
Applying Graph Partitioning Methods in Measurement-based
Dynamic Load Balancing

HARSHITHA MENON, University of Illinois at Urbana-Champaign
ABHINAV BHATELE, Lawrence Livermore National Laboratory
SÉBASTIEN FOURESTIER, INRIA Bordeaux Sud-Ouest
LAXMIKANT V. KALE, University of Illinois at Urbana-Champaign
FRANÇOIS PELLEGRINI, INRIA Bordeaux Sud-Ouest

Load imbalance in an application can lead to degradation of performance and a significant drop in system
utilization. Achieving the best parallel efficiency for a program requires optimal load balancing which is an
NP-hard problem. This paper explores the use of graph partitioning algorithms, traditionally used for par-
titioning physical domains/meshes, for measurement-based dynamic load balancing of parallel applications.
In particular, we present repartitioning methods that consider the previous mapping to minimize dynamic
migration costs. We also discuss a new imbalance reduction algorithm for graphs with heavily skewed load
distributions. These algorithms are implemented in a graph partitioning toolbox called SCOTCH and we
use CHARM++, a migratable objects based programming model, to experiment with various load balancing
scenarios. To compare with different load balancing strategies based on graph partitioners, we have imple-
mented METIS and ZOLTAN-based load balancers in CHARM++. We demonstrate the effectiveness of the
new algorithms developed in SCOTCH in the context of the NAS BT solver and two micro-benchmarks. We
show that SCOTCH based strategies lead to better performance compared to other existing partitioners, both
in terms of the application execution time and fewer number of objects migrated.

Categories and Subject Descriptors: C.4 [Performance of Systems—Performance attributes]

General Terms: Algorithms, Performance

Additional Key Words and Phrases: load balancing, graph partitioning, dynamic migration, performance

ACM Reference Format:
Harshitha Menon, Abhinav Bhatele, Sébastien Fourestier, Laxmikant V. Kale, François Pellegrini, 2014. Ap-
plying Graph Partitioning Methods in Measurement-based Dynamic Load Balancing. ACM Trans. Parallel
Comput. , , Article (January 2014), 20 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
The efficient use of large parallel machines requires spreading the computational load
evenly across all processors and minimizing the communication overhead. When the
processes/tasks that perform the computation co-exist for the entire duration of the
parallel program, the load balance problem can be modeled as a constrained graph
partitioning problem on an undirected graph. The vertices of this process graph repre-
sent the computation to be performed and its edges represent inter-process communi-

Author’s addresses: H. Menon and L. V. Kale, Department of Computer Science, University of Illinois at
Urbana-Champaign; Abhinav Bhatele, Center for Applied Scientific Computing, Lawrence Livermore Na-
tional Laboratory; Sébastien Fourestier and François Pellegrini, Laboratoire Bordelais de Recherche en
Informatique & INRIA Bordeaux
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1539-9087/2014/01-ART $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Parallel Computing, Vol. , No. , Article , Publication date: January 2014.

:2 H. Menon et al.

cation. The problem of mapping these processes/tasks to processors can be viewed as
the partitioning and mapping of a graph of n tasks to that of p processors. The aim is
to assign the same load to all processors and to minimize the edge cut of the graph,
which translates to reducing communication among processors.

Although the problem of partitioning communicating tasks to processors appears
similar to that of partitioning large unstructured meshes to processes, the differences
are significant and lead to major algorithmic changes. The most significant difference
is that the number of tasks per processor is on the order of ten in load balancing,
whereas for meshes, the number of mesh elements per process is closer to a million.
The other difference is that the distribution of computational load associated with each
task can be highly uneven or skewed, which is not encountered often in more common
graph partitioning settings.

In this paper, we evaluate the deployment of static mapping and graph repartition-
ing algorithms, traditionally used for partitioning physical domains/meshes, for bal-
ancing load dynamically in over-decomposed parallel applications. We have chosen a
specific programming model, CHARM++ [Kalé and Krishnan 1993] and a graph parti-
tioning library, SCOTCH [scotch] for implementing the new algorithms and heuristics.
However, the techniques described here are generally applicable to other programming
models and other graph partitioning libraries [Hendrickson and Leland 1995; Karypis
and Kumar 1996].

The CHARM++ runtime system includes a mature load balancing framework. The
runtime system records task loads for previous iterations to influence load balancing
decisions for the future and hence can adapt to slow or abrupt but infrequent changes
in load. There are existing load balancing strategies in CHARM++ and the framework
also facilitates adding new strategies. Measurement-based load balancing schemes in
this framework work well for applications in which computational loads tend to persist
over time [Bhatelé et al. 2009; Jetley et al. 2008]. We have developed two strategies
called ScotchLB and ScotchRefineLB based on different partitioning and repartition-
ing algorithms in SCOTCH. These are for comprehensive (fresh assignment of all tasks
to processors) and refinement load balancing, respectively. For comparison with other
graph partioners, we have implemented METIS and ZOLTAN based load balancers in
CHARM++.

In this paper, we discuss modifications to existing algorithms in SCOTCH that make
them more suitable for scenarios encountered in balancing the load in computational
science and engineering applications. This presents a distinct set of challenges com-
pared with mesh partitioning, which is what graph partitioners are usually designed
for. In addition to evaluating the classical recursive bipartitioning method in SCOTCH,
we discuss two new algorithms in this paper: 1. a k-way multilevel framework for
repartitioning graphs that takes the task migration cost into account and tries to min-
imize the time spent in migrations, and 2. a new algorithm for balancing graphs with
irregular load distributions and localized concentration of vertices with heavy loads, a
scenario which is not handled well by the classical recursive bipartitioning method.

We present a comprehensive comparative evaluation of SCOTCH-based load bal-
ancers with those based on METIS and ZOLTAN and load balancing strategies (greedy
and refinement) in CHARM++. We evaluate the algorithms based on various metrics
for success: 1. execution time of the application, 2. time spent in load balancing, and
3. number of tasks migrated. We use two micro-benchmarks and the multi-zone ver-
sion of the NAS Block Tri-diagonal (BT) solver for comparisons and present results
from runs on Vulcan (IBM Blue Gene/Q), Intrepid (IBM Blue Gene/P) and Steele (an
Intel Infiniband cluster). New algorithms developed in SCOTCH lead to better perfor-
mance compared to other graph partitioners, both in terms of the application execution
time and fewer number of tasks migrated. We also present capabilities in SCOTCH to

ACM Transactions on Parallel Computing, Vol. , No. , Article , Publication date: January 2014.

Applying Graph Partitioning Methods in Dynamic Load Balancing :3

handle different kinds of applications and the freedom given to the user/runtime sys-
tem to decide if load balance or reducing communication among processors is more
important. We also discuss the impact of application characteristics such as the ratio
of computation to communication and the ratio of number of tasks to that of physical
processors on the success of the load balancer.

The rest of the paper is organized as follows: Section 2 introduces measurement-
based load balancing in CHARM++ and describes the existing load balancers in the
framework. Section 3 presents existing and new partitioning algorithms developed in
SCOTCH that are well suited for load balancing. A comparative evaluation of SCOTCH-
based load balancers with other state-of-the-art algorithms is presented in Section 4.
Section 5 discusses related work and Section 6 provides a summary of the paper.

