
Scalable Asynchronous Contact Mechanics
using Charm++

Xiang Ni∗, Laxmikant V. Kale∗ and Rasmus Tamstorf†

∗Department of Computer Science, University of Illinois at Urbana-Champaign
†Walt Disney Animation Studios

Abstract— This paper presents a scalable implementation
of the Asynchronous Contact Mechanics (ACM) algorithm, a
reliable method to simulate flexible material subject to complex
collisions and contact geometries. As an example, we apply
ACM to cloth simulation for animation. The parallelization of
ACM is challenging due to its highly irregular communication
pattern, its need for dynamic load balancing, and its extremely
fine-grained computations. We utilize CHARM++, an adaptive
parallel runtime system, to address these challenges and show
good strong scaling of ACM to 384 cores for problems with fewer
than 100k vertices. By comparison, the previously published
shared memory implementation only scales well to about 30 cores
for the same examples. We demonstrate the scalability of our
implementation through a number of examples which, to the best
of our knowledge, are only feasible with the ACM algorithm. In
particular, for a simulation of 3 seconds of a cylindrical rod
twisting within a cloth sheet, the simulation time is reduced
by 12× from 9 hours on 30 cores to 46 minutes using our
implementation on 384 cores of a Cray XC30.

I. INTRODUCTION

Thin materials like sheet metal, films, cloth, and composites
have been studied extensively throughout the years and are
used broadly in manufacturing. These studies often involve
contact such as in crash simulations in the automotive industry
and simulation of clothing in the garment and entertainment
industries. A particularly difficult aspect of these simulations
is the handling of impact and resting contact. Due to the thin
nature of the objects, many algorithms suffer from tunneling
artifacts where an object can end up going through itself or
another object. These artifacts can be avoided using methods
that are popular in graphics, e.g. [1], but often at the expense
of violating other physical properties of the system such as
conservation of momenta. In animation, these problems can
force the artists to spend much time in finding acceptable
compromises, while in scientific and engineering applications,
the errors can quickly exceed acceptable thresholds.

The asynchronous contact mechanics (ACM) framework [2]
is a reliable method to simulate flexible materials subject to
complex collisions and contact geometries. It guarantees that
no collisions are ever missed while retaining conservation
of physical invariants. This is achieved by introducing a
conceptually unbounded sequence of nested penalty layers for
collision response. Furthermore, by using asynchronous inte-
gration, it localizes the computational efforts to the region(s)
where needed.

	0

	10

	20

	30

	40

	50

	0 	5 	10 	15 	20 	25 	30
C
or
e	
ID

Simulated	Time	(s)

0

2K

4K

6K

8K

10K

12K

N
um

be
r	
of
	A
ct
iv
e	
C
on

ta
ct
s

Fig. 1: Dynamic changes in the number of active contacts on
56 cores for a 30s simulation.

The guarantees provided by ACM come at the cost of high
computational requirements; the original algorithm is impracti-
cal for most real applications. The performance was improved
by more than two orders of magnitude by introducing specu-
lative execution and shared memory parallelization based on
Intel’s Threading Building Blocks (TBB) [3]. However, this
implementation scales poorly beyond 10-15 cores, and the
simulations remain expensive for interesting problems.

In this paper, we present a scalable parallel implementa-
tion of the ACM algorithm on distributed memory clusters
using CHARM++, a parallel runtime system [4]. As a use
case, we apply this to cloth simulation for animation. We
conduct strong scaling experiments and show good scaling
of our implementation in four examples with complex contact
scenarios on a Cray XC30. To achieve this, we address three
major challenges:

• Highly irregular communication pattern. The contact
regions are unpredictable and change as the simulation
progresses. Hence, communication patterns are unknown
a priori. This dynamic message pattern fits naturally with
the message-driven parallel model of CHARM++.

• Dynamic load balancing. When contact occurs, the
corresponding collision response leads to more work in
the region where the contact occurs. Figure 1 illustrates
the dynamic variations in the number of contacts on a 56-
core run for a 30s simulation of our twister example (see
Section VII). The adaptive runtime system in CHARM++
is ideally suited to address this problem.

• Very fine grained computation. The average computa-
tion grain size is on the order of tens of microseconds at
scale. The automated scheduling of the computation ob-
ject in CHARM++ helps us execute them more efficiently
and overlaps the computation and communication.

II. BACKGROUND AND RELATED WORK

In this section, we provide a brief introduction to asyn-
chronous contact mechanics and CHARM++, and discuss the
related work.

A. Asynchronous Contact Mechanics

In essence, the original ACM algorithm implements a sym-
plectic explicit integration scheme for a dynamic system using
penalty forces for collision response. To advance time, all
forces in the system are computed at fixed intervals and applied
to vertices as impulses (kicks). Between these time steps
vertices are allowed to drift, i.e., follow linear trajectories.

Internal Force
Penalty Force

Collision
Detection

Collision
Window

No Yes

Add penalty
forces and

rollback
Proceed to the
next window

Collisions
Detected?

Internal Force
Penalty Force

Fig. 2: The overall flow of ACM.

At the end of a period
of time, referred to as
a “collision window”,
which includes multi-
ple time steps, colli-
sion detection is per-
formed (Figure 2). If
any collisions are de-
tected, then additional
(and stronger) penalty
forces are added to
the system and time
is rolled back to the
beginning of the col-
lision window; this is
then re-simulated. In
the event of rollback, the simulation state is restored to the
snapshot that is taken at the beginning of a collision window.
At the end of a collision window without any collisions,
penalty forces that are no longer needed are removed, and
the system proceeds to the next collision window.

Due to the well-known CFL condition, stiff forces must be
integrated with small time steps for the simulation to remain
stable. Hence, as stronger and stronger penalty forces are
added, the time steps must become smaller and smaller. Un-
fortunately, if tiny time steps are used globally, the simulation
effectively grinds to a halt. Furthermore, using adaptive time
stepping is problematic as it destroys the good properties of
the symplectic integration scheme (preservation of momenta
and approximate energy conservation).

