minimum execution time of the application

across all the configurations on the chip
tp penalty in execution time, maximum allowed

execution time is (1 + tp
100 )⇥ tmin

days. In previous work [47], it is shown that the prediction
accuracy of Model 3 is very high. The average prediction
error in performance is less than 1.6%, and 0.7% for a com-
putationally intensive and a memory intensive application,
respectively. Simulated performance was obtained using the
Sniper simulator, discussed in detail in Section 5. Similar to
performance, the dynamic power consumption of a configu-
ration could be modeled accurately using Model 3, that is,

P = Ak(
X

i2c

fi) +Bk

where P is the dynamic power of configuration c, Ak and Bk

are line constants. It has been shown in previous work [47]
that the maximum prediction error of Model 3 for dynamic
power is less than 2%.

4. Energy Optimization Approach
In this section, we describe our approach for optimizing
the energy consumption during application execution. The
total energy is computed as the power consumption inte-
grated over the duration of execution of the application, that
is, power consumption multiplied by the execution time of
the application. We use Model 3, described in the previous
section, to model the execution time and dynamic power
consumption of any configuration. According to Model 3,
the linear function for performance and dynamic power con-
sumption of a configuration depends on the number of cores
in the configuration. Therefore, the energy consumption can
be defined as
NX

k=1

(nk ⇤ (apk
X

i

xifi + b

p
k +

X

i

sixi) ⇤ (atk
X

i

xifi + b

t
k))

individual cores in the configuration (c).

S =
X

i2c

si (1)
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i for the focal application when the application was run only
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structions per cycle) function for all the configurations with
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where, ak, bk are line constants for all configurations with
k cores, and S is the instructions per cycle of the configu-
ration. Only two performance data samples are required to
get the value of the constants, ak and bk, for this function.
These samples correspond to instructions per cycle for any
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2n samples are sufficient to develop the complete model for
an application (although more samples can increase the ac-
curacy of the model). The overhead of sampling the data to
generate the model is negligible as compared to the execu-
tion time of HPC applications, which can be from hours to
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that the maximum prediction error of Model 3 for dynamic
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In this section, we describe our approach for optimizing
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total energy is computed as the power consumption inte-
grated over the duration of execution of the application, that
is, power consumption multiplied by the execution time of
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Performance	  Modeling*	  

•  Model	  3	  
– One	  model	  each	  for	  configuraJons	  with	  same	  number	  
of	  cores	  

–  Performance	  is	  linear	  funcJon	  of	  frequency	  
–  Total	  #cores	  (n)	  models	  

•  k	  is	  number	  of	  cores	  in	  configuraJon	  c	  
•  ak,	  bk	  are	  line	  constants	  
•  fi	  is	  frequency	  of	  core	  i	  

– Average	  predicJon	  error	  less	  than	  1.6%	  
– Dynamic	  power	  consumpJon	  can	  be	  modeled	  in	  same	  
way	  
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individual cores in the configuration (c).

S =
X

i2c

si (1)

where, si is the performance (instructions per cycle) of core
i for the focal application when the application was run only
on core i, and S is the predicted performance (instructions
per cycle) for configuration c for the focal application. This
model will predict performance accurately only for compu-
tationally intensive applications in which there is no memory
contention. For memory-intensive applications, this perfor-
mance model will fail to predict the performance for a con-
figuration because it just adds the core performance which
was obtained when they were running individually, and does
not model the contention for the shared resources, e.g. mem-
ory, when multiple cores are running simultaneously.

Model 2: The application execution time is divided into
two components: Tcpu corresponding to CPU time and
Tmem corresponding to memory time (as in [14, 15, 21,
43]). And the performance is modeled as

T =
TcpuX

i2c

fi

+ Tmem (2)

where, fi is the frequency of core i, and T is the pre-
dicted execution time of the application. The weakness of
this model is that it fails to incorporate the number of cores
that are accessing the memory, and treats the memory time
as constant irrespective of the cores that are accessing the
memory.

