
Scheduling for HPC Systems with Process Variation
Heterogeneity

Ehsan Totoni, Akhil Langer, Josep Torrellas, Laxmikant V. Kale

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
E-mail: {totoni2, alanger, torrella, kale}@illinois.edu

Abstract—Variation in the CMOS manufacturing processes
cause the transistors on each chip to differ, which results in
many-core chips being inherently heterogeneous. For example,
frequency and power consumption profiles of cores can span
a wide range. This makes optimal scheduling of applications
under a power budget computationally difficult, because of the
combinatorially large number of choices available. To facilitate
this, we model the performance and power consumption of
HPC applications on such heterogeneous chips. Based on our
models, we propose a scheduling framework using integer linear
programming (ILP), which enables efficient scheduling with
various power consumption and performance constraints. Using
this framework, an HPC runtime system can decide how many
and which cores of a chip to use depending on the application, the
properties of the chip, and the imposed constraints. Our results
show that our framework finds configurations that are up to 2.5
times faster than the ones obtained from simple heuristics. We
also propose various research directions for this problem based
on our framework.

I. INTRODUCTION

Process variation is the deviation of transistor parameters
from their design (nominal) values, which is caused by sys-
tematic effects (e.g., lithographic inconsistencies) and random
effects (e.g., varying dopant concentrations) [1]. Affected
parameters include effective channel length, channel width,
and threshold voltage. Therefore, transistor characteristics such
as switching speed and current leakage can vary widely across
the chip. Incorporating very small feature sizes in succeeding
CMOS technology generations and lowering the supply volt-
age, which is necessary for power efficiency [2], exacerbate
the process variation problem.

At the architectural level, process variation results in cores
and on-chip memories having different frequencies and static
power consumption profiles. The reason is that a core’s fre-
quency is determined by the switching speed of the transistors
on its critical path, which depends on the characteristics of
those transistors. In addition, static power has an exponential
relationship with the threshold voltage of transistors. Many
designers tackle this issue by leaving design margins, but
this solution is deemed too wasteful, especially for future
generation technologies and many-core architectures. A recent
study estimated the within-die frequency variation of many-
core chips in 11nm technology generation to be 2.3x for con-
ventional high voltage operation (known as Super-Threshold
Voltage Computing) and 3.7x for very low voltage operation
(known as Near-Threshold Voltage Computing) [3].

Process variation leads to high heterogeneity in processor
chips, which has direct consequences to High Performance

Computing (HPC) environments. For example, frequency het-
erogeneity can slow down most multithreaded applications
written in various parallel programming paradigms such as
MPI [4] and Pthreads [5]. This is because parallel programmers
usually assume different cores/processors have the same speed
and assign the computational load uniformly. In addition, the
execution of different processes/threads is synchronized in
most HPC applications. Therefore, the slowest core determines
the execution time, unless variation-aware load balancing is
performed (as we evaluate in Section IV).

Furthermore, heterogeneity makes power and energy man-
agement harder, since different parts of the chip can have
widely different performance and power characteristics. The
challenge is to utilize future HPC machines efficiently while
staying within the performance, power, and energy constraints.
Previous studies have developed scheduling heuristics for
multiprogrammed environments [6], [7], [3], but HPC en-
vironments are different because usually only one parallel
application runs on the whole chip. We strive to solve the
performance, energy, and power problem for heterogeneous
chips by developing a novel scheduling framework, which can
be implemented in intelligent HPC runtime systems. The only
requirement is being able to migrate work units and balance the
load according to the configuration chosen by our framework.
Our solution does not change the programming paradigms and
existing codes and has negligible execution time overheads.

For an application running on a processor chip, the runtime
has to choose a configuration among potentially billions of
options. Each configuration instructs how many and which
cores will execute the parallel program, and leaves other cores
off. For a chip with n frequency domains, there are 2n − 1
configurations1. This translates to 67 billion configurations for
a chip proposed by previous work with n = 36 [3]. The
number of frequency domains is expected to be even larger
for future Exascale many-core chips, resulting in an enormous
number of possible configurations. Testing all of these config-
urations is infeasible for the runtime system. Since Exascale
architectures are also very likely to be over-provisioned [8],
[9], variation-aware power management is essential for them
to stay within their power budget. We develop a scheduling
framework with accurate performance and power models that
explores the combinatorial search space efficiently and finds a
close to optimum configuration quickly. It only needs a few
samples of application execution to build the required models.