A key insight in the ACM algorithm is the fact that the
strong penalty forces are (usually) only needed to respond
to very localized collisions. Hence, it is advantageous to
use asynchronous integration as this effectively allows the
time step size to vary spatially across the domain. Another
key insight is that by decomposing the penalty forces into
conceptually infinite sums of forces with finite stiffnesses, each

one can be integrated using a fixed time step which preserves
the good properties of the symplectic integration scheme.

For each force there is a clock, and whenever it ticks,
a set of impulses are delivered to the set of vertices that
it affects (its stencil). Since different forces have different
stencils and time steps, a single vertex may receive impulses
at irregularly spaced intervals in time. Furthermore, some
vertices may receive impulses much more frequently than
others. Effectively, this allows the computational effort to be
spent where it is needed, but it also leads to load balancing
challenges. In addition, the number of points needed to specify
the trajectory of a vertex during a single collision window
will vary between vertices. Hence, there is load imbalance
in terms of computation as well as communication since
the communication cost of trajectories needed for collision
detection now varies across the domain as does the number of
force evaluations.

B. CHARM++

CHARM++ [4] is an over-decomposed object-based
message-driven parallel runtime system. In CHARM++, the
application domain is decomposed into multiple logical units,
called chares, that are mapped to different cores. The number
of chares is independent of the number of cores. Thus,
applications can be run on any number of cores without being
limited by the decomposition granularity.

Chares communicate via messages that are mediated by
the CHARM++ runtime system (RTS). Typically, chares are
reactive entities that are scheduled by the RTS when there are
messages available for them. Thanks to the reactive nature of
chares and the message-driven execution model, unexpected
messages can be handled easily. This is especially important
for irregular applications like ACM where the communica-
tion pattern is constantly changing. CHARM++ also allows
programmers to guide the order of execution by specifying
the priority of each message. Under the hood, the RTS uses
this priority to decide the scheduling order of chares when
messages are available for multiple chares.

CHARM++ supports two modes to run applications: non-
SMP and SMP. In non-SMP mode, one CHARM++ process is
launched on each physical core. Each process controls both the
event processing and communication for all the chares mapped
to it. In SMP mode [5], one CHARM++ process is launched
on a set of cores within a physical node. Each process has
a pool of worker threads and an associated communication
thread that are mapped to distinct physical cores within the
physical node. In the rest of the paper, we use the term node
to refer to such a group of worker threads and communication
thread. Worker threads on a node share the memory address
space of the parent process, but execute their own independent
schedulers. Each worker appears as an individual rank that has
chares mapped to it, and processes messages in its local queue.
The communication thread handles the communication for all
other worker threads on the same node. A node-level queue
is also shared by the worker threads. The workers process
the messages in the node-level queue either when they do not

have messages in their local queue or when the priority of
messages in the node-level queue is higher than the priority
of the messages in their local queue. Similar strategy has been
explored by Kale et al. [6] in the context of MPI.

C. Related Work

Prior work has considered cloth simulation on distributed
memory clusters, but the earliest work in [7] and [8] did not
consider collision detection and response at all. Also, this
work did not scale beyond 16 cores. The work by [9] and
[10] added collision handling, but both considered a more
traditional synchronous integration scheme, and neither of
them considered scaling beyond 16 cores.

More recently, some work has been done on distributed
collision detection in games [11], and for engineering appli-
cations [12], but this work does not include the remaining
parts necessary for a complete simulation system. Our work
is based on [3] which considers a full simulation system using
asynchronous integration, but only in the context of a shared
memory system.

III. INTERNAL FORCE CALCULATION

Similar to previous works [3, 9], we partition the triangle
faces of the cloth mesh, provided as an input to ACM, using
METIS [13], and then distribute them among all the cores.
Each partition is represented as a chare in CHARM++; it
is responsible for computation of both material forces and
penalty forces within the partition. In this section, we focus
on the computation of material forces, while we propose a
way to decompose the penalty force calculation to ensure load
balancing in Section VI.

The internal material forces include stretch and bend
forces. Stretch forces are modeled using “constant strain
triangles” [14], while bend forces are modeled using “discrete
shells” [15]. Each triangle defines a stencil for the stretch force
computation, while the stencil for the bend force computation
consists of two adjacent triangles.

Communication is needed during the force computations if
any vertex of a stencil is shared by more than one partition.
We denote the stencils containing such vertices as “boundary
stencils”. The remaining stencils are “internal stencils”. For
boundary stencils, the partition to which the stencil belongs
communicates the resulting forces for shared vertices to all
other partitions overlapping with the stencil.

For bend stencils where the two triangles belong to different
partitions, we arbitrarily assign the stencil to one of the two
partitions. In this case, we also have an “external vertex”,
which is a vertex that does not belong to the partition that
owns the stencil. Prior to the bend force computation, commu-
nication is necessary to obtain information for such external
vertices. After the bend forces have been computed for the
stencil, another round of communication is needed to update
both shared and external vertices with force contributions.

Our goal for the internal force calculation is to maximize
the overlap of local computation and external communication.
Algorithm 1 shows the pseudocode for the internal force

Algorithm 1 Internal force calculation

1: sendExtVertexRequests()
2: processBoundaryStretchStencils()

// send stretch force contributions for shared vertices

3: sendStretchForceUpdates()
4: overlap
5: when recvExtVertex()
6: processBoundaryBendStencil()
7: if allBoundaryBendStencils.complete()

// send bend force contributions for shared+external vertices

8: sendBendForceUpdates()
9: end if

10: when recvBendForceUpdates()
11: bufferBendForceUpdates()
12: when recvStretchForceUpdates()
13: bufferStretchForceUpdates()

// local computations can be performed while waiting for messages

14: localInternalCalc()
15: end overlap
16: foreach vertex do
17: accumulateForceContributions()
18: end for

calculation. Each chare first starts the communication for
bend force calculation (line 1). Next, we calculate the stretch
force of the boundary stencils, so that we can asynchronously
send the force contribution for the shared vertices as early as
possible (line 2, 3).