Model 3: In this model, we construct as many model
functions as there are number of cores on the chip. There
is one model for all the configurations with the same num-
ber of cores. For instance, if there are 36 cores on a chip, 36
functions are developed. In this way, this model incorporates
the number of active cores in performance prediction. Each
of these functions is a linear function of the sum of frequen-
cies of the cores in the configuration. The performance (in-
structions per cycle) function for all the configurations with
k cores is modeled as:

S = ak(
X

i2c

fi) + bk (3)

where, ak, bk are line constants for all configurations with
k cores, and S is the instructions per cycle of the configu-
ration. Only two performance data samples are required to
get the value of the constants, ak and bk, for this function.
These samples correspond to instructions per cycle for any
two configurations with k cores. Since there are n functions,
2n samples are sufficient to develop the complete model for
an application (although more samples can increase the ac-
curacy of the model). The overhead of sampling the data to
generate the model is negligible as compared to the execu-
tion time of HPC applications, which can be from hours to

Table 1: Constrained Optimization Program Terminology

Symbol Description

N total number of cores on the chip
c a configuration
k number of cores in a configuration
nk binary variable indicating whether the selected

configuration has k cores
xi a binary variable indicating whether core i

is selected or not in a configuration
fi frequency of core i

si static power consumption of core i

a

t
k, b

t
k line constants for performance model

of configurations with k cores
a

p
k, b

p
k line constants for dynamic power model

of configurations with k cores
tmin minimum execution time of the application

across all the configurations on the chip
tp penalty in execution time, maximum allowed

execution time is (1 + tp
100 )⇥ tmin

days. In previous work [47], it is shown that the prediction
accuracy of Model 3 is very high. The average prediction
error in performance is less than 1.6%, and 0.7% for a com-
putationally intensive and a memory intensive application,
respectively. Simulated performance was obtained using the
Sniper simulator, discussed in detail in Section 5. Similar to
performance, the dynamic power consumption of a configu-
ration could be modeled accurately using Model 3, that is,

P = Ak(
X

i2c

fi) +Bk

where P is the dynamic power of configuration c, Ak and Bk

are line constants. It has been shown in previous work [47]
that the maximum prediction error of Model 3 for dynamic
power is less than 2%.

4. Energy Optimization Approach
In this section, we describe our approach for optimizing
the energy consumption during application execution. The
total energy is computed as the power consumption inte-
grated over the duration of execution of the application, that
is, power consumption multiplied by the execution time of
the application. We use Model 3, described in the previous
section, to model the execution time and dynamic power
consumption of any configuration. According to Model 3,
the linear function for performance and dynamic power con-
sumption of a configuration depends on the number of cores
in the configuration. Therefore, the energy consumption can
be defined as
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individual cores in the configuration (c).

S =
X

i2c

si (1)

where, si is the performance (instructions per cycle) of core
i for the focal application when the application was run only
on core i, and S is the predicted performance (instructions
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where, ak, bk are line constants for all configurations with
k cores, and S is the instructions per cycle of the configu-
ration. Only two performance data samples are required to
get the value of the constants, ak and bk, for this function.
These samples correspond to instructions per cycle for any
two configurations with k cores. Since there are n functions,
2n samples are sufficient to develop the complete model for
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curacy of the model). The overhead of sampling the data to
generate the model is negligible as compared to the execu-
tion time of HPC applications, which can be from hours to
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is selected or not in a configuration
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days. In previous work [47], it is shown that the prediction
accuracy of Model 3 is very high. The average prediction
error in performance is less than 1.6%, and 0.7% for a com-
putationally intensive and a memory intensive application,
respectively. Simulated performance was obtained using the
Sniper simulator, discussed in detail in Section 5. Similar to
performance, the dynamic power consumption of a configu-
ration could be modeled accurately using Model 3, that is,

P = Ak(
X

i2c

fi) +Bk

where P is the dynamic power of configuration c, Ak and Bk

are line constants. It has been shown in previous work [47]
that the maximum prediction error of Model 3 for dynamic
power is less than 2%.

4. Energy Optimization Approach
In this section, we describe our approach for optimizing
the energy consumption during application execution. The
total energy is computed as the power consumption inte-
grated over the duration of execution of the application, that
is, power consumption multiplied by the execution time of
the application. We use Model 3, described in the previous
section, to model the execution time and dynamic power
consumption of any configuration. According to Model 3,
the linear function for performance and dynamic power con-
sumption of a configuration depends on the number of cores
in the configuration. Therefore, the energy consumption can
be defined as
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Energy	  OpJmizaJon	  Approach	  
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where, nk is a binary variable indicating whether the se-
lected configuration has k cores (nk can be 1 only for one
value of k) , xi is a binary variable indicating whether ith