2. DYNAMIC COMMUNICATION-AWARE LOAD BALANCING
An intelligent algorithm must consider both the characteristics of the parallel applica-
tion as well as the target architecture when balancing load. The application informa-
tion includes task processing costs (computational loads) and the amount of commu-
nication between tasks. The architecture information includes the processing speeds
of the cores and the costs of communication between different cores and nodes. When
the loads and communication patterns do not change during program execution, load
balancing can be done statically at program startup. This is referred to as static or ini-
tial mapping because it is computed prior to the execution of the program and is never
modified at run-time. However, if the load and/or communication patterns change dy-
namically, the mapping must be done at runtime (often called graph repartitioning or
dynamic load balancing).

Graph partitioning has been used in the past to statically partition computational
tasks to processors [Attaway et al. 1997; Shadid et al. 1997]. However, complex multi-
physics simulations and heterogeneous architectures present a need for dynamic load
balancing during program execution. This requires input from the application about
the changing computational loads and communication patterns. The CHARM++ run-
time system enables automatic dynamic load balancing through runtime instrumenta-
tion of the user code and by providing load balancing strategies. ZOLTAN [Çatalyürek
et al. 2009] is a library for dynamic load balancing of parallel applications that uses
hypergraph partitioners to balance entities indicated by the application.

2.1. The CHARM++ load balancing framework

Decomposition of work
into MPI processes and

placement on processors

Over-decomposition of
work into Charm++ objects

(by the user)

Placement of Charm++ objects
on physical processors

(by the runtime)

Fig. 1. Charm++ system view with over-decomposition

ACM Transactions on Parallel Computing, Vol. , No. , Article , Publication date: January 2014.

:4 H. Menon et al.

Applications written in CHARM++ over-decompose their computation (in comparison
to MPI) into virtual processors or objects called “chares” which are then mapped onto
physical processors by the runtime system (shown in Figure 1). This initial static map-
ping can be changed as the execution progresses if the application suffers from load im-
balance by migrating objects to other processors. This is facilitated by the load balanc-
ing framework in CHARM++ [Brunner and Kalé 2000]. Load balancing in CHARM++ is
based on instrumenting the load from the recent past as a guideline for the near future,
a heuristic known as the principle of persistence [Kalé 2002]. It posits that empirically,
the computational loads and communication patterns of the tasks or objects tend to
persist over time, even in dynamically evolving computations. Therefore, the load bal-
ancer can use instrumented load information to make load balancing decisions. The
key advantage of this approach is that it is application independent and it has been
shown to be effective for a large class of applications such as NAMD [Bhatele et al.
2008], ChaNGa [Jetley et al. 2008] and Fractography3D [Mangala et al. 2007].

There are several load balancing strategies built into CHARM++, some of which are
used in this paper for comparison with SCOTCH-based load balancers. These load bal-
ancers are described below:

— GreedyLB: A “comprehensive” load balancer that does a fresh assignment of all
tasks to processors. It is based on a greedy heuristic that maps the heaviest objects
onto the least loaded processors iteratively until the load of all processors is close to
the average load.

— RefineLB: A “refinement” load balancer that tries to minimize the number of migra-
tions by considering the previous load balancing decisions. It migrates objects from
processors with greater than average load (starting with the most overloaded proces-
sor) to those with less than average load.

— MetisLB: A strategy that passes the load information and the communication graph
to METIS, a graph partitioning library, and uses the recursive graph bipartitioning
algorithm in it for load balancing.

— ZoltanLB: A hypergraph partitioning based load balancer which uses ZOLTAN.

ProcArray

ProcInfo

getAverageLoad()
resetTotalLoad()

getTotalLoad()
getOverhead()
setTotalLoad()
isAvailable()

std::vector<ProcInfo> procs

ObjGraph

Vertex

convertDecisions()

getVertexId()
getVertexLoad()
getCurrentPe()
getNewPe()
setNewPe()
isMigratable()

std::vector<Vertex> vertices

std::vector<Edge> sendToList Edge getNeighborId()
getNumBytes()std::vector<Edge> recvFromList

Fig. 2. A user friendly API for plugging in new load balancing strategies in CHARM++

The CHARM++ runtime system encourages application developers to write
application-specific load balancing strategies or use external libraries for the task.
For this, it provides an easy interface to write new load balancers. Figure 2 presents
the data structures that provide useful information to a load balancing strategy for
making migration decisions. The runtime system instruments a few time steps of the

ACM Transactions on Parallel Computing, Vol. , No. , Article , Publication date: January 2014.

Applying Graph Partitioning Methods in Dynamic Load Balancing :5

application before load balancing and this information is available in the form of two
data structures. The ProcArray (on the left) provides the load on each processor for
the previously instrumented time steps to identify the overloaded and underloaded
processors in the application. The ObjGraph (on the right) is an adjacency list repre-
sentation of the directed communication graph. The vector of vertices contains the load
of each vertex in the graph. Each vertex also has pointers to two edge lists, one for the
vertices it sends messages to and the other for those that it receives messages from.
Each edge contains information about the number of messages and the total number
of bytes exchanged between the vertex and one of its neighbors.

Using the information mentioned above, a load balancing strategy can be imple-
mented that returns a new assignment for the vertices in the ObjGraph. This infor-
mation is then used by the runtime system to migrate objects for the subsequent time
steps. This setup facilitates the use of external load balancing strategies/libraries for
measurement-based dynamic load balancing of parallel applications by hiding the me-
chanics and complexities of instrumentation and object migration.

3. SCOTCH FOR GRAPH PARTITIONING AND LOAD BALANCING
SCOTCH [scotch] is a software project developed jointly at the Laboratoire Bordelais de
Recherche en Informatique of Université Bordeaux 1 and INRIA Bordeaux Sud-Ouest.
Its goal is to provide efficient graph partitioning heuristics for scientific computing, and
it is available to the community as a software toolbox. In this section, we will describe
the existing mapping algorithms available in SCOTCH, the new repartitioning method
implemented in SCOTCH as well as the new algorithm to reduce load imbalance.

3.1. Static mapping methods in SCOTCH

The two main classes of algorithms used to compute static mappings are direct k-way
methods and recursive bipartitioning methods. Both k-way and bipartitioning imple-
mentations can take advantage of the multilevel graph partitioning paradigm, which
helps reduce the problem complexity and execution time. The multilevel paradigm
consists of three phases: graph coarsening, initial mapping, and uncoarsening. In the
graph coarsening phase, the graph to partition is repeatedly coarsened into a series
of smaller graphs. The graph at each step is derived from the previous graph by col-
lapsing adjacent pairs of vertices. In the initial mapping phase, mapping is performed
on the coarsest graph. Finally, in the uncoarsening phase, the mapping of the coars-
est graph is prolonged back to the original input graph [Barnard and Simon 1994;
Hendrickson and Leland 1995]. After each uncoarsening step, the mapping is refined
to improve the quality, using algorithms such as the Kernighan-Lin (KL) [Kernighan
and Lin 1970] and Fiduccia-Mattheyses (FM) [Fiduccia and Mattheyses 1982] meth-
ods. These algorithms incrementally move vertices between parts, but cannot perform
major changes to the projected partition. The KL algorithm minimizes the edge cut
by performing swaps between pairs of vertices. Because it selects pairs of vertices, its
time complexity is quadratic in the number of vertices. The FM algorithm is a modi-
fication of the KL algorithm that improves the time complexity without significantly
decreasing the quality for most graphs. Instead of performing swaps, it moves vertices
one at a time, from one part to another, so as to reduce edge cut while preserving load
balance.