As suggested by its name, the overlap keyword (used in
line 4) enables overlapped progress of multiple code blocks
(or control flows), i.e. based on the availability of data, the
CHARM++ RTS atomically executes code fragments from dif-
ferent blocks in a mixed order. In Algorithm 1, these blocks are
at line 5, 10, 12, and 14 representing computations of boundary
bend stencils, buffering of boundary bend forces, buffering of
boundary stretch forces, and computations of internal stencils,
respectively. The computation block followed by the when
keyword is triggered whenever the corresponding message is
received. Hence, whenever we receive the positions of external
vertices (line 5), we calculate the bend forces that depend on
those vertices (line 6). Once all the bend forces have been
computed, we send the force contributions for the external and
shared vertices to the neighboring partitions (line 8). While
waiting for the messages, local computation such as internal
bend and stretch force calculation can be scheduled (line 14).
This enables overlap of communication and computation, and
helps mask message latency.

The change in velocity of a vertex is based on the forces
accumulated from multiple stencils. It is important to ensure
that these forces are accumulated in the same order for bound-
ary vertices across different runs. Otherwise, the accumulated
round-off error will lead to inconsistent results. Moreover, we
also need to ensure in-order force updates for all the vertices
when running on different number of cores so that the result

is reproducible. For this purpose, each stencil is assigned a
unique index, which is independent of the number of cores
the application is run on. During the computation, each force
contribution is initially stored in a temporary array of the target
vertex (line 11, 13). In the end, each vertex accumulates the
forces contributions ordered by the indices of the stencils that
generated the forces (line 17).

IV. BROAD PHASE COLLISION DETECTION

After several iterations of material force calculations de-
scribed in the previous section, at the end of a collision win-
dow, collision detection is performed. For example, our twister
simulation performs about 140 material force calculations in
a collision window. Broad phase collision detection is the
first step in the collision detection used to quickly identify
a potential set of collisions.

Broad phase collision detection is conducted differently
for collisions within a partition and for collisions among
different partitions. Locally inside each partition, a bounding
volume hierarchy based on discrete oriented polytopes with
26 bounding planes (26-DOPs) is used to detect potential
collisions [3]. Globally among all the partitions, we leverage
an existing voxel-based parallel collision detection library in
CHARM++ [16]. Both methods aim to quickly eliminate non-
colliding collision pairs of primitives and return the remaining
pairs as potentially colliding pairs.

The existing collision detection library in CHARM++ uses
an axis-aligned bounding box to bound the volume swept by
a triangle. This method is extremely fast but it fails to fit the
object as well as the 26-DOPs based method. As a result, we
found that it finds more potential collisions compared to the
26-DOPs method used in the TBB implementation [3].

To solve this problem, we add an extra phase to further
filter the output of the CHARM++ library using the 26-DOPs
method in parallel. Though adding an extra phase leads to
more computation, the time spent on the added computation
is orders of magnitude less than the time saved in the following
narrow phase detection due to this optimization.

V. NARROW PHASE COLLISION DETECTION

After the broad phase, narrow phase collision detection is
performed to find the real collisions using a more expensive
method. The input to the narrow phase collision detection
is a list of potentially colliding pairs of primitives. Each
pair consists of either two edges or a vertex and a face. A
pair may contain primitives that belong to the same partition
(intra-partition collision) or are from two different partitions
(inter-partition collision). We apply the space-time separating
planes method from [3] to cull collisions, but to achieve good
performance in a distributed system, careful consideration of
load-balancing of both computation and communication is
required. We elaborate on this in the remainder of this section.

A. Computation Imbalance

In the base implementation of the narrow phase, the po-
tential collision pairs are distributed evenly among all the

Time (ms)
0 100 200 300 400 500 600 700 800

(a) computation imbalance in the base version (810ms).

(b) communication imbalance after profiling-based load balancing(150ms).

Fig. 3: Timeline profile of representative cores from runs on
96 cores of the twister example at 0.7s into the simulation.
Computation in narrow phase is shown as the purple bars.
Blue bars show the time spent on communication.

cores. Figure 3(a) shows a timeline of a representative set of
cores for narrow phase from a run on 96 cores. This view is
generated using Projections [17], the performance analysis tool
for CHARM++. In the timeline view, the x axis represents the
execution time while the y axis shows the cores that are being
traced. Different colored horizontal bars represent different
kinds of work performed by these cores. In this paper, we
always present the timeline profiles for a few representative
cores that show the general trend of all the cores.

Purple bars in Figure 3 represent the computation time spent
in the narrow phase on a core. The important observation from
Figure 3(a) is that the length of purple bars, and hence the
computation time, is not equal for different cores. This is
despite the fact that the potential collision pairs are evenly
distributed. The reason for this is that the time spent on each
potential collision pair depends on the trajectory length of
each of the vertices that make up the pair. For vertices that
are already affected by multiple active penalty layers, their
trajectories are longer than the trajectories of other vertices.

To overcome the computation imbalance, we profile the time
spent on each potential collision pair during the narrow phase.
The information from the previous narrow phase is then used
to predict the computation time of a collision pair in the current
phase, and based on this we distribute the load as evenly
as possible. This strategy works well because the number of
penalty layers attached to a vertex changes slowly, and hence
the length of the trajectory for the vertex also changes slowly.

One problem with this approach is that the bookkeeping
overheads for profiling each individual potential collision pair
and the overheads of matching the data from the previous
phase to the data in the next phase is quite high, especially
as the problem size increases. Hence, in order to reduce these
overheads, we treat all the potential collision pairs that belong
to the same pair of partitions as equals, i.e. we assume that they
all have the same detection time due to their spatial locality.