core is selected, apk
X

i

xifi + b

p
k is the dynamic power con-

sumption of the configuration, si is the static power con-
sumption of core i,

X

i

sixi is the total static power con-

sumption, and a

t
k

X

i

xifi + b

t
k is the execution time of the

application. Energy minimization problem can then be for-
mulated as a constrained optimization problem. The formu-
lation is given below in Equations (4)-(8). Terminology used
in this section is defined in Table 1.
Objective Function

min

nX

k=1

nk ⇤ (apk
n�1X

i=0

xifi + b

p
k +

n�1X

i=0

sixi) ⇤ (atk
n�1X

i=0

xifi + b

t
k)

(4)

Select One Value of k

nX

k=1

nk = 1 (5)

Total Number of Cores Equals k

n�1X

i=0

xi =
nX

k=1

nkk (6)

Variables Range

8i 2 [0, n), xi 2 {0, 1} (7)
8k 2 (0, n], nk 2 {0, 1} (8)

Constraints in the above formulation are linear constraints
that ensure that a valid configuration is selected. However,
the objective function has a cubic expression. This con-
strained optimization problem can be readily solved by solv-
ing n quadratic integer programs. Each of these quadratic
integer programs chooses the best configuration amongst all
the configurations with the same number of cores. The best
performing configuration is then chosen from amongst the
optimal configurations returned by the n quadratic integer
program optimizations. In this way, the global optimal con-
figuration can be found by optimizing n quadratic programs
(Algorithm 1). The quadratic program that selects the best
configuration from amongst all the configurations with k

cores is given below in Equations (9)-(11).
Objective Function

min (apK

n�1X

i=0

xifi + b

p
K +

n�1X

i=0

sixi) ⇤ (atK
n�1X

i=0

xifi + b

t
K)

(9)

Algorithm 1 Algorithm for obtaining the globally optimal
configuration by solving n quadratic programs

1 for k 2 [1, n]:
2 //Obtain the best configuration amongst
3 //all configurations with k cores
4 Ck = EnergyQP(k)
5
6 //energy(CK) is the total energy consumption of configuration Ck

7 Optimal Configuration
= {Ck|energy(Ck) is minimum for k 2 [1, n]}

Total Number of Cores Equals K

n�1X

i=0

xi = K (10)

Variables Range

8i 2 [0, n), xi 2 {0, 1} (11)

Quadratic programs must have positive semi-definite ma-
trices to be solved using convex optimization. The resulting
quadratic programs above are not positive semi-definite and
hence can be computationally very hard to solve using non-
linear optimization methodologies.

In order to reduce the quadratic objective function to a
linear expression, we use the scheme proposed by Glover
and Woosley [19]. In this scheme, the cross-product terms
in the objective function are replaced by adding new contin-
uous variables. The value of these new variables are deter-
mined by adding new constraints. For example, a quadratic
product term x1x2, where x1, x2 are binary variables, can
be replaced by a new variable y12 such that y12  x1, y12 
x2, and y12 � x1 + x2 � 1. We multiply the terms in the ob-
jective function (Equation 9) and replace the product terms
of the form xixj with new continuous variables yij . The re-
sulting ILP is given below in Equations (12)-(15).
Objective Function

min

n�1X

i=0

n�1X
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New variable constraints
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yij � xi + xj � 1, 8i, j 2 [0, n), j  i (14)

where, nk is a binary variable indicating whether the se-
lected configuration has k cores (nk can be 1 only for one
value of k) , xi is a binary variable indicating whether ith

core is selected, apk
X

i

xifi + b

p
k is the dynamic power con-

sumption of the configuration, si is the static power con-
sumption of core i,

X

i

sixi is the total static power con-

sumption, and a

t
k

X

i

xifi + b

t
k is the execution time of the

application. Energy minimization problem can then be for-
mulated as a constrained optimization problem. The formu-
lation is given below in Equations (4)-(8). Terminology used
in this section is defined in Table 1.
Objective Function

min

nX

k=1

nk ⇤ (apk
n�1X

i=0

xifi + b

p
k +

n�1X

i=0

sixi) ⇤ (atk
n�1X

i=0

xifi + b

t
k)

(4)

Select One Value of k
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Variables Range

8i 2 [0, n), xi 2 {0, 1} (7)
8k 2 (0, n], nk 2 {0, 1} (8)