Since SCOTCH was initially designed to compute process-processor static mappings,
it implements a modified recursive bipartitioning method called the Dual Recursive Bi-
partitioning (DRB) method [Pellegrini 1994]. This method uses a divide and conquer
approach to recursively allocate processes to processors. In order to compute a map-
ping, an undirected process graph, that models the computation, is constructed. In the
process graph, a vertex represents a process, vertex weight represents the computa-

ACM Transactions on Parallel Computing, Vol. , No. , Article , Publication date: January 2014.

:6 H. Menon et al.

tional load and the edges represent the communication between the processes. The set
of processors onto which the processes are mapped is also modeled as an undirected
graph, called the target graph. The DRB algorithm starts by considering a graph of
processors, also called the domain, containing all the processors of the target graph.
At each step, the algorithm bipartitions the domain into two disjoint subdomains, and
calls a graph bipartitioning algorithm to partition the process graph onto the two
subdomains. Initial bipartitions are computed using locality-preserving greedy graph
growing heuristics, that grow parts from randomly selected seed vertices [Karypis and
Kumar 1996]. Initial partitions are refined using the FM algorithm, possibly using
the multilevel framework when graphs to bipartition are big enough. In this case, the
FM algorithm is applied to band graphs, that is, restrictions of the graphs to a small
number of layers of vertices around the prolonged partition [Pellegrini 2007], so as to
reduce problem space.

The objective of the mapping process is to obtain the load balance within the speci-
fied imbalance threshold while minimizing the communication cost.

In its most recent version, SCOTCH performs k-way multilevel coarsening down to
a size of 20 vertices per part, after which the DRB algorithm is called to compute the
initial partition on the coarsest k-way graph. Then, the k-way partition is refined using
a k-way version of the FM algorithm. Although these algorithms are fast, we will see
in Section 3.3 that FM may result in high imbalance for graphs with irregular load
distributions. Such graphs require a new algorithm for reducing load imbalance (see
Section 3.3).

Depending on the load balancing needs, two flavors of the SCOTCH static mapping
method can be used:
(1) STRAT QUALITY - It gives preference to obtaining the best possible edge cut over

minimizing load imbalance. In the DRB algorithm, for each bipartition, the com-
plete multilevel bipartitioning V-cycle is performed thrice, and the best result is
used.

(2) STRAT BALANCE - It gives preference to minimizing load imbalance even if it in-
creases the edge cut. Here, after each bipartitioning V-cycle, an extra FM pass is
performed on the whole graph (and not only on the band graph around the cut).
Once the k-way partition has been computed on the finer graph, a specific k-way
load imbalance reduction algorithm is called (described in Section 3.3). Then, a
final k-way FM algorithm is called in order to reduce communication as much as
possible.

Please note that for all the applications used in this paper, the size of the process
graphs is typically less than 20 vertices per part. Hence, the DRB algorithm is used
instead of the k-way multilevel framework for computing the initial k-way partition.
However, for STRAT BALANCE, a k-way refinement algorithm is invoked on the finest
graph. Figure 3 shows how these algorithms are called in sequence on such graphs.

3.2. Repartitioning methods in SCOTCH

A new feature added to SCOTCH 6.0 is the ability to compute a remapping of a graph,
based on an existing mapping. This scheme is referred to as refinement load balancing
in CHARM++, which aims at reducing the number of migrations resulting from load
balancing. As in [Çatalyürek et al. 2009], the main idea is to add a fictitious edge to
every vertex of the graph that connects it to a fictitious vertex representing the old
part. An example of repartitioning with fictitious edges is shown in Figure 4. All the
fictitious edges are assigned weights corresponding to the cost of migrating the ver-
tex to another part. This method allows one to integrate, without much modification,
the migration cost into existing edge cut minimization software. However, it can be
expensive, because copying and processing graph data to add extra edges can be costly.

ACM Transactions on Parallel Computing, Vol. , No. , Article , Publication date: January 2014.

Applying Graph Partitioning Methods in Dynamic Load Balancing :7

1st DRB call

2nd DRB call

k-way
refinement

Coarsening

Initial bipartitioning

Uncoarsening +
FM refinement

Coarsening

Initial bipartitioning

Uncoarsening +
FM refinement

(Load imbalance
reduction +

K-way FM
refinement)

Fig. 3. Three phase partitioning in SCOTCH

In order to reduce the overhead of adding fictitious edges, we take advantage of
the structure of SCOTCH and reduce the need for such edges. Firstly, in the k-way
coarsening phase, we match together only vertices that have the same characteristics,
e.g. that belong to the same old part (for repartitioning). This requires us to add only
one data per vertex, instead of one per fictitious edge. When the current graph to
partition does not differ too much topologically from the old graph that gave the old
partition, the multilevel k-way coarsening process is not hindered too much. Secondly,
since SCOTCH was initially designed to compute process-processor static mappings
using recursive bisection, its recursive bisection algorithms allow for biases in the
cut cost function, so that vertices can have a preferred part. To compute the initial
partition, biases are added to each vertex according to the old partition. Hence, the
initial partition accounts for all of these constraints, without having to add any extra
edges. Note that, unlike the k-way coarsening algorithm, the coarsening algorithm of
the DRB framework can mate with any neighbor vertex, by summing its bias. Hence,
even if k-way coarsening could not operate properly due to the lack of mates with same
characteristics, the multilevel framework can still be used at the DRB level. Finally,
in the FM algorithm on the band graphs of the k-way uncoarsening phase, the extra
migration cost is taken into account in the cost function that is considered when we
are choosing which vertex to move. This global, minimal use of fictitious edge is novel
as a whole, and allows us to handle fixed vertices as well.

3.3. A new algorithm for reducing load imbalance
All of the algorithms mentioned above were designed for graphs whose vertex load
distribution is regular and not severely imbalanced. In particular, it is assumed that
it is always possible to achieve load balance by a sequence of moves involving the ver-
tices. However, when the load distribution is very irregular, such algorithms may fail
to provide adequate load balance. Load distribution artifacts may not be compensated
if, for instance, some vertices with very high loads are localized in a small, strongly

ACM Transactions on Parallel Computing, Vol. , No. , Article , Publication date: January 2014.

:8 H. Menon et al.

Part 2

Part 1

4 5 6 7

0 1 2 3

12 13 14 15

8 9 10 11

(a) Old partition.
Part 2

Part 1

4 5 6 7

0 1 2 3

12 13 14 15

8 9 10 11

(b) New optimal partition
computed from scratch.

Part 2

Part 1

4 5 6 7

0 1 2 3

12 13 14 15

8 9 10 11

(c) Repartitioning with migration
penalty.

Fig. 4. Example of repartitioning with fictitious edges. Considering that all edge loads and migration costs
are equal to 1, subfigure (a) shows an old partition with a cut of 12. Subfigure (b) shows a new partition com-
puted from scratch with a cut equal to 4. By considering additional migration penalty, the cost of partition
(b) increases up to 12 (4 from edge loads plus 8 from vertex migrations). The partition shown in subfigure (c)
is optimal with a cost of 10 (6 from edge loads plus 4 from vertex migrations).

coupled, portion of the graph. These vertices will most likely be kept together by the
first levels of the recursive bipartitioning algorithm. Due to the high granularity of
the vertex load, the bipartitioning algorithm creates partitions that are highly imbal-
anced. Moreover, since the FM algorithm uses vertex movements instead of vertex
swaps as in the KL algorithm, movements of the heaviest vertex will never be consid-
ered. This is because moving a heavy vertex out of its slightly overloaded part may
result in overloading the destination part as well as underloading the original part.