Figure 3(b) shows the timeline profile of the same rep-
resentative cores shown in Figure 3(a) for a narrow phase
run with the profiling-based load distribution approach. The
overall time is reduced by 5×; it can be seen that the purple
bars are now much more evenly distributed, demonstrating
an improved load estimation and distribution of collision
pairs. However, we now observe that the blue blocks, which

Collision Tasks

Partition 5

Partition 2
&

Partition 2

Partition 3
&

Partition 3

Partition 4
&

Assignment

Node 3

Node 4

Node 5

Node 2

Fig. 4: Construction and assignment of collision tasks. A
potential collision pair is shown as a dual-color block, repre-
senting the partition pair it belongs to. We first group the
potential collision pairs based on the associated partition
pairs. Next, we decompose each group to ensure that the
computation time of each collision task is below a pre-
defined threshold. Then, we apply Algorithm 2 to distribute
the collision tasks. In this example, we assume one partition
per node and equal computation time for each collision pair.

represent communication, are not evenly distributed.

B. Locality Aware Load Balancer

The communication imbalance in Figure 3(b) is because
detection takes longer for the collision pairs that belong to the
partition on the bottom-most core in the figure. As a result,
the collision pairs from this partition are distributed to many
other cores, who all need to query the trajectory information
from the bottom-most core.

This motivates us to take the node locality into consideration
when distributing the work using profiled data. Thus, with
the help of the SMP mode in CHARM++, we consider each
physical node as an execution unit for distributing the collision
pairs. We prioritize to assign the expensive collision pairs,
e.g. associated with partition A, to the node that contains the
core which partition A resides on. Due to such locality based
assignment, the communication cost can be reduced.

In the new locality aware load balancer, a master node is
used to perform load balancing decisions using Algorithm 2.
The input to this algorithm is constructed using meta infor-
mation sent to the master node by all other nodes. The meta
information is constructed from the list of potential collision
pairs each node holds after the broad phase. Note that sending
the entire list is not scalable as the problem size and number
of nodes increase, and thus meta information is used. Here,
the meta information is the number of potential collision
pairs associated with each partition pair. Due to the work
distribution in the collision library, each node may hold partial
potential collision pairs that belong to multiple partition pairs.

Upon receiving all of the meta information, the master node
transforms it into a list of potential collision tasks. Figure 4
shows how each task is formed. First, we group the potential
collision pairs according to the partition pairs they belong to.
As illustrated in Figure 4, there are three groups after this
step. If the computation time of a group is beyond certain
threshold, we further decompose it for ease of distribution.

Note here that the computation time of each task should exceed
the communication cost of distributing it. In the end, the
three groups are decomposed into 8 potential collision tasks
as shown in the Collision Tasks column in Figure 4.

Algorithm 2 Locality aware load balancer

Input: N ← number of nodes
Input: L← list of potential collision tasks
Output: A[1..N] ← an array of the list of collision tasks

assigned to each node
1: Load[1..N] ← 0
2: Set avgLoad to be the expected average load per node
3: for each task T in L do
4: P1, P2 ← nodes that the two partitions associated with

T reside on
5: if Load[P1] + T .load < avgLoad then
6: Load[P1] = Load[P1] + T .load
7: Push(A[P1],T) // adding T to P ′

1s work list

8: else if Load[P2]+T .load < avgLoad then
9: Load[P2] = Load[P2] + T .load

10: Push(A[P2], T)
11: else
12: Push(PL, T) // adding T to the pending work list

13: end if
14: end for
15: sort(PL) // sort T in PL based on load from biggest to smallest

16: for each task T in PL in sorted order do
17: Load[P] = Load[P]+T .load
18: Push(A[P], T) // Assign T to the least loaded node P

19: end for

In Algorithm 2, for each potential collision task, we try to
assign it to a node that holds one of the partitions the task
belongs to (lines 4 to 10). We refer to such node as a home
node. If after adding the task, the load on a home node will
be greater than the average load per node (calculated based
on the total load of all the tasks), then we push the task to
the pending list (line 12) in order to process it in the second
round. Otherwise, the task is assigned to a home node. The
second round is essentially a greedy load balancer: we assign
the tasks in the decreasing order of their loads to the node that
currently has the least load (lines 16 to 18).

At the end of Algorithm 2, each collision task is assigned
to a certain node. However, the detailed information about
potential collision pairs is still scattered among all the nodes.
To address this, the master node sends instructions to each
node on how to send its potential collision pairs to their target
nodes assigned by Algorithm 2.

C. Node Aware Narrow Phase Detection

The locality aware load balancer can help balance the work
load among all the nodes while limiting the communication.
However, inside each node, some cores may still get more
requests for trajectories than others. To handle this imbalance,
we implement a node aware approach for narrow phase detec-
tion illustrated in Algorithm 3. In our approach, the cores that

have less communication can naturally offload the computation
work from the cores with more communication on the same
node.

Algorithm 3 Narrow phase detection

Input: L← list of potential collision tasks on each node
// send data request MSGs for the external vertices in L

1: sendDataRequest()
2: while L is not empty do
3: when recvMsg(M)

// receives are strictly prioritized in the order of case blocks

4: switch M .type()
5: case Data Request:
6: sendDataReply()
7: case Data Reply:
8: if T .ready()

// Task T has got all the trajectories needed

9: if T .size() > THRESHOLD
// decompose T into subtasks and redistribute them

10: Send within-node subtask work request messages
11: else Process T
12: case Work Request:
13: Process subTask(M .start, M .end)
14: end while

As shown in Algorithm 3, each node first sends data
requests for trajectories of external vertices (line 1). Thereafter,
different actions are taken based on the type of the message
received. Using priorities allowed by the Charm++ RTS, the
algorithm ensures that the messages are scheduled in the
following order: data request, data reply, work request. This
is done to ensure that the critical path is sped up.