Constraints in the above formulation are linear constraints
that ensure that a valid configuration is selected. However,
the objective function has a cubic expression. This con-
strained optimization problem can be readily solved by solv-
ing n quadratic integer programs. Each of these quadratic
integer programs chooses the best configuration amongst all
the configurations with the same number of cores. The best
performing configuration is then chosen from amongst the
optimal configurations returned by the n quadratic integer
program optimizations. In this way, the global optimal con-
figuration can be found by optimizing n quadratic programs
(Algorithm 1). The quadratic program that selects the best
configuration from amongst all the configurations with k

cores is given below in Equations (9)-(11).
Objective Function
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Algorithm 1 Algorithm for obtaining the globally optimal
configuration by solving n quadratic programs

1 for k 2 [1, n]:
2 //Obtain the best configuration amongst
3 //all configurations with k cores
4 Ck = EnergyQP(k)
5
6 //energy(CK) is the total energy consumption of configuration Ck

7 Optimal Configuration
= {Ck|energy(Ck) is minimum for k 2 [1, n]}

Total Number of Cores Equals K
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Variables Range

8i 2 [0, n), xi 2 {0, 1} (11)

Quadratic programs must have positive semi-definite ma-
trices to be solved using convex optimization. The resulting
quadratic programs above are not positive semi-definite and
hence can be computationally very hard to solve using non-
linear optimization methodologies.

In order to reduce the quadratic objective function to a
linear expression, we use the scheme proposed by Glover
and Woosley [19]. In this scheme, the cross-product terms
in the objective function are replaced by adding new contin-
uous variables. The value of these new variables are deter-
mined by adding new constraints. For example, a quadratic
product term x1x2, where x1, x2 are binary variables, can
be replaced by a new variable y12 such that y12  x1, y12 
x2, and y12 � x1 + x2 � 1. We multiply the terms in the ob-
jective function (Equation 9) and replace the product terms
of the form xixj with new continuous variables yij . The re-
sulting ILP is given below in Equations (12)-(15).
Objective Function

min

n�1X

i=0

n�1X

j=0

(apKfi + si)(a
t
Kfj)yij + b

t
K

n�1X

i=0

(apKfi + si)xi

+b

p
Ka

t
K

n�1X

j=0

fjxj + b

p
Kb

t
K

(12)

Total Number of Cores Equals K

n�1X

i=0

xi = K (13)

New variable constraints

yij  xi, 8i, j 2 [0, n), j  i

yij  xj , 8i, j 2 [0, n), j  i

yij � xi + xj � 1, 8i, j 2 [0, n), j  i (14)
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where, nk is a binary variable indicating whether the se-
lected configuration has k cores (nk can be 1 only for one
value of k) , xi is a binary variable indicating whether ith
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sumption of the configuration, si is the static power con-
sumption of core i,

X
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sumption, and a
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application. Energy minimization problem can then be for-
mulated as a constrained optimization problem. The formu-
lation is given below in Equations (4)-(8). Terminology used
in this section is defined in Table 1.
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Variables Range

8i 2 [0, n), xi 2 {0, 1} (7)
8k 2 (0, n], nk 2 {0, 1} (8)

Constraints in the above formulation are linear constraints
that ensure that a valid configuration is selected. However,
the objective function has a cubic expression. This con-
strained optimization problem can be readily solved by solv-
ing n quadratic integer programs. Each of these quadratic
integer programs chooses the best configuration amongst all
the configurations with the same number of cores. The best
performing configuration is then chosen from amongst the
optimal configurations returned by the n quadratic integer
program optimizations. In this way, the global optimal con-
figuration can be found by optimizing n quadratic programs
(Algorithm 1). The quadratic program that selects the best
configuration from amongst all the configurations with k

cores is given below in Equations (9)-(11).
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Algorithm 1 Algorithm for obtaining the globally optimal
configuration by solving n quadratic programs

1 for k 2 [1, n]:
2 //Obtain the best configuration amongst
3 //all configurations with k cores
4 Ck = EnergyQP(k)
5
6 //energy(CK) is the total energy consumption of configuration Ck

7 Optimal Configuration
= {Ck|energy(Ck) is minimum for k 2 [1, n]}

Total Number of Cores Equals K

n�1X

i=0

xi = K (10)

Variables Range

8i 2 [0, n), xi 2 {0, 1} (11)

Quadratic programs must have positive semi-definite ma-
trices to be solved using convex optimization. The resulting
quadratic programs above are not positive semi-definite and
hence can be computationally very hard to solve using non-
linear optimization methodologies.