To address this problem, a new load imbalance reduction algorithm, presented in Al-
gorithm 1, has been implemented in SCOTCH. It is activated when the load imbalance
ratio of the k-way partitioning is above a specified threshold. The main loop of the al-
gorithm considers all vertices in descending order of their weights. If adding the vertex
to its current part does not overload the part, then the vertex is not moved. But if the
vertex causes its original part to be overloaded, possible alternate destination parts
are tried out in the target domain in recursive bipartitioning tree order. The neighbor-
ing domain of the last bipartition level is tried first followed by the two children of the
neighboring domain in the second-last level, and so on. Therefore, closest domains in
the target architecture partition are considered first, before farther ones, taking into
account the topology of the target architecture. Once a balanced partition is achieved,
k-way FM is used to minimize the communication cost.

In summary, the algorithms that have been experimented with in this paper are:
(i) the classical dual recursive bipartitioning (or static mapping) method of SCOTCH
adapted for repartitioning, (ii) a new k-way multilevel framework for partitioning and
repartitioning graphs. Due to the small size of the application graphs only the k-way
FM algorithm is used, and (iii) a specific algorithm for handling graphs with irregular
load distributions and localized concentration of vertices with heavy loads.

In the context of this paper, the target topologies are assumed to be homogeneous,
and remapping reduces to repartitioning.

3.4. Comparison with other partitioning tools
Two third-party tools are used for comparison with the methods developed in this
paper: METIS and ZOLTAN. We are going to present their most salient features.

ACM Transactions on Parallel Computing, Vol. , No. , Article , Publication date: January 2014.

Applying Graph Partitioning Methods in Dynamic Load Balancing :9

ALGORITHM 1: Pseudo-code of the load imbalance reduction algorithm
Inputs : V , the set of vertices

P , the collection of parts
weight, an array containing the weight of each vertex
partition, an array containing the part of each vertex
load, an array containing the load assigned to each part
average load, the average system load

Output: partition, the updated part array
Initialize load array of dimension size(P) to all zeroes
for v ∈ V by decreasing order of weight[v] do

best imbalance← +∞
for p ∈ P in DRB order do

if load[p] + weight[v] <= average load then
best partition← p
break

else
imbalance← |load[p] + weight[v]− average load|
if imbalance < best imbalance then

best imbalance← imbalance
best partition← p

end
end

end
partition[v]← best partition
load[best partition]← load[best partition] + weight[v]

end

The METIS library performs sequential graph partitioning and PARMETIS per-
forms both parallel graph partitioning and repartitioning. Graph repartitioning fea-
ture is not available in the sequential version. Therefore, in the context of this paper,
where only sequential partitioning tools are considered, PARMETIS graph repartition-
ing capabilities have not been used. Also, METIS does not perform static mapping. Its
sequential version is based on a k-way multilevel framework, in which graphs are
coarsened by means of heavy-edge matching. Following this, an initial k-way parti-
tion is computed by means of recursive bipartitioning. Finally, this partition is pro-
jected back to finer graphs and refined using a variant of gradient k-way Fiduccia-
Mattheyses algorithm. In this algorithm, boundary vertices are sorted according to
external degree. Vertices that improve the cut or communication volume and that do
not create imbalance are moved to their most beneficial neighboring part. The major
difference between the METIS library and SCOTCH is that unlike METIS, SCOTCH in-
cludes static mapping capabilities and uses global algorithms such as diffusion-based
methods to refine the partition.

ZOLTAN is a versatile tool for graph and hypergraph partitioning and for sparse
matrix ordering. In addition to providing its own algorithms, it encapsulates many
third-party tools such as PATOH [patoh], PARMETIS and even SCOTCH. Its most
interesting feature in the context of our paper is that, it provides a hypergraph repar-
titioning feature using fictitious vertices and edges [Çatalyürek et al. 2009]. ZOLTAN
is also based on a multilevel framework. Hypergraphs are coarsened using a variant
of the heavy edge matching heuristic, called inner-product matching. Initial partitions
are computed using recursive bisection. Local refinement is performed using a local-
ized version of the Fiduccia-Mattheyses algorithm. Since graphs are degenerate hyper-
graphs with hyperedges comprising of only two vertices, it is quite straightforward to

ACM Transactions on Parallel Computing, Vol. , No. , Article , Publication date: January 2014.

:10 H. Menon et al.

use ZOLTAN in our experimental framework. Since hypergraph partitioning is known
to be more expensive than plain graph partitioning, we do not expect good performance
in terms of speed, but its quality is interesting to analyze.

4. CASE STUDIES
We compare the performance of different load balancing strategies using micro-
benchmarks and the NAS BT solver on multiple machines. We first provide details
about the benchmarks and then present our evaluation results.

kNeighbor is a micro-benchmark with a near-neighbor communication pattern. In
this benchmark, each object exchanges 8KB sized messages with a fixed set of objects
in every iteration. The communication pattern of the objects can be a disconnected
graph. Each object is assigned computational load such that less than 3% processors
are heavily loaded. The load of heavy objects can be up to 5 times the average load of
the objects in the system.

stencil4d is representative of the communication pattern in MILC [Bernard et al.
2000], a Lattice QCD code. In this computationally intensive benchmark, each object
is assigned a block of 16×16×16×16 doubles. In each iteration, every object exchanges
boundary data with its eight neighbors (two in each of four directions). This results in
exchange of multiple messages of size 32 KB each. Once the data exchange is done, each
process computes a 9-point stencil on its data. Load imbalance is artificially introduced
by having each object do the stencil computation a random number of times within
each iteration.

BT MZ is the multi-zone version of the Block Tri-diagonal (BT) solver in the NAS
Parallel Benchmark suite (NPB) [der Wijngaart and Jin 2003]. It is a parallel imple-
mentation for solving a synthetic system of non-linear PDEs using block tri-diagonal
matrices. It consists of uneven sized zones within a problem class and hence is useful
for testing the effectiveness of a load balancer. In this paper, we compare the perfor-
mance of various load balancers for class C and class D of BT MZ in NPB 3.3. For
class C, the benchmark creates a total of 256 zones, and for class D, it creates 1024
zones, with an aggregated grid size of 480× 320× 28 and 1632× 1216× 34 , respectively.
Boundary values between zones are exchanged after each iteration.

The experiments were run on Vulcan, Intrepid and Steele. Vulcan is a 24,576node 5
Petaflop BG/Q production system at Lawrence Livermore National Laboratory with 5D
torus chip-to-chip network. Each node consists of 16 1600 MHz PowerPC A2 cores each
with 4 hardware threads. Intrepid is a 40,960node Blue Gene/P installation at the Ar-
gonne National Laboratory. Each node on Intrepid consists of four 850 MHz PowerPC
cores. The primary interconnect for point-to-point communication in this system is a
3D torus with a bi-directional link bandwidth of 850 MB/s. The experiments were run
in VN mode using all four cores per node. Steele is a Dell cluster at Purdue University,
operated by the Rosen Center for Advanced Computing. Each node on Steele has two
quad-core 2.33 GHz Intel E5410 chips or two quad-core 3.00 GHz Intel E5450 chips.
The interconnect used is Gigabit Ethernet or InfiniBand for different nodes.