On receiving a data request message M (line 5), core P
replies with the requested trajectories to the sender node N .
Once the data reply messages is received by node N , it
can be processed by any core, P ′, that becomes available
on node N (line 7). Core P ′ checks whether all the data
needed to process the corresponding collision task is available
(line 8). If so, it then checks how many potential collision
pairs are contained in that task T (line 9). When the number
of potential collision pairs is below the pre-defined threshold,
task T is processed locally by P ′ (line 11). Otherwise task T
is further decomposed so that other cores on the same node
can contribute to complete the task (line 10).

These decomposed subtasks are distributed through the
node-level queue (Q) in the CHARM++ RTS, which is shared
by all the cores on the same node. Each collision task is
essentially a list of potential collision pairs as described in
Figure 4. Thus, each subtask is represented as a tuple of start
index and end index, specifying a subrange of the original task.
For decomposing a large task, core P ′ sends several within-
node work request messages containing the start index and end
index of each subtask (line 10). Internally these messages are
pushed into the node-level queue Q by the CHARM++ RTS.
Later, when any core on the same node as P ′ is available, the

CHARM++ RTS dequeues the work request message from Q
and provides them to the core (line 12, 13).

The task decomposition described in the previous paragraph
is needed because any long computation may delay the pro-
cessing of data request messages. Replying to data request
messages promptly can help reduce the critical path and allows
the remote nodes to start processing the collision tasks. Thus,
processing the data request message is given higher priority
in comparison to other messages.

D. Node Level Data Cache

Our implementation is further enhanced by the use of a
node-level software data cache. This cache contains pointers
to the trajectory information for all the vertices on that
node. The use of the node-level cache not only balances the
communication requests within each node but also reduces
communication within a node. With a node-level data cache,
before sending a data request message for an external vertex,
a core first checks whether the node-level cache contains the
vertex. If the data is available locally, extra communication
is avoided. Otherwise, a data request message is sent; this
message is no longer targeted to a certain core, but to the
node of the core. When a data request is received on a node,
whichever core becomes available first on that node processes
it. This is possible because any core can look up the data
pointer in the cache for a correct reply.

The node-level data cache is especially helpful in reducing
the communication load on the cores that receive many data
requests. As a positive side effect, this optimization also
reduces the critical path since the requests are served earlier
than the default case, in which they have to wait for a specific
core on the home node to become available.

In the future, we plan to extend the node-level software
cache to store the data reply message as mentioned in [18].
Thus, if two cores on the same node need the same data, only
one request is sent. This will reduce the number of data request
messages and improve performance.

E. Optimized Results

Figure 5 shows the time spent in the narrow phase of
one round of collision detection when running on 12 to 192
cores using different optimization strategies. As can be seen
in Figure 5, profiling based approach reduces the narrow
detection time by up to 80% in comparison to the base
implementation with simple load balancing. It also helps
improve the scalability as we run the narrow phase on larger
core counts. The fully optimized version, which includes the
profiling and locality based load balancing and node-level
optimizations, further reduces the narrow phase timing by 70%
and provides much better scaling. The cost of the locality
aware load balancing is minimal: 1.5 ms for the run on 192
cores. All in all, the narrow phase detection time on 192
cores is sped up by 26× from 780 ms to 30 ms using the
optimizations presented in this section.

	0.01

	0.1

	1

	12 	24 	48 	96 	192

Ti
m
e	
(s
)

Number	of	Cores

Naive
Profiling	based
Fully	optimized
Linear	scaling

Fig. 5: Time spent on narrow phase detection using different
strategies at 0.7 simulated second of the twister example.

VI. COLLISION RESPONSE

A penalty force calculation is added for each collision pair
of material primitives (edge-edge or vertex-face) found by
collision detection. The uneven distribution of collision regions
leads to an imbalance in the penalty force calculation required
to avoid collisions. Figure 6(a) shows the Projections timeline
view for 15 cores of a node, in which the yellow bars denote
penalty force computations. It is easy to see that the length of
the yellow bars is different among the 15 cores; in particular,
core 6 is overloaded with penalty force calculations. As a
result, there is substantial idle time (shown as white bars)
on other cores due to the direct and indirect communication
dependence they have with core 6.

A. Intra-node Work Redistribution

In Figure 6(a), it would be best if other cores on the same
node as core 6 could help to offload some of the penalty force
calculations to improve the overall utilization. We achieve this
by making use of the SMP mode in CHARM++. As described
in Section II, in SMP mode, all the cores within a node share
memory address space and a node level queue. Therefore,
to distribute the work, the overloaded core decomposes its
penalty force calculations into small work pieces and distribute
them through the node level queue in a similar way as
discussed earlier in Algorithm 3. Algorithm 4 presents the
pseudocode for the intra-node work redistribution of penalty
force calculations.

If a core is overloaded, we first decompose all its penalty
force calculation work into smaller work units that can be
distributed and then push them to the shared queue (lines 3 to
8). Otherwise, the penalty force computations are conducted
locally (line 10). When a core has finished all its local work
(under-loaded core) or has pushed its work to the queue
(overloaded core), the CHARM++ RTS automatically checks
the status of the shared node level queue (lines 12 to 15) and
schedules the work in it to available cores. The effectiveness
of this optimization can be seen in Figure 6(b); the yellow bars
on core 6 are shorter due to help from cores 8 and 14. This
reduces the penalty force computation time by up to 12%.

B. Node Level Phase Barrier

Ideally, in Figure 6(b), we would want all the less loaded
cores to help core 6 for penalty force calculations. However,

Time (ms)
0 1 2 3 4

(a) Load imbalance due to non-uniform distribution of penalty force calculation (4 ms).

(b) Redistribution of penalty force calculation within a node (3.5 ms).

(c) Redistribution enhanced by node level phase barrier (3.2 ms).

