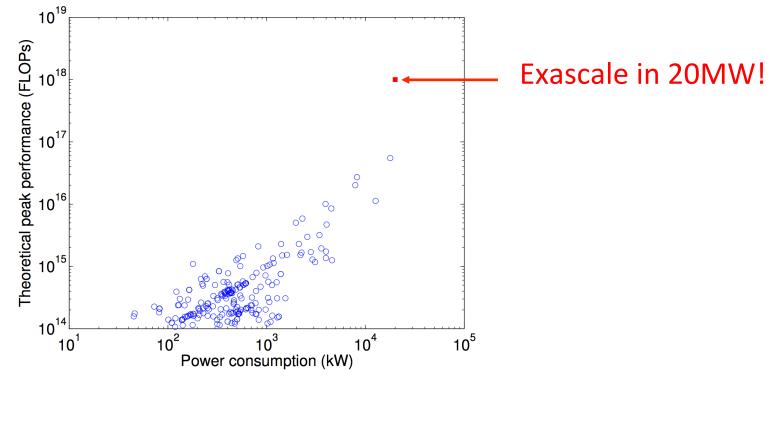
PARM POWER-AWARE RESOURCE MANAGER Maximizing Data Center Performance Under Strict Power Budget

Osman Sarood, Akhil Langer*, Abhishek Gupta, Laxmikant Kale

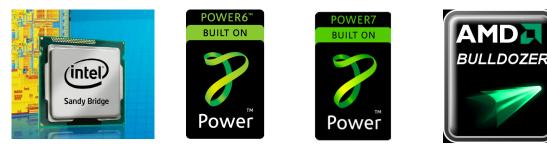
Parallel Programming Laboratory Department of Computer Science University of Illinois at Urbana-Champaign

19th November BoF: Dynamic Power Management for MW-sized Supercomputer Centers Supercomputing 2014 New Orleans, LA



Major Challenge to Achieve Exascale

Power consumption for Top500


PPL UIUC PROGRAMMING LABORATORY

Data Center Power

How is power demand of data center calculated? Using Thermal Design Power (TDP)! However, TDP is hardly reached!!

Constraining CPU/Memory power

Intel Sandy Bridge

□ Running Average Power Limit (RAPL) library

measure and set CPU/memory power

Constraining CPU/Memory power

Intel Sandy Bridge

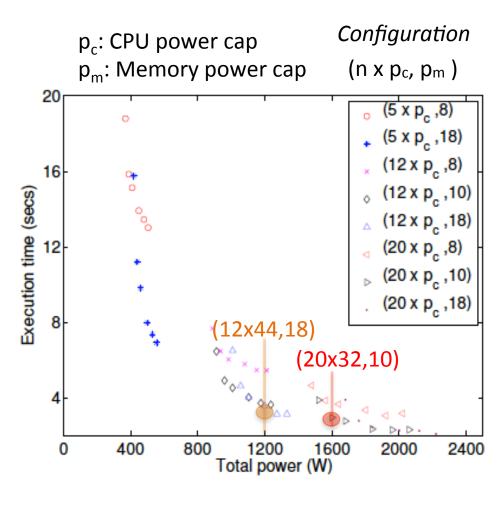
□ Running Average Power Limit (RAPL) library

measure and set CPU/memory power

Solution to Data Center Power

Constrain power consumption of nodes

Overprovisioning - Use more nodes than conventional data center for same power budget



Application Performance with Power

Application performance does not improve proportionately with increase in power cap

Run on larger number of nodes each capped at lower power level

Performance of LULESH at different configurations

PPL PROGRAMMING LABORATORY

Problem Statement

Maximizing Data Center Performance Under Strict Power Budget


Data center capabilitiesPower capping abilityOverprovisioning

Job features (Optional) ☐Moldability ☐Malleability ≻Charm++

PASS Power Aware Strong Scaling Model

Execution time as a function of power and number of nodes

Time vs Scale

Downey's strong scaling

 $t=F(n,A,\sigma)$

□ n: number of nodes

- □ A: Average Parallelism
- \Box σ : duration of parallelism A

Time vs Frequency

$$\dot{t}(f) = \begin{cases} \frac{W_{cpu}}{f} + T_{mem}, & \text{ for } f \\ T_h, & \text{ for } f \end{cases}$$