In order to reduce the quadratic objective function to a
linear expression, we use the scheme proposed by Glover
and Woosley [19]. In this scheme, the cross-product terms
in the objective function are replaced by adding new contin-
uous variables. The value of these new variables are deter-
mined by adding new constraints. For example, a quadratic
product term x1x2, where x1, x2 are binary variables, can
be replaced by a new variable y12 such that y12  x1, y12 
x2, and y12 � x1 + x2 � 1. We multiply the terms in the ob-
jective function (Equation 9) and replace the product terms
of the form xixj with new continuous variables yij . The re-
sulting ILP is given below in Equations (12)-(15).
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min
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New variable constraints

yij  xi, 8i, j 2 [0, n), j  i

yij  xj , 8i, j 2 [0, n), j  i

yij � xi + xj � 1, 8i, j 2 [0, n), j  i (14)
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where, nk is a binary variable indicating whether the se-
lected configuration has k cores (nk can be 1 only for one
value of k) , xi is a binary variable indicating whether ith

core is selected, apk
X

i

xifi + b

p
k is the dynamic power con-

sumption of the configuration, si is the static power con-
sumption of core i,

X

i

sixi is the total static power con-

sumption, and a

t
k

X

i

xifi + b

t
k is the execution time of the

application. Energy minimization problem can then be for-
mulated as a constrained optimization problem. The formu-
lation is given below in Equations (4)-(8). Terminology used
in this section is defined in Table 1.
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k=1

nkk (6)

Variables Range

8i 2 [0, n), xi 2 {0, 1} (7)
8k 2 (0, n], nk 2 {0, 1} (8)

Constraints in the above formulation are linear constraints
that ensure that a valid configuration is selected. However,
the objective function has a cubic expression. This con-
strained optimization problem can be readily solved by solv-
ing n quadratic integer programs. Each of these quadratic
integer programs chooses the best configuration amongst all
the configurations with the same number of cores. The best
performing configuration is then chosen from amongst the
optimal configurations returned by the n quadratic integer
program optimizations. In this way, the global optimal con-
figuration can be found by optimizing n quadratic programs
(Algorithm 1). The quadratic program that selects the best
configuration from amongst all the configurations with k

cores is given below in Equations (9)-(11).
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p
K +
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sixi) ⇤ (atK
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xifi + b

t
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(9)

Algorithm 1 Algorithm for obtaining the globally optimal
configuration by solving n quadratic programs

1 for k 2 [1, n]:
2 //Obtain the best configuration amongst
3 //all configurations with k cores
4 Ck = EnergyQP(k)
5
6 //energy(CK) is the total energy consumption of configuration Ck

7 Optimal Configuration
= {Ck|energy(Ck) is minimum for k 2 [1, n]}

Total Number of Cores Equals K

n�1X

i=0

xi = K (10)

Variables Range

8i 2 [0, n), xi 2 {0, 1} (11)

Quadratic programs must have positive semi-definite ma-
trices to be solved using convex optimization. The resulting
quadratic programs above are not positive semi-definite and
hence can be computationally very hard to solve using non-
linear optimization methodologies.

In order to reduce the quadratic objective function to a
linear expression, we use the scheme proposed by Glover
and Woosley [19]. In this scheme, the cross-product terms
in the objective function are replaced by adding new contin-
uous variables. The value of these new variables are deter-
mined by adding new constraints. For example, a quadratic
product term x1x2, where x1, x2 are binary variables, can
be replaced by a new variable y12 such that y12  x1, y12 
x2, and y12 � x1 + x2 � 1. We multiply the terms in the ob-
jective function (Equation 9) and replace the product terms
of the form xixj with new continuous variables yij . The re-
sulting ILP is given below in Equations (12)-(15).
Objective Function

min

n�1X
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t
Kfj)yij + b
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Total Number of Cores Equals K
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xi = K (13)

New variable constraints

yij  xi, 8i, j 2 [0, n), j  i

yij  xj , 8i, j 2 [0, n), j  i

yij � xi + xj � 1, 8i, j 2 [0, n), j  i (14)