0
2
4
6
8
10

14
12

C
o
re

 I
D

0
2
4
6
8
10

14
12

0
2
4
6
8
10

14
12

Fig. 6: Timeline profile for all the cores on the same node.
These are runs on 128 cores for the twister example at 0.7s
into the simulation. Yellow bars denote the time spent on
penalty force computations while internal force computations
are shown in green. White bars indicate idle time.

Algorithm 4 Penalty force calculation

Input: Q← shared common node level queue
Input: N ← number of penalty force primitives per core
Input: n ← minimal number of the penalty force primitives

per work unit
1: if overloaded with penalty force computation then
2: left← N , start← 0
3: while left 6= 0 do
4: worksize = min(left, n)
5: end = start+ worksize

// Create small work unit and then push to the queue

6: Push(Q, PenaltyWork(start, end))
7: start = end, left = left− worksize
8: end while
9: else

10: Do all the penalty force calculations
11: end if
12: while Q is not empty do
13: PenaltyWork work = Pop(Q)
14: Process work
15: end while

as can be seen, this is not the case; only core 8 and 14
share the node level tasks with core 6. This is because of
the uncoordinated progress made by the cores within a node.
When the under-loaded cores finish their penalty calculations
and check the node level queue for additional work, the
queue is typically empty. This is because overloaded cores
are delayed by their own penalty force calculations. As a
result, the under-loaded cores begin the next iteration of heavy
internal force calculations (shown in green bars). Later, when
the overloaded cores try to distribute the work, the under
loaded cores cannot be involved since they are busy with the
internal force calculations.

1e+02

1e+03

1e+04

	1 	3 	5 	8 	12 	24 	48 	96 	192 	384

Ti
m
e(
s)

Number	of	Cores

(a)	Bowline	Knot

Charm++	Time	(Brickland) Charm++	Time	(Edison) TBB	Time	(Brickland)

1e+01

1e+02

1e+03

1e+04

	1 	3 	5 	8 	12 	24 	48 	96 	192 	384

Number	of	Cores

(b)	Reef	Knot

1e+02

1e+03

1e+04

1e+05

	1 	3 	5 	8 	12 	24 	48 	96 	192 	384

Number	of	Cores

(c)	Two	Cloths	Draped

1e+03

1e+04

1e+05

1e+06

	1 	3 	5 	8 	12 	24 	48 	96 	192 	768

Number	of	Cores

(d)	Twister

Fig. 8: Performance comparison between CHARM++ and TBB versions of ACM. Benchmarks are from Ainsley et al. [3]. From
left to right: bowline knot (3995 vertices, 5.0 s), reef knot (10642 vertices, 2.0 s), two cloths draped (15982 vertices, 3.95 s)
and the short twister (99942 vertices, 3.0 s). Results for the CHARM++ version are obtained from both Edison and Brickland.

Avg 0 2 4 6 8 10 12 14

0

20

40

60

80

100

U
sa

ge
 (

%
)

Avg 0 2 4 6 8 10 12 14

(a) Without work redistribution
and phase barrier

(b) With work redistribution
and phase barrier

Fig. 7: Utilization before and after the optimization.

To address this mismatched progress issue, we add a node-
level phase barrier before the start of the internal force
calculations. As a result, the under loaded cores now wait
for the overloaded cores to distribute the work and can assist
them. As seen in Figure 6(c), yellow bars, i.e. penalty force
calculation tasks, are now distributed to every core within a
node. Hence, the total computation time is further reduced
by 9%. Figure 7 shows the utilization gains achieved by the
optimizations for collision response. The average utilization
improves from 68% to 82%, while the total time goes down
by 20%.

VII. ANALYSIS AND RESULTS

A. Experimental Setup

We use four out of five examples from Ainsley et al [3]
(shown in Figure 8) to evaluate the performance of the
CHARM++ version of ACM. The last of the original examples
is omitted due to its small size (only 719 vertices). The twister
example in our simulations has 100k vertices whereas the one
reported in [3] only had 8000 vertices. We refer to the first 3
seconds of the twister simulation as the short twister, while
the full 50 second simulation is referred to as the long twister.

The experiments were conducted on two systems. One is
Edison at NERSC, a Cray XC30 machine based on Intel E5-
2695@2.4GHz (12 core Ivy Bridge) processors. The other

is Brickland which is a 4 socket system with Intel E7-
4890@2.8GHz (15 core Ivy Bridge) processors and a total of
60 cores. In particular, we use the latter to re-run the TBB
version of ACM alongside the CHARM++ implementation.
Edison is used to scale beyond what is possible in a shared
memory system, but we note that the performance for Edison
is comparable to that of Brickland for runs using less than 60
cores. The main difference appears to be due to the difference
in clock speed between the two systems. For the experiments
of the CHARM++ version, SMP mode is used; cores within a
socket are grouped together to provide the worker threads and
the communication thread of a CHARM++ node.

B. Scaling Analysis

The green curves in Figure 8(a) to (d) shows that the TBB
version stops showing good scaling after 30 cores. In contrast,
the CHARM++ version shows good scaling and is faster than
the TBB version by 2× even on one node at the same core
count (60) for all the examples. The good scaling continues
beyond one node for the CHARM++ version; the simulation
time is further reduced when running on hundreds of cores of
Edison. For the three relatively small examples (bowline knot,
reef knot and two cloths draped), the CHARM++ version stops
scaling after 192 cores. However, it is important to observe that
with that many cores, there are only tens of vertices per core
for these small examples. For the biggest example, the twister,
the scaling continues well beyond 192 cores till 384 cores. The
compute time for 3 seconds of simulated time is reduced from
3.1 hours on 60 cores of Brickland to 46 mins on 384 cores of
Edison using the CHARM++ version. These results show that
the fully optimized CHARM++ version handles the extremely
fine-grained communication of ACM on 384 cores very well
(one message every 30 us).