4.1. Evaluation of SCOTCH-based load balancers
We implemented two load balancing strategies in CHARM++ that use graph partition-
ing methods available in SCOTCH. The first one, ScotchLB, does a fresh partitioning
and assignment of objects to processors ignoring the previous mapping. The second
one, ScotchRefineLB, uses repartitioning methods (Section 3.2) to refine the initial
partitioning and mapping created by ScotchLB. For ScotchRefineLB results, ScotchLB
is invoked once, when program execution begins, followed by several calls to ScotchRe-

ACM Transactions on Parallel Computing, Vol. , No. , Article , Publication date: January 2014.

Applying Graph Partitioning Methods in Dynamic Load Balancing :11

10-4
10-3
10-2
10-1
100
101
102
103
104

512 1024 2048 4096

R
em

ot
e-

to
-lo

ca
l c

om
m

. r
at

io

Number of cores

kNeighbor on Intrepid: Ratio of remote to local comm.

GreedyLB
RefineLB

MetisRecLB
MetiskWayLB

ZoltanLB
ZoltanRefineLB

ScotchLB
ScotchRefineLB

(a) Ratio of remote to local communication

100

101

102

103

104

105

512 1024 2048 4096

N
o.

 o
f m

ig
ra

tio
ns

 p
er

 s
te

p

Number of cores

kNeighbor on Intrepid: Number of migrations

GreedyLB
RefineLB

MetisRecLB
MetiskWayLB

ZoltanLB
ZoltanRefineLB

ScotchLB
ScotchRefineLB

(b) Number of migrations per load balancing step

Fig. 5. Evaluation of kNeighbor benchmark

fineLB. We compare the performance of SCOTCH-based load balancers with those in
CHARM++, GreedyLB and RefineLB. For comparison with other graph partitioners,
we also implemented METIS and ZOLTAN-based load balancers. For MetisLB, both re-
cursive bipartitioning and k-way multilevel partitioning were used. For ZoltanLB, the
hypergraph partitioner is used with the partition and re-partition method. Finally, for
SCOTCH-based load balancers, two flavors of the mapping methods were tried, namely
STRAT QUALITY and STRAT BALANCE (Section 3.1).

The following metrics are used to compare the performance of the load balancing
algorithms:
(1) Speedup obtained in the execution time per step of the application, which is the

best indication of the success of a load balancer.
(2) Time spent in the load balancing strategy and migration. This, along with the

frequency of load balancing, determines whether load balancing is beneficial.
(3) Number of objects migrated, signifying the amount of data movement resulting

from load balancing and hence the associated communication costs.
(4) Speedup obtained in the total application time, which includes the time for the

iterations, load balancing strategy and migration.
Here we consider speedup with respect to the baseline where no load balancing is done
(NoLB), and it is defined as the ratio of the time for NoLB to that for a specific strategy.

4.2. Comparisons using kNeighbor
In this section, we present results for the kNeighbor micro-benchmark running on
Vulcan. For these experiments, the number of objects is eight times the number of
processors. The baseline experiment is referred to as NoLB, where, no load balancing
is performed and the runtime system does a static mapping of all objects to processors,
attempting to assign equal number of objects to each processor.

Figure 5(a) demonstrates the capability of graph partitioning based load balancers
in mapping communicating objects to the same processor. Communication between
objects on the same processor is called local, whereas, between objects on different
processors is considered remote. This figure presents the ratio of remote to local com-
munication for different load balancers. We can see that graph partitioners succeed in
maintaining this ratio less than one i.e. restricting communication to within a proces-

ACM Transactions on Parallel Computing, Vol. , No. , Article , Publication date: January 2014.

:12 H. Menon et al.

10-2

10-1

100

512 1024 2048 4096

A
ve

ra
ge

 t
im

e
(s

)

Number of cores

kNeighbor on Intrepid: Time spent in migration

GreedyLB
RefineLB

MetisRecLB
MetiskWayLB

ZoltanLB
ZoltanRefineLB

ScotchLB
ScotchRefineLB

(a) Time taken by migration

10-2

10-1

100

101

102

512 1024 2048 4096

A
ve

ra
ge

 t
im

e
(s

)

Number of cores

kNeighbor on Intrepid: Time spent in load bal. strategy

GreedyLB
RefineLB

MetisRecLB
MetiskWayLB

ZoltanLB
ZoltanRefineLB

ScotchLB
ScotchRefineLB

(b) Time taken by the load balancing algorithm

Fig. 6. Load balancing cost per load balancing step for kNeighbor

sor as much as possible. In contrast, for other load balancers, this ratio is at the least
five orders of magnitude higher denoting excess of remote communication.

Figure 5(b) presents the number of migrations as a result of performing load balanc-
ing. RefineLB, which considers the existing mapping, successfully reduces the number
of migrations. However, there exists a tradeoff between reducing the number of mi-
grations and improving application performance. RefineLB, which performs the least
number of migrations, suffers from performance issues as it migrates without taking
the communication of the objects into account. ZoltanRefineLB is also able to consider-
ably reduce the migration but we will see in Figure 7(a) that its performance is lesser
in comparison ZoltanLB. For this benchmark, ScotchRefineLB is not able to reduce the
number of migrations because repartitioning of disconnected graphs is more challeng-
ing.

Next we compare the time spent in the load balancing strategy, which includes the
time for migration and the load balancing strategy (see Figure 6). We find that, as the
number of cores increases, the strategy time as well as the migration time for all the
load balancers increases. In some cases RefineLB and ZoltanRefineLB has the least
migration time because it is successful in reducing the number of migrations in com-
parison to other strategies. RefineLB also has the smallest strategy time among all but
does not improve performance. Graph partitioning based load balancers, in general, in-
cur a higher cost. This overhead, however, is not significant and is offset by the better
performance that the application achieves when using them. As seen in Figure 7(a),
the load balancers based on SCOTCH consistently outperform all the other load bal-
ancers. Since the process graph for the kNeighbor micro-benchmark is a disconnected
graph with high imbalance of vertices, the traditional graph partitioning algorithms
suffer from load imbalance. The high speedup of SCOTCH based load balancers, in
comparison to others, is due to the addition of the new algorithm for reducing load
imbalance.

Finally, Figure 7(b) presents results for an end-to-end execution of the kNeighbor
micro-benchmark. For these runs, we perform load balancing once every 500 itera-
tions. The application time is the sum of the times for all the iterations and the load
balancing time, which includes the strategy time and the time for migration of objects.
We can see in Figure 7(b) that the ScotchLB and ScotchRefineLB consistently obtain

ACM Transactions on Parallel Computing, Vol. , No. , Article , Publication date: January 2014.

Applying Graph Partitioning Methods in Dynamic Load Balancing :13

 0

 1

 2

 3

 4

 5

 6

512 1024 2048 4096

Sp
ee

du
p

w
.r

.t.
 N

oL
B

Number of cores

kNeighbor on Intrepid: Speedup in execution time per step

GreedyLB
RefineLB

MetisRecLB
MetiskWayLB

ZoltanLB
ZoltanRefineLB

ScotchLB
ScotchRefineLB

(a) Speedup in the execution time per step

 0

 1

 2

 3

 4

 5

 6

512 1024 2048 4096

Sp
ee

du
p

w
.r

.t.
 N

oL
B

Number of cores

kNeighbor on Intrepid: Speedup in total application time

GreedyLB
RefineLB

MetisRecLB
MetiskWayLB

ZoltanLB
ZoltanRefineLB

ScotchLB
ScotchRefineLB

(b) Speedup in the total execution time

Fig. 7. Speedup for kNeighbor on Vulcan

10-1

100

101

102

103

104

32 64 128 256

R
em

ot
e-

to
-lo

ca
l c

om
m

. r
at

io

Number of cores

BT MZ on Steele: Ratio of remote to local communication

GreedyLB
RefineLB
MetisLB

ZoltanLB
ScotchLB

ScotchRefineLB

(a) Ratio of remote to local communication

 0

 200

 400

 600

 800

 1000

 1200

32 64 128 256

N
o.

 o
f m

ig
ra

tio
ns

 p
er

 s
te

p

Number of cores

BT MZ on Steele: Number of migrations

GreedyLB
RefineLB
MetisLB

ZoltanLB
ScotchLB

ScotchRefineLB

(b) Number of migrations per load balancing step

Fig. 8. Evaluation of BT MZ on Steele

the best performance on all system sizes. ScotchLB and ScotchRefineLB gives a reduc-
tion in total execution time of up to 25% in comparison to the best among other load
balancers. When compared to the baseline, NoLB, ScotchLB and ScotchRefineLB give
80% reduction in execution time (overall speedup of up to 5).