•  Convert	  cubic	  program	  to	  n	  quadraJc	  programs	  
•  Each	  corresponding	  to	  all	  configuraJons	  with	  fixed	  number	  of	  cores	  
•  Select	  best	  configuraJon	  across	  n	  quadraJc	  programs	  
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•  QuadraJc	  programs	  hard	  to	  solve	  using	  non-‐linear	  methods	  
•  Replace	  quadraJc	  terms	  of	  form	  x1x2	  with	  binary	  variables	  y12	  

and	  add	  following	  constraints	  
y12	  ≤	  x1	  
y12	  ≤	  x2	  

y12	  ≥	  x1+x2-‐1	  
•  Add	  Jming	  constraint	  

aKtF	  +	  bKt	  ≤	  Ptmin,	  	  
where	  F	  is	  sum	  of	  frequencies,	  
and	  P	  is	  allowed	  Jme	  penalty	  



Setup	  
•  Sniper	  Simulator	  

–  Vdd	  =	  0.765V	  
–  36	  cores	  on	  chip	  
–  Results	  across	  25	  chips	  

•  ApplicaJons	  
–  miniMD	  

•  Molecular	  dynamics	  mini	  applicaJon	  	  
•  ComputaJonally	  intensive	  

–  Jacobi	  	  
•  3D	  stencil	  code	  
•  Memory	  intensive	  

•  HeurisJcs	  
–  Min	  heurisJc	  
–  Max	  heurisJc	  

•  Integer	  Linear	  Program	  (ILP)	  Solver	  
–  Gurobi	  
–  Uses	  variant	  of	  branch-‐and-‐bound	  method	  
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(a) With no time constraint (b) Maximum 15% time penalty (c) Maximum 5% time penalty

Figure 3: Percentage savings in energy with MIN, MAX heuristics, and the ILP method for the two applications, miniMD
and Jacobi3d, with respect to the configuration with best execution time. The bars correspond to the average benefits, while
the vertical lines correspond to the minimum and maximum benefits obtained from the corresponding heuristic across the
25 chips. In (a), configuration that minimizes energy consumption is sought irrespective of penalty in execution time of the
application. In (b) and (c), the best configuration that minimizes energy while the execution time penalty is less than 15% and
5%, respectively, is sought using the MIN, MAX heuristic, and ILP method.

Figure 4: An example of a configuration selected by the ILP
optimization method for Jacobi application. Circle markers
correspond to the cores selected by ILP. A total of 21 cores
were selected by the ILP method. MIN, MAX heuristic se-
lected 26, 27 cores, respectively.

• Jacobi An average of 1.6%, 1.2%, 6.4% savings in
energy with MIN, MAX heuristic, ILP, respectively is
achieved.

Since miniMD is a computationally intensive application,
the number of cores in the optimal configuration selected for
miniMD are more than the number of cores in the optimal
configuration for Jacobi. In Jacobi, large number of cores
lead to increase in the memory contention and hence are sub-
optimal. Figure 4 shows an example solution obtained from
ILP optimization, MIN heuristic, and MAX heuristic.

6.2 Solution Time
The proposed methodology requires optimizing n�2 proper
ILPs, where n is the total number of cores on the chip. Each
ILP has 702 variables, and 2000 constraints. The ILP opti-
mizations are independent of each other and can therefore
be very easily parallelized by launching them in parallel on
multiple cores of a compute node and/or on multiple com-
pute nodes. For the experiments, we use a Dell 2.67 GHz
Dual Westmere Xeon E5640 processor with a total of 8 cores
and 16 SMT threads. The ILP optimizations required for a
given chip and a application were launched in parallel on the
machine. We now consider the solution time for each of the
three cases presented in Section 6.1.

1. When there is no execution time penalty constraint, it
took an average of 400 seconds and 1090 seconds for
obtaining the optimal result for miniMD and Jacobi, re-
spectively. An average of 4.08e7 and 3.27e8 simplex it-
erations (summed across all the BnB vertices explored)
were performed by the ILP solver for miniMD and Ja-
cobi, respectively.

2. When the maximum execution time penalty of 15% is en-
forced, the configuration search space for ILP optimiza-
tion is reduced significantly. It took an average of 14.8s,
37s to find the optimal solution for miniMD, Jacobi, re-
spectively.