Table I lists the best performance achieved using both the
TBB and the CHARM++ version of ACM. The speedup is the

Example
Best Performance
with TBB
(#cores)

Best Performance
with CHARM++
(#cores)

Speedup

Bowline Knot 8.4 mins (50) 4.3 mins (192) 2.0
Reef Knot 2.5 mins (55) 34 secs (192) 4.4
Two Cloths Draped 17.3 mins (60) 4.5 mins (384) 3.8
Short Twister 7.3 hrs (60) 39 mins (768) 11.2

TABLE I: Best performance achieved using TBB and
CHARM++ version of ACM.

ratio between the best performance numbers. We note that the
TBB implementation has a 17% advantage due to the clock
speed difference between Brickland and Edison, which we
have not adjusted for. For all the four example, the speedup
of the CHARM++ version is at least 2×. For the short twister
example, by increasing the hardware resources by 13×, we
see that we are able to reduce the simulation time by 11×.

C. The Long Twister

The twister example simulates a twisting rod wringing out
a sheet of cloth. Torque is applied to the rod from 3s to 5s, but
inertia keeps it wringing the cloth harder and harder until about
12s. At that point, the cloth starts unwinding and eventually
the rod falls out. We ran the full 50s simulation on 60 cores
of Brickland. Figure 9 shows the average time taken for every
10th collision window during the 50s simulation.

We study the scaling of the twister example at different
representative times into the simulation: 5s, 10s, 15s and
25s. To speedup the experiments, we restart the run from
checkpoints taken at the representative times. Figure 10 shows
the time taken for one collision window of the twister example
at different stages in simulation from 1 core to 768 cores on
Edison. The time measured here is for one successful collision
window without rollbacks. From Figure 10, we can see that the
CHARM++ version of ACM scales very well to 384 cores at all
stages of the simulation. The collision detection time overtakes
the time spent on force calculation when there are more
collisions (at 10s and 15s). When there are fewer collisions (at
5s and 25s), the collision detection time does not scale well
at the limits of strong scaling. As we scale from 384 cores
to 768 cores, limited parallelism results in collision detection
time reducing marginally from 33ms to 32ms as shown in
Figure 10(d). Overall, both the force calculation and collision
detection scale well to 384 cores at all stages of the simulation.

D. Parallel Efficiency

Figure 11 shows the parallel efficiency for the TBB version
and CHARM++ version of ACM. Due to the time constraints,
we did not acquire the result for the CHARM++ version
running on one core for the short twister example. Thus
the parallel efficiency of the CHARM++ version on Edison
is based on the time taken for one collision window at 25
simulated seconds while the parallel efficiency for the TBB
version is based on the short twister example. As shown in
Figure 11, for all the three smaller examples, at the same core
count (48), the parallel efficiency of the CHARM++ version
is more than twice that of the TBB version. For the twister

	0
	0.5
	1

	1.5
	2

	2.5
	3

	3.5
	4

	4.5

	0 	10 	20 	30 	40 	50

Ti
m
e	
(s
)

Simulated	Time	(s)

Fig. 9: Average compute time for every 10th collision window
including rollbacks. The data is for the long twister example
on Brickland using 60 cores. Each window represents 1/3000
seconds of simulated time.

example, the parallel efficiency of the CHARM++ version
remains as high as 60% for execution on 96 cores after which
it gradually decreases to 20% on 768 cores. In contrast, the
efficiency of TBB version falls below 40% even for 48 cores.

VIII. LIMITATIONS AND FUTURE WORK

We have made no attempt at reducing the actual number
of computations required for a given simulation in this work.
As such the ACM algorithm remains an expensive approach
for running cloth simulations, but it provides a number of
guarantees that the cheaper approaches cannot offer. If we
consider the frame rate, then our current performance (3
simulated seconds of 100k vertices in 46 minutes on 384 cores)
corresponds to less than 40 seconds per frame (assuming 24
frames per second). This is comparable to current simulation
times for feature animation work, but still much more expen-
sive in terms of compute resources.

One of the primary reasons that limits scaling of the
CHARM++ version of ACM beyond 384 cores is the penalty
force calculation. So far, we have addressed the load balancing
issue across nodes only for collision detection. In contrast,
the penalty force calculation is load balanced only within a
node. In the future, we plan to leverage the over-decomposition
feature of CHARM++ in the force calculation phase as well to
dynamically redistribute chares to achieve better load balance
across nodes: migrating chares from overloaded nodes to under
loaded nodes. We also plan to integrate the load balancers we
have presented to the CHARM++ runtime system; currently
they are implemented as part of our application.

IX. CONCLUSION

In this paper, we have described the design and optimiza-
tions necessary to parallelize ACM using CHARM++. We
have shown strong scaling up to 384 cores of Edison for
relatively small-sized problems with less than 100k vertices,
i.e. about 300 vertices per core. The improved scaling has
led to a speedup of more than 10× compared to previously
published results, which makes it practical to use the ACM
algorithm at the expense of more compute resources.

By way of the above, we have also demonstrated that
CHARM++ is well-suited for dynamic irregular applications

 0.01

 0.1

 1

 10

 100

 1000

 1 12 24 48 96 192 384 768

Ti
m

e
[s

]

Number of Cores

Time per window Force calculation Collision detection

 1 12 24 48 96 192 384 768

Number of Cores
 1 12 24 48 96 192 384 768

Number of Cores
 1 12 24 48 96 192 384 768

Number of Cores

(a) 5s (b) 10s (c) 15s (d) 25s

Fig. 10: Time taken for one collision window of the twister example on Edison at different times into the simulation.