4.3. Comparisons using BT MZ
In this section, we present results for the BT MZ performance on Steele. For these ex-
periments, the number of objects per processor varies with the class of the benchmark
used and the system size. As an example, a class D run on 256 processors will have, on
average, four objects per processor. We ran class C on 32 and 64 cores and class D on
128 and 256 cores. For these experiments, where we have a choice of strategy for the
same graph partitioner, we report the result of the better performing strategy.

ACM Transactions on Parallel Computing, Vol. , No. , Article , Publication date: January 2014.

:14 H. Menon et al.

 0

 5

 10

 15

 20

 25

 30

32 64 128 256

A
ve

ra
ge

 t
im

e
(s

)

Number of cores

BT MZ on Steele: Time spent in migration

GreedyLB
RefineLB
MetisLB

ZoltanLB
ScotchLB

ScotchRefineLB

(a) Time taken by migration

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.1

32 64 128 256

A
ve

ra
ge

 t
im

e
(s

)

Number of cores

BT MZ on Steele: Time spent in load balancing strategy

GreedyLB
RefineLB
MetisLB

ZoltanLB
ScotchLB

ScotchRefineLB

(b) Time taken by the load balancing algorithm

Fig. 9. Load balancing cost per load balancing step for BT MZ on Steele

 0

 0.5

 1

 1.5

 2

 2.5

 3

32 64 128 256

Sp
ee

du
p

w
.r

.t.
 N

oL
B

Number of cores

BT MZ on Steele: Speedup in execution time

GreedyLB
RefineLB
MetisLB

ZoltanLB
ScotchLB

ScotchRefineLB

(a) Speedup in the execution time per step

 0

 0.5

 1

 1.5

 2

 2.5

 3

32 64 128 256

Sp
ee

du
p

w
.r

.t.
 N

oL
B

Number of cores

BT MZ on Steele: Speedup in total application time

GreedyLB
RefineLB
MetisLB

ZoltanLB
ScotchLB

ScotchRefineLB

(b) Speedup in the total execution time

Fig. 10. Speedup for BT MZ on Steele

Figure 8(a) presents the ratio of remote to local communication for different load
balancers for BT MZ. As in the case of kNeighbor, the graph partitioners obtain a ratio
close to one. This reduces the out-of-processor communication in comparison to other
load balancers. Figure 8(b) shows the number of migrations. The amount of data to
be transferred, when an object is migrated, is substantially large in case of BT MZ.
Refinement-based load balancers, RefineLB and ScotchRefineLB which take the mi-
gration cost into account, migrate very few objects. Hence, they spend a significantly
smaller time in migration, as seen in Figure 9(a), nearly an order of magnitude smaller
than other balancers, in some cases.

Figure 9(b) compares the time spent in the load balancing strategies. We observe
that, as the system and problem size increase, the strategy time for all the load bal-
ancers increases. However, the strategy time is insignificant in comparison to time per
step for BT MZ. Figure 10(a) presents the speedups for the execution time per step for

ACM Transactions on Parallel Computing, Vol. , No. , Article , Publication date: January 2014.

Applying Graph Partitioning Methods in Dynamic Load Balancing :15

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 t
im

e
pe

r
st

ep
 (

m
s)

Percentage imbalance allowed

kNeighbor: ScotchLB on Intrepid

2048 cores
1024 cores
512 cores
256 cores

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 t
im

e
pe

r
st

ep
 (

m
s)

Percentage imbalance allowed

kNeighbor: ScotchRefineLB on Intrepid

2048 cores
1024 cores
512 cores
256 cores

Fig. 11. Impact of imbalance allowance on execution time for ScotchLB and ScotchRefineLB (kNeighbor on
Intrepid)

all the load balancers. ScotchRefineLB performs best among all the load balancers and
shows a speedup of 2.5 to 3 times in comparison to NoLB. In comparison to other load
balancers, ScotchRefineLB reduces the execution time by 11%.

The results for a complete run of BT MZ in which load balancing is performed once
every 1000 iterations are presented in Figure 10(b). Since the strategy time is negli-
gible, the application time primarily consists of the time per step and the migration
time. The trends are similar to the speedups observed in Figure 10(a). ScotchRefineLB
performs better than all other load balancers consistently and reduces the total exe-
cution time by up to 12%. In comparison to NoLB, ScotchRefineLB obtains speedups
ranging from 1.5 to 2.8 and ScotchLB obtains speedups from 1.2 to 2.5.

4.4. Strategies to handle different classes of applications
The end user can assist the partitioning strategies in SCOTCH in making good load
balancing decisions by indicating whether computational load balance or minimizing
the communication cut is more important for an application. The user can pass a pa-
rameter to SCOTCH which indicates the percentage of load imbalance permissible for
an application. If the application is computation-bound, this value should be set to a
low number; on the other hand, if it is communication-bound and can tolerate some
degree of computational load imbalance, then this parameter can be set to a higher
value.

Figure 11 shows the execution time per step of kNeighbor for different values
of this parameter when used within ScotchLB and ScotchRefineLB. kNeighbor is
communication-intensive and hence, a value that permits between 8 to 12% imbal-
ance gives the best results. However, if we look at Figure 12, which presents execution
times for stencil4d, a benchmark affected more by computational load imbalance than
inefficient communication, best performance is obtained when strict load balance is
ensured (1% imbalance permitted).

Section 3.3 presented a new algorithm for balancing applications that have irregular
load distributions and localized concentrations of vertices with heavy loads, a scenario
which is not handled efficiently by recursive bipartitioning. This is yet another tech-
nique to give more importance to balancing computational load than trying to achieve
a minimal cut. Figure 13 presents a comparison of the default scheme (STRAT QUALITY)
versus this new scheme (STRAT BALANCE) that attempts to achieve better load balance

ACM Transactions on Parallel Computing, Vol. , No. , Article , Publication date: January 2014.

:16 H. Menon et al.

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 1 2 3 4 5 6 7 8 9

A
ve

ra
ge

 t
im

e
pe

r
st

ep
 (

s)

Percentage imbalance allowed

stencil4d: ScotchLB on Intrepid

2048 cores
1024 cores
512 cores
256 cores

Fig. 12. Impact of imbalance allowance on execution time for ScotchLB (stencil4d on Intrepid)

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

128 256 512 1024 2048

A
ve

ra
ge

 t
im

e
pe

r
st

ep
 (

s)

Number of cores

stencil4d: STRAT_QUALITY versus STRAT_BALANCE

STRAT_QUALITY
STRAT_BALANCE

Fig. 13. Comparison of application performance for the STRAT QUALITY versus STRAT BALANCE strategy
within ScotchLB (stencil4d on Intrepid)

by considering all vertices and not only the ones in the neighborhood. Figure 13 shows
that STRAT BALANCE consistently outperforms STRAT QUALITY for stencil4d. The perfor-
mance gains are in the range of 10-15%. These results are in accordance with our
expectation for a computationally intensive benchmark, such as stencil4d, for which
balancing of load should be preferred over optimizing communication.

