
PICS - a Performance-analysis-based Introspective
Control System to Steer Parallel Applications

Yanhua Sun, Laxmikant V. Kalé

University of Illinois at Urbana-Champaign

sun51@illinois.edu

November 26, 2014

Yanhua Sun U of Illinois at Urbana-Champaign 1/18

Parallel Programming Laboratory @UIUC

PPL : led by Professor Kalé
since 1985 (30 years)
Group of research staff,
post-doc, graduate students,
undergraduate (20+)
Charm++ programming model
and runtime system, real world
applications (open source)
12 Charm++ workshops

Yanhua Sun U of Illinois at Urbana-Champaign 2/18

Charm++

Charm++ workshop 2014 1

Charm++
(Over-decomposition,
 Asynchronization,
 Migration)

 Converse Runtime
(scheduling,threading)

P
I
C
S

Fault Tolerance

Load Balancing

Power/Energy
Saving

 LRTS
 Machine Layers (uGNI, PAMI, Verbs, Net)

NAMD ChaNGa openAtom

EpiSemdemics
Cloth Simulation

PDES
……more………

Figure: Charm++ System

Yanhua Sun U of Illinois at Urbana-Champaign 3/18

Goal : Productivity + Performance

Asynchronous, message driven, over-decomposition programming
model
More control: mapping, load balancing, memory management,
communication optimization
Observability and controllability

Most important feature : load balancing

Why not a general scheme to enhance the adaptivity?

PICS : Control point centered introspective control system to steer
applications and runtime system

Yanhua Sun U of Illinois at Urbana-Champaign 4/18

Goal : Productivity + Performance

Asynchronous, message driven, over-decomposition programming
model
More control: mapping, load balancing, memory management,
communication optimization
Observability and controllability

Most important feature : load balancing

Why not a general scheme to enhance the adaptivity?
PICS : Control point centered introspective control system to steer
applications and runtime system

Yanhua Sun U of Illinois at Urbana-Champaign 4/18

Observation

Configurations of tunable parameters in the runtime system and
applications significantly affect the performance.

 32

 64

 128

 256

 512

 1024

 1 2 4 8 16 32 64 128 256

ti
m

e(
u
s)

Number of messages

Ping time of using different number of messages to send data

1M data

Figure: Data transfer without
computation

 512

 1 2 4 8 16 32 64

ti
m

e(
u
s)

Number of messages

time of using different number of messages to send data

1M (f:0.03125)

Figure: Data transfer with computation

Yanhua Sun U of Illinois at Urbana-Champaign 5/18

Principle of Persistence

Things rarely change suddenly

Yanhua Sun U of Illinois at Urbana-Champaign 6/18

Principle of Persistence

Things rarely change suddenly

Yanhua Sun U of Illinois at Urbana-Champaign 6/18

Principle of Persistence

Things rarely change suddenly

Yanhua Sun U of Illinois at Urbana-Champaign 6/18

Overview of PICS framework

Performance
instrumenta/on

Automa/c performance
analysis

Run/me control
points

Run/me
reconfigura/on

Controller

Mini apps Real‐world
applica/ons

Applica/on
control points

Applica/on
reconfigura/on

PICS

Adap/ve run/me system

applica/ons

Performance
 data

Expert
knowledge
rules

Yanhua Sun U of Illinois at Urbana-Champaign 7/18

Control Points

Control points
Control points are tunable parameters for application and runtime to
interact with control system. First proposed in Dooley’s research.

1 Name, Values : default, min, max
2 Movement unit: +1, ×2
3 Associated function, object, array
4 Effects, directions

Degree of parallelism
Grainsize
Priority
Memory usage
GPU load
Message size
Number of messages
other effects

Yanhua Sun U of Illinois at Urbana-Champaign 8/18

Application and Control Points

Application
1 Application specific control points provided by users
2 Applications should be able to reconfigure to use new values

Runtime
1 Registered by runtime itself
2 Requires no change from applications
3 Affect all applications

Control points Effects Use Cases
sub-block size parallelism, grain size Jacobi, Wave, stencil code

parallel threshold parallelism, overhead, grain size state space search
stages in pipeline number of messages, message size pipeline collectives

algorithm selection degree of parallelism, grain size 3D FFT decomposition (slab or pencil)
software cache size memory usage, amount of communication ChaNGa

ratio of GPU CPU load computation, load balance NAMD, ChaNGa

Yanhua Sun U of Illinois at Urbana-Champaign 9/18

Observe Program Behaviors

Record all events
Events : begin idle, end idle
Functions: name, begin execution, end execution
Communication : message creation, size, source/destination
Hardware counters

Module link, no source code modification
Performance summary data

Yanhua Sun U of Illinois at Urbana-Champaign 10/18

Automatically Analyze the Performance
Many control points are registered. How to reduce the search space?