 0

 20

 40

 60

 80

 100

 1 3 5 8 12 24 48 96 192 384

Ef
fic

ie
nc

y
(%

)

Number of Cores

(a) Bowline Knot

Charm++ Efficiency (Brickland) Charm++ Efficiency (Edison) TBB Efficiency (Brickland)

 0

 20

 40

 60

 80

 100

 1 3 5 8 12 24 48 96 192 384

Number of Cores

(b) Reef Knot

 0

 20

 40

 60

 80

 100

 1 3 5 8 12 24 48 96 192 384

Number of Cores

(c) Two Cloths Draped

 0

 20

 40

 60

 80

 100

 1 3 5 8 12 24 48 96 192 384 768

Number of Cores

(d) Twister @ 25s

Fig. 11: Parallel efficiency for TBB and CHARM++ version of ACM. Parallel efficiency is measured as the ratio between the
actual speedup and linear speedup.

like ACM. The message-driven execution feature eases the
handling of the dynamic message patterns of ACM and helps
overlap communication and computation. Furthermore, we
have seen that the SMP mode of CHARM++ helps exploit
the shared memory multiprocessor node used in HPC systems
and improves the scalability of ACM.

ACKNOWLEDGMENTS

The authors would like to thank Intel for providing access
to the Brickland machine. This research used resources of
the National Energy Research Scientific Computing Center,
supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231. Part of
this work was done while the first author was at WDAS or
was funded by WDAS.

REFERENCES

[1] R. Bridson, R. Fedkiw, and J. Anderson, “Robust treatment of collisions,
contact and friction for cloth animation,” ACM Trans. Graph., vol. 21,
no. 3, pp. 594–603, Jul. 2002.

[2] D. Harmon, E. Vouga, B. Smith, R. Tamstorf, and E. Grinspun, “Asyn-
chronous Contact Mechanics,” in ACM Transactions on Graphics (TOG),
vol. 28, no. 3. ACM, 2009, p. 87.

[3] S. Ainsley, E. Vouga, E. Grinspun, and R. Tamstorf, “Speculative Parallel
Asynchronous Contact Mechanics,” ACM Transactions on Graphics
(TOG), vol. 31, no. 6, p. 151, 2012.

[4] B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon, E. Mikida, X. Ni,
M. Robson, Y. Sun, E. Totoni, L. Wesolowski, and L. Kale, “Parallel
Programming with Migratable Objects: Charm++ in Practice,” ser.
SC’14. New York, NY, USA: ACM, 2014.

[5] C. Mei, G. Zheng, F. Gioachin, and L. V. Kalé, “Optimizing a Parallel
Runtime System for Multicore Clusters: A Case Study,” in TeraGrid’10,
no. 10-13, Pittsburgh, PA, USA, August 2010.

[6] V. Kale and W. Gropp, “Load balancing for regular meshes on smps
with MPI,” in Recent Advances in the Message Passing Interface -
17th European MPI Users’ Group Meeting, EuroMPI 2010, Stuttgart,
Germany, September 12-15, 2010. Proceedings, 2010, pp. 229–238.

[7] F. Zara, F. Faure, and J.-M. Vincent, “Physical Cloth Simulation on a
PC Cluster,” in Proceedings of the Fourth Eurographics Workshop on
Parallel Graphics and Visualization, ser. EGPGV ’02. Eurographics
Association, 2002, pp. 105–112.

[8] ——, “Parallel Simulation of Large Dynamic System on a PC Cluster:
Application of Cloth Simulation,” International Journal of Computers
and Applications, vol. 26, no. 3, pp. 173–180, 2004.

[9] B. Thomaszewski and W. Blochinger, “Physically based simulation of
cloth on distributed memory architectures,” Parallel Computing, vol. 33,
no. 6, pp. 377 – 390, 2007, parallel Graphics and Visualization.

[10] A. Selle, J. Su, G. Irving, and R. Fedkiw, “Robust High-Resolution Cloth
Using Parallelism, History-Based Collisions, and Accurate Friction,”
Visualization and Computer Graphics, IEEE Transactions on, vol. 15,
no. 2, pp. 339–350, March 2009.

[11] T. Chen and C. Verbrugge, “A protocol for distributed collision detec-
tion,” in Network and Systems Support for Games (NetGames), 2010
9th Annual Workshop on, Nov 2010, pp. 1–6.

[12] M. Anderson, M. Brodowicz, L. Dalessandro, J. DeBuhr, and T. Ster-
ling, “A Dynamic Execution Model Applied to Distributed Collision
Detection,” in Supercomputing, ser. Lecture Notes in Computer Science,
J. Kunkel, T. Ludwig, and H. Meuer, Eds. Springer International
Publishing, 2014, vol. 8488, pp. 470–477.

[13] G. Karypis and V. Kumar, “A Fast and Highly Quality Multilevel
Scheme for Partitioning Irregular Graphs,” SIAM Journal on Scientific
Computing, vol. 20, no. 1, pp. 359–392, 1998.

[14] M. J. Turner, R. W. Clough, H. C. Martin, and L. P. Topp, “Stiffness
and deflection analysis of complex structures,” J. Aeronautical Society,
vol. 23, no. 9, pp. 805–824, 1956.

[15] E. Grinspun, A. N. Hirani, M. Desbrun, and P. Schröder, “Discrete
shells,” in SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Euro-
graphics Symposium on Computer Animation. Eurographics Associa-
tion, 2003, pp. 62–67.

[16] O. S. Lawlor and L. V. Kalé, “A Voxel-Based Parallel Collision Detec-
tion Algorithm,” in Proceedings of the 16th International Conference in
Supercomputing. ACM, June 2002, pp. 285–293.

[17] L. V. Kale, G. Zheng, C. W. Lee, and S. Kumar, “Scaling Applications
to Massively Parallel Machines Using Projections Performance Analysis
Tool,” in Future Generation Computer Systems Special Issue on: Large-
Scale System Performance Modeling and Analysis, vol. 22, no. 3,
February 2006, pp. 347–358.

[18] H. Menon, L. Wesolowski, G. Zheng, P. Jetley, L. Kale, T. Quinn, and
F. Governato, “Adaptive Techniques for Clustered N-Body Cosmological
Simulations,” arXiv preprint arXiv:1409.1929, 2014.