4.5. Effect of application features on performance
The previous section described advanced features in SCOTCH and their ability to han-
dle different classes of parallel applications. In this section, we discuss the impact
of application characteristics on the performance benefits obtained from load balanc-
ing. One relatively straightforward conclusion is that as the amount of communication
in an application is increased, load balancing strategies, such as graph partitioning,
that take the communication into account, give increasingly larger benefits. Figure 14
shows the speedup obtained in execution time per step with respect to NoLB for dif-

ACM Transactions on Parallel Computing, Vol. , No. , Article , Publication date: January 2014.

Applying Graph Partitioning Methods in Dynamic Load Balancing :17

ferent message sizes. As we increase the message size from 2 KB to 16 KB, the im-
provement in the time per step using the graph partitioning based load balancers over
RefineLB increases from 30% to 79%. When compared to the baseline performance,
the graph partitioning based load balancers give an overall speedup of 1.2 to 4.6 when
varying the message size from 2 KB to 16 KB. Hence, graph partitioning based load bal-
ancers should definitely be used with applications that are communication-intensive.

 0

 1

 2

 3

 4

 5

1024 2048 4096 8192 16384

Sp
ee

du
p

w
.r

.t.
 N

oL
B

Communication in bytes

kNeighbor: Execution time on 256 cores of Intrepid

GreedyLB
RefineLB
MetisLB

ScotchLB
ScotchRefineLB

Fig. 14. Impact of increasing communication on the quality of load balance (kNeighbor running on 256
cores of Intrepid)

5. RELATED WORK
The problem of load balancing (also known as multiprocessor scheduling) of n com-
putational tasks on p processors is known to be NP-hard [Garey and Johnson 1979;
Leung and Whitehead 1982; Applegate and Cook 1991]. However, solutions that can
bring the load imbalance (ratio of maximum to average load) within 5-10% of the op-
timal are still desirable. Load balancing is a much studied problem and algorithms
and heuristics from various fields have been applied to it, ranging from prefix sum, re-
cursive bisection [Berger and Bokhari 1987; Simon 1991], space filling curves [Sagan
1994] to work stealing [Blumofe and Leiserson 1999] and graph partitioning.

Graph partitioning has been used for static load balancing of many parallel appli-
cations for some time now [Attaway et al. 1997; Shadid et al. 1997]. METIS [Karypis
and Kumar 1996], CHACO [Hendrickson and Leland 1995] and SCOTCH [scotch] are
some popular graph partitioning libraries. PARMETIS and PT-SCOTCH are the par-
allel versions of METIS and SCOTCH, respectively, that were developed to handle the
increasing sizes of parallel applications and machines. Parallel algorithms reduce the
time and memory requirements for partitioning large graphs.

With the emergence of large-scale heterogeneous architectures and development of
complex multi-physics applications, the challenge has shifted towards developing al-
gorithms and techniques for topology-aware, scalable and dynamic load balancing.
ZOLTAN is a library, containing a collection of geometric and hypergraph-based par-
titioners that can be called from standard applications [Çatalyürek et al. 2009]. It
provides a suite of load balancing algorithms including parallel graph partitioning
and also allows the use of external libraries such as PARMETIS. Jostle [Walshaw
and Cross 2007] is a software package designed to partition unstructured meshes,

ACM Transactions on Parallel Computing, Vol. , No. , Article , Publication date: January 2014.

:18 H. Menon et al.

which can be also used for repartition and load balancing. Other frameworks such as
DRAMA [Basermann et al. 2000] and Chombo [Colella et al. 2003] provide load bal-
ancing capabilities for specific classes of parallel applications: finite element methods
and finite difference methods, respectively.

CHARM++ provides a framework with inbuilt load balancing strategies and the op-
tion to deploy external libraries that provide load balancing algorithms [Brunner and
Kalé 2000]. The CHARM++ runtime system does not depend on the application to pro-
vide the task graph, the cost models for which might be inaccurate. The runtime sys-
tem uses automatic instrumentation to obtain the loads and the communication graph
which is used by the load balancing framework. We believe that this paper presents
one of the first analyses of using graph partitioning in a measurement-based dynamic
load balancing framework. The added benefits of interconnect topology awareness and
hierarchical load balancing schemes implemented in CHARM++ can also be exploited
in conjunction with graph partitioning and will be discussed in future work.

6. SUMMARY AND NEXT STEPS
This paper represents an attempt at exploiting graph mapping and repartitioning
methods for load balancing in parallel computing. Combined with measurement-based
dynamic load balancing capabilities of an adaptive runtime system, a powerful tech-
nique for automatic balancing of applications is created. We present new algorithms,
implemented in SCOTCH, such as k-way multilevel repartitioning and a load imbal-
ance reduction algorithm that favors load balance over minimizing the edge cut. This
is especially useful for computation-bound applications with irregular load distribu-
tions.

SCOTCH-based load balancers improve performance for the kNeighbor micro-
benchmark and the NAS BT solver by 12-42% over the existing load balancers in
CHARM++ and METIS and ZOLTAN-based balancers. They also reduce the number
of migrations, by several orders of magnitude in some cases, which reduces the as-
sociated communication costs. ScotchRefineLB migrates nearly 11 times fewer objects
than MetisLB and ZoltanLB for BT MZ. This shows that graph partitioning algorithms
specifically designed for mapping objects to processors give better performance than
using generic graph partitioners, such as METIS, for this purpose. Compared to the
baseline performance, ScotchRefineLB leads to overall speedups of 5 for kNeighbor
and 1.5 to 2.8 for BT MZ.

Future work involves developing an intelligent load balancing framework that can
choose the best strategy automatically (comprehensive versus refinement, favoring
load balance versus minimizing the edge cut, etc.) depending on the computation and
communication characteristics of an application. Another area of exploration is the
use of architecture-aware mapping strategies available in SCOTCH for interconnect
topology-aware load balancing. An extension to the current capabilities in CHARM++
would be to enable the use of MPI-based PARMETIS in CHARM++ through interoper-
ation of MPI and CHARM++.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344. This work was funded by the Laboratory Di-
rected Research and Development Program at LLNL under project tracking code 13-ERD-055 (LLNL-JRNL-
648557). This research was supported in part by Centre National de la Recherche Scientifique (CNRS) and
Conseil régional d’Aquitaine.

Neither the U.S. government nor Lawrence Livermore National Security, LLC (LLNS), nor any of their
employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, or process disclosed, or represents that its

ACM Transactions on Parallel Computing, Vol. , No. , Article , Publication date: January 2014.

Applying Graph Partitioning Methods in Dynamic Load Balancing :19

use would not infringe privately owned rights. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the U.S. government or LLNS, and shall not be used for advertising or
product endorsement purposes.

This research used running time on Surveyor and Intrepid at the Argonne National Laboratory, which
is supported by the U.S. Department of Energy under contract DE-AC02-06CH11357. Runs on Steele were
done under the TeraGrid [Catlett et al. 2007] allocation grant ASC050040N supported by the National
Science Foundation.