□ W_{cpu}: CPU work

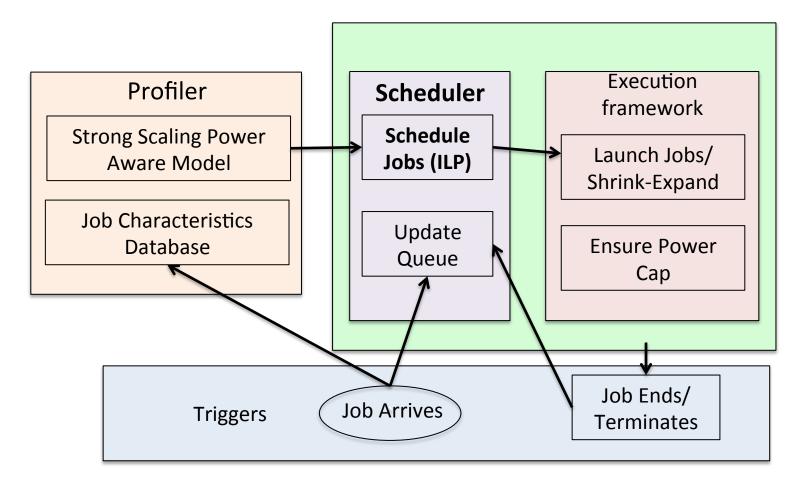
T_{mem}: memory work

 \Box T_h: minimum exec time

$$f \ge f_h$$
 $n = n$

< f

Power vs Frequency


$$p^{h} \quad p = p_{core} + \sum_{i=1}^{3} g_i L_i + g_m M + p_{base}$$

- \Box p_{core}: core power
- \Box g_i: cost level I cache access
- □ L_i: #level I accesses
- \Box g_m: cost of mem access
- □ M: #mem accesses
- \Box p_{base}: idle power

Scheduler - Integer Linear Program (ILP) Formulation

Objective Function

$$\sum_{j \in \mathcal{J}} \sum_{n \in N_j} \sum_{p \in P_j} w_j * s_{j,n,p} * x_{j,n,p}$$

Select One Resource Combination Per Job

$$\sum_{n \in N_j} \sum_{p \in P_j} x_{j,n,p} \le 1 \qquad \qquad \forall j \in I$$

$$\sum_{n \in N_j} \sum_{p \in P_j} x_{j,n,p} = 1 \qquad \qquad \forall j \in \mathcal{I}$$

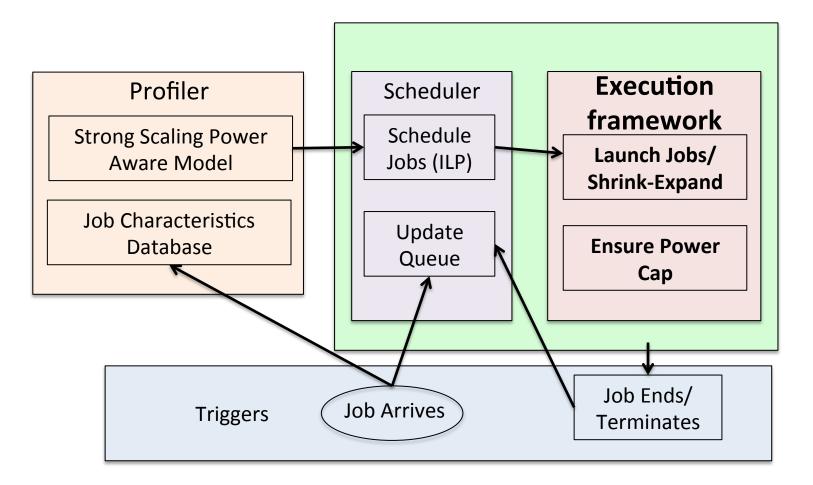
Bounding total nodes

$$\sum_{j \in \mathcal{J}} \sum_{p \in P_j} \sum_{n \in N_j} n x_{j,n,p} \le \mathbf{N}$$

Bounding power consumption

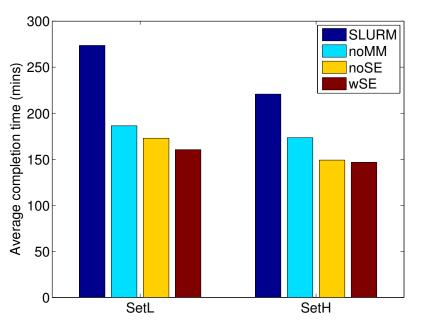
$$\sum_{j \in \mathcal{J}} \sum_{n \in N_j} \sum_{p \in P_j} (n * (p + W_{base})) x_{j,n,p} \leq W_{max}$$

Disable Malleability (Optional)


$$\sum_{n \in N_j} \sum_{p \in P_j} n x_{j,n,p} = n_j \qquad \qquad \forall j \in \mathcal{I}$$

Maximizing throughput makes online ILP optimization intractable, instead

maximize sum of power-aware speedup of selected jobs



Performance Results

Lulesh, AMR, LeanMD, Jacobi and Wave2D 38-node Intel Sandy Bridge Cluster, 3000W budget

Description

noMM: without Malleability and Moldability
noSE: with Moldability but no Malleability

wse: with Moldability and Malleability

1.7X improvement in throughput

Takeaways

Significant improvement in throughputs

- Power-aware characteristics (PASS model)
- CPU power capping
- > Overprovisioning

Sophisticated ILP scheduling methodology useful for resource assignment

Adaptive runtime system further increases benefits by allowing malleability

Talk: Maximizing Throughput of Overprovisioned HPC Data centers Under a Strict Power Budget. SC '14. Thursday (tomorrow) 10:30 am, 393-94-95.

THANK YOU!

PARM POWER-AWARE RESOURCE MANAGER Maximizing Data Center Performance Under Strict Power Budget

Osman Sarood, Akhil Langer*, Abhishek Gupta, Laxmikant Kale

Parallel Programming Laboratory Department of Computer Science University of Illinois at Urbana-Champaign

> 19th November Supercomputing 2014 New Orleans, LA