3. With the maximum execution time penalty of 5%, the
search space is further reduced, and it took only 8s, 10.2s
to find the optimal solution for miniMD, Jacobi, respec-
tively.

We compare these results with exhaustive evaluation of
the performance and power models for all the configurations
on the same machine. The configurations can be evaluated in
parallel. The total number of configurations to be evaluated
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Figure 3: Percentage savings in energy with MIN, MAX heuristics, and the ILP method for the two applications, miniMD
and Jacobi3d, with respect to the configuration with best execution time. The bars correspond to the average benefits, while
the vertical lines correspond to the minimum and maximum benefits obtained from the corresponding heuristic across the
25 chips. In (a), configuration that minimizes energy consumption is sought irrespective of penalty in execution time of the
application. In (b) and (c), the best configuration that minimizes energy while the execution time penalty is less than 15% and
5%, respectively, is sought using the MIN, MAX heuristic, and ILP method.

Figure 4: An example of a configuration selected by the ILP
optimization method for Jacobi application. Circle markers
correspond to the cores selected by ILP. A total of 21 cores
were selected by the ILP method. MIN, MAX heuristic se-
lected 26, 27 cores, respectively.

• Jacobi An average of 1.6%, 1.2%, 6.4% savings in
energy with MIN, MAX heuristic, ILP, respectively is
achieved.

Since miniMD is a computationally intensive application,
the number of cores in the optimal configuration selected for
miniMD are more than the number of cores in the optimal
configuration for Jacobi. In Jacobi, large number of cores
lead to increase in the memory contention and hence are sub-
optimal. Figure 4 shows an example solution obtained from
ILP optimization, MIN heuristic, and MAX heuristic.

6.2 Solution Time
The proposed methodology requires optimizing n�2 proper
ILPs, where n is the total number of cores on the chip. Each
ILP has 702 variables, and 2000 constraints. The ILP opti-
mizations are independent of each other and can therefore
be very easily parallelized by launching them in parallel on
multiple cores of a compute node and/or on multiple com-
pute nodes. For the experiments, we use a Dell 2.67 GHz
Dual Westmere Xeon E5640 processor with a total of 8 cores
and 16 SMT threads. The ILP optimizations required for a
given chip and a application were launched in parallel on the
machine. We now consider the solution time for each of the
three cases presented in Section 6.1.

1. When there is no execution time penalty constraint, it
took an average of 400 seconds and 1090 seconds for
obtaining the optimal result for miniMD and Jacobi, re-
spectively. An average of 4.08e7 and 3.27e8 simplex it-
erations (summed across all the BnB vertices explored)
were performed by the ILP solver for miniMD and Ja-
cobi, respectively.

2. When the maximum execution time penalty of 15% is en-
forced, the configuration search space for ILP optimiza-
tion is reduced significantly. It took an average of 14.8s,
37s to find the optimal solution for miniMD, Jacobi, re-
spectively.

3. With the maximum execution time penalty of 5%, the
search space is further reduced, and it took only 8s, 10.2s
to find the optimal solution for miniMD, Jacobi, respec-
tively.

We compare these results with exhaustive evaluation of
the performance and power models for all the configurations
on the same machine. The configurations can be evaluated in
parallel. The total number of configurations to be evaluated

26%	   18.4%	   13.4%	  

Energy	  Savings	  

ILP	  Solu+on	  Time:	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  745	  seconds	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  26	  seconds	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  9seconds	  
vs	  
Exhaus+ve	  Evalua+on:	  	  74	  hours	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  



Conclusions	  	  

•  Negligible	  overhead	  
– O(n)	  samples	  required	  
–  Performance	  models	  developed	  with	  negligible	  
overhead	  

•  ILP	  solvers	  to	  opJmize	  energy	  consumpJon	  with	  
Jming	  constraints	  
–  Significant	  energy	  savings	  as	  compared	  to	  sub-‐opJmal	  
heurisJcs	  

•  No	  extra	  compute	  resources	  required	  
–  Solve	  ILPs	  on	  respecJve	  chips	  prior	  to	  job	  execuJon	  
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Future	  Work	  

•  Further	  improvement	  of	  performance	  models	  
•  Evaluate	  approach	  with	  even	  larger	  number	  of	  
cores	  

•  OpJmizaJon	  methods	  to	  further	  improve	  
soluJon	  Jme	  

•  Apply	  to	  other	  HPC	  applicaJons	  
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