REFERENCES
D. Applegate and B. Cook. 1991. A computational study of the job-shop scheduling problem. ORSA Journal

of Computing 3, 2 (1991), 149 – 156.
S.A. Attaway, E.J. Barragy, K.H. Brown, D.R. Gardner, B.A. Hendrickson, S.J. Plimpton, and C.T. Vaughan.

1997. Transient Solid Dynamics Simulations on the Sandia/Intel Teraflop Computer. In ACM/IEEE
Supercomputing Conference.

S. T. Barnard and H. D. Simon. 1994. A fast multilevel implementation of recursive spectral bisection for
partitioning unstructured problems. Concurrency: Practice and Experience 6, 2 (1994), 101–117.

A. Basermann, J. Clinckemaillie, T. Coupez, J. Fingberg, H. Digonnet, R. Ducloux, J.-M. Gratien, U. Hart-
mann, G. Lonsdale, B. Maerten, D. Roose, and C. Walshaw. 2000. Dynamic load balancing of finite
element applications with the DRAMA Library. In Applied Math. Modeling, Vol. 25. 83–98.

Marsha J Berger and Shahid H Bokhari. 1987. A partitioning strategy for nonuniform problems on multi-
processors. Computers, IEEE Transactions on 100, 5 (1987), 570–580.

Claude Bernard, Tom Burch, Thomas A. DeGrand, Carleton DeTar, Steven Gottlieb, Urs M. Heller, James E.
Hetrick, Kostas Orginos, Bob Sugar, and Doug Toussaint. 2000. Scaling tests of the improved Kogut-
Susskind quark action. Physical Review D 61 (2000).

Abhinav Bhatelé, Laxmikant V. Kalé, and Sameer Kumar. 2009. Dynamic Topology Aware Load Balancing
Algorithms for Molecular Dynamics Applications. In 23rd ACM International Conference on Supercom-
puting.

Abhinav Bhatele, Sameer Kumar, Chao Mei, James C. Phillips, Gengbin Zheng, and Laxmikant V. Kale.
2008. Overcoming Scaling Challenges in Biomolecular Simulations across Multiple Platforms. In Pro-
ceedings of IEEE International Parallel and Distributed Processing Symposium 2008.

Robert D Blumofe and Charles E Leiserson. 1999. Scheduling multithreaded computations by work stealing.
Journal of the ACM (JACM) 46, 5 (1999), 720–748.

Robert K. Brunner and Laxmikant V. Kalé. 2000. Handling Application-Induced Load Imbalance using Par-
allel Objects. In Parallel and Distributed Computing for Symbolic and Irregular Applications. World
Scientific Publishing, 167–181.

Charlie Catlett and others. 2007. TeraGrid: Analysis of Organization, System Architecture, and Middleware
Enabling New Types of Applications, In HPC and Grids in Action, Lucio Grandinetti (Ed.). Advances in
Parallel Computing 16 (2007), 225–249.

Umit V. Çatalyürek, Erik G. Boman, Karen D. Devine, Doruk Bozdağ, Robert T. Heaphy, and Lee Ann
Riesen. 2009. A repartitioning hypergraph model for dynamic load balancing. J. Parallel Distrib. Com-
put. 69 (August 2009), 711–724. Issue 8.

P. Colella, D.T. Graves, T.J. Ligocki, D.F. Martin, D. Modiano, D.B. Serafini, and B. Van Straalen. 2003.
Chombo Software Package for AMR Applications Design Document. (2003). http://seesar.lbl.gov/anag/
chombo/ChomboDesign-1.4.pdf.

Rob F. Van der Wijngaart and Haoqiang Jin. July 2003. NAS Parallel Benchmarks, Multi-Zone Versions.
Technical Report NAS Technical Report NAS-03-010.

C. M. Fiduccia and R. M. Mattheyses. 1982. A linear-time heuristic for improving network partitions. In
Proc. 19th Design Automation Conference. 175–181.

Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York, NY, USA.

Bruce Hendrickson and Robert Leland. 1995. A multilevel algorithm for partitioning graphs. In Supercom-
puting ’95: Proceedings of the 1995 ACM/IEEE conference on Supercomputing (CDROM). ACM, New
York, NY, USA, 28.

Pritish Jetley, Filippo Gioachin, Celso Mendes, Laxmikant V. Kale, and Thomas R. Quinn. 2008. Massively
parallel cosmological simulations with ChaNGa. In IPDPS.

L.V. Kalé and S. Krishnan. 1993. CHARM++: A Portable Concurrent Object Oriented System Based on C++.
In Proceedings of OOPSLA’93, A. Paepcke (Ed.). ACM Press, 91–108.

ACM Transactions on Parallel Computing, Vol. , No. , Article , Publication date: January 2014.

:20 H. Menon et al.

Laxmikant V. Kalé. 2002. The Virtualization Model of Parallel Programming : Runtime Optimizations and
the State of Art. In LACSI 2002. Albuquerque.

George Karypis and Vipin Kumar. 1996. Parallel multilevel k-way partitioning scheme for irregular graphs.
In Supercomputing ’96: Proceedings of the 1996 ACM/IEEE conference on Supercomputing (CDROM).
35. DOI:http://dx.doi.org/10.1145/369028.369103

B. W. Kernighan and S. Lin. 1970. An efficient heuristic procedure for partitionning graphs. BELL System
Technical Journal (Feb. 1970), 291–307.

Joseph Y.-T. Leung and Jennifer Whitehead. 1982. On the complexity of fixed-priority scheduling of periodic,
real-time tasks. Performance Evaluation 2, 4 (1982), 237 – 250.

Sandhya Mangala, Terry Wilmarth, Sayantan Chakravorty, Nilesh Choudhury, Laxmikant V. Kale, and
Philippe H. Geubelle. 2007. Parallel Adaptive Simulations of Dynamic Fracture Events. Engineering
with Computers 24 (December 2007), 341–358. Issue 4.

patoh. PATOH: A Multilevel Hypergraph Partitioning Tool. http://bmi.osu.edu/umit/software.htm. (????).
F. Pellegrini. 1994. Static Mapping by Dual Recursive Bipartitioning of Process and Architecture Graphs. In

Proc. SHPCC’94, Knoxville. IEEE, 486–493.
F. Pellegrini. 2007. A parallelisable multi-level banded diffusion scheme for computing balanced partitions

with smooth boundaries. In Proc. EuroPar, Rennes (LNCS), Vol. 4641. 195–204.
Hans Sagan. 1994. Space-filling curves. Vol. 18. Springer-Verlag New York.
scotch. SCOTCH: Static mapping, graph partitioning, clustering and sparse matrix block ordering package.

http://www.labri.fr/∼pelegrin/scotch. (????).
John Shadid, Scott Hutchinson, Gary Hennigan, Harry Moffat, Karen Devine, and A.G. Salinger. 1997.

Efficient parallel computation of unstructured finite element reacting flow solutions. Parallel Comput.
23, 9 (1997), 1307 – 1325.

Horst D Simon. 1991. Partitioning of unstructured problems for parallel processing. Computing Systems in
Engineering 2, 2 (1991), 135–148.

Chris Walshaw and Mark Cross. 2007. JOSTLE: parallel multilevel graph-partitioning software–an
overview. Mesh partitioning techniques and domain decomposition techniques (2007), 27–58.

Received January 2014; revised ; accepted

ACM Transactions on Parallel Computing, Vol. , No. , Article , Publication date: January 2014.