Performance analysis to identify program problems to narrow down the
control points

Expert'
knowledge'
rules'database'

Performance''
summary'data'

Yanhua Sun U of Illinois at Urbana-Champaign 11/18

Automatically Analyze the Performance
Many control points are registered. How to reduce the search space?
Performance analysis to identify program problems to narrow down the
control points

Expert'
knowledge'
rules'database'

Performance''
summary'data'

Yanhua Sun U of Illinois at Urbana-Champaign 11/18

Decision Tree Based Performance Analysis

Performance

summary

CPU Util ization > 90% O v e r h e a d > 1 0 % Idle >10%

Sequent ia l

performance?

Cache Miss

 > 1 0 %

Decrease

grain size

Small

en t ry me thods

Small Bytes

pe r message

Increase

grain size

Decomposit ion

 problem?
Mapping problem? Scheduling problem?Others?

Longer

e n t r y

 m e t h o d

Larger

single

 object

Long

critical

 p a t h

Few

objects

per PE

Large

communicat ion

 on one object

Decrease

grain size

Load imbalance

Large

communicat ion

 on one PE

Communicat ion

 t i m e > >

 model t ime

Large

ex te rna l

communicat ion

Load

balancer

Remap
Compress

m e s s a g e

Critical

t a s k s

are de layed

Prior i t ize the tasks

Large Bytes

pe r message

Long reduction

broadcas t

Long latency

for big msgs

Increase

aggrega t ion

threshold

Decrease

aggrega t ion

 threshold

Collectives Replicate objects Topology aware mapping

Encoded in a plain text file
Constructed at the beginning
Dynamic learning new rules

Yanhua Sun U of Illinois at Urbana-Champaign 12/18

Correlate Performance with Control Points
Traverse the tree using the performance summary results

Idle	 &me	 >	 10%	

Max	 load/AVG	
load	 >	 1.2	

Number	 of	 tasks	
<	 number	 of	

cores	

Increase	
load	

balancing	
freq	

Decrease	 	
grain	 size	

Increase	
parallelism	

Steering	

Effects	 of	 Control	 Points	

Yanhua Sun U of Illinois at Urbana-Champaign 13/18

Control System APIs

t y p e d e f s t r u c t C o n t r o l P o i n t t
{

cha r name [3 0] ;
enum TP DATATYPE data type ;
doub l e d e f a u l t V a l u e ;
doub l e c u r r e n t V a l u e ;
doub l e minValue ;
doub l e maxValue ;
doub l e b e s t V a l u e ;
doub l e moveUnit ;
i n t moveOP ;
i n t e f f e c t ;
i n t e f f e c t D i r e c t i o n ;
i n t s t r a t e g y ;
i n t entryEP ;
i n t o b j e c t I D ;

} C o n t r o l P o i n t ;

Yanhua Sun U of Illinois at Urbana-Champaign 14/18

APIs for applications

v o i d r e g i s t e r C o n t r o l P o i n t (C o n t r o l P o i n t ∗ tp) ;

v o i d s t a r t S t e p () ;
v o i d endStep () ;

v o i d s t a r t P h a s e (i n t p h a s e I d) ;
v o i d endPhase () ;

doub l e getTunedParameter (c o n s t cha r ∗name , boo l ∗ v a l i d) ;

Yanhua Sun U of Illinois at Urbana-Champaign 15/18

Jacobi3d Performance Steering

Control Points: sub-block size in each dimension
Three control points
Cache miss rate, high idle suggest decreases sub-block size
Overhead

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 10 15 20 25 30 35 40

tim
es

te
p(

m
s/

st
ep

)

step

total time
idle time
cpu time

runtime overhead

Figure: Jacobi3d performance steering on 64 cores for problem of
1024*1024*1024

Yanhua Sun U of Illinois at Urbana-Champaign 16/18

Communication Bottleneck in ChaNGa

Control points: number of mirrors
Ratio of maximum communication per object to average

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 5 10 15 20 25

s/
st

ep

steps

tune mirrors with PICS
no mirrors

Figure: Time cost of calculating gravity for various mirrors and no mirror on 16k
cores on Blue Gene/Q

Yanhua Sun U of Illinois at Urbana-Champaign 17/18

Conclusion

Application developers can provide hints to help optimize applications
Automatic performance analysis helps guide performance steering
Steering both runtime system and applications is important

http://charm.cs.illinois.edu
mailing list: charm@cs.illinois.edu

Yanhua Sun U of Illinois at Urbana-Champaign 18/18