Performance modeling efforts for parallel applications have

1‘all cores off’ is not useful

usually assumed that different processor cores have the same
speed [10], [11], or the system is heterogeneous but there are
a few processor types (e.g. GPU and other accelerators) [12],
[13]. However, process variation causes a new form of het-
erogeneity that potentially makes all of the cores/processors
of the system different. We develop and study the accuracy of
four different performance models and apply the most accurate
one for making scheduling decisions. Studying performance
models also gives us insight into the impacts of heterogeneity
on performance and power consumption.

For a large chip with many frequency domains, evaluating
even simple models for all the configurations is infeasible.
Therefore, we use integer linear programming (ILP) to ex-
plore the search space efficiently. Our results show that our
ILP-based scheduling provides configurations that perform
25% better on average for a compute-bound application and
16% better for a memory-bound application as compared to
scheduling algorithms based on heuristics. In some cases, our
framework finds configurations that are up to 2.5 times faster
than the baseline heuristic. Furthermore, we demonstrate how
different performance and power scheduling constraints can be
expressed as linear models to be used by our ILP scheduling
framework. Since ILP provides optimality guarantees (assum-
ing that the models are accurate), our framework can be used
to evaluate simpler scheduling heuristics as well.

The rest of the paper is organized as follows. Section II
presents background on process variation. Section III describes
our evaluation setup. Section IV discusses the requirements
of programming systems, and evaluates the load imbalance
caused by process variation heterogeneity. In Section V, we
design and evaluate different performance models. We use
these models in Section VI to define an ILP-based scheduling
framework. We evaluate this framework versus simple heuris-
tics in Section VII. We discuss the related work in Section VIII,
and conclude in Section IX.

II. BACKGROUND ON PROCESS VARIATION

Ideally, all transistors of a die should be identical and have
the same parameters as designed, but this is hard to achieve in
manufacturing. Therefore, there are static, spatial fluctuations
of parameters around the nominal values. The variation of
transistors across different dies is called die-to-die variation,
while the difference of transistors on the same die is called
within-die variation.

Variation affects two critical parameters of transistors:
threshold voltage (Vth) and effective channel length (Leff).
These parameters determine switching speed and leakage of
the transistors. At the architectural level, process variation
causes some processor cores to run faster or slower than
the intended design. This is determined by the speed of the
transistors on the critical path of each core. Figure 1 illustrates
the frequency variability of a hypothetical chip. In addition,
the static power consumption of different cores and on-chip
memory units is determined by the leakage of their transistor,
which varies.

To display a uniform view of the system to the user, the de-
signers usually include margins to cover variations. However,
due to growing variations in successive processor generations,
researchers believe that this will become too costly [14]. For

Fig. 1. An example of core frequency variation on the same chip.

example, by using all the cores at a very low frequency, one
pays the static power cost of all the cores but achieves limited
performance. On the other hand, to alleviate power limitations,
low voltage operation seems to be required [2], but it will
exacerbate the variation issues. Hence, process variation needs
to considered for future processor chips.

III. EVALUATION SETUP

For evaluation of our approach, we model heterogeneous
chips using the Sniper simulator [15]. We use Sniper’s de-
fault core model, which is similar to the Intel’s Gainestown
microarchitecture and has been validated [15].

To model process variation at the micro-architecture level,
we use VariusNTV [16]. It models systematic variation by
dividing the die into a grid, and assigning Vth and Leff

to each point by sampling from a multivariate Gaussian
distribution. It models both spatially correlated variation and
random variation, and its results have been validated against
chip measurements [16].

We simulate 12-core or 36-core chips with each core in
a different frequency domain, but one voltage for the whole
chip. In the following sections, we refer to frequency domains
simply as cores for convenience. Some previous works propose
multiple small cores (a cluster) in each frequency domain.
However, we use a simpler architecture to be able to evaluate
our models more accurately and to simulate the possible
configurations exhaustively for some cases. We believe that our
results extend to other architectures as well. We have verified
our simulation setting by comparing the simulation results of
a corresponding homogeneous architecture against a 12-core
Ivy Bridge machine. Table I presents the parameters of the
modeled system in this paper.

TABLE I. SIMULATED PROCESSOR’S PARAMETERS

Sniper parameters
Chip 12 or 36 Core CMP
Core x86, 4-wide issue out-of-order
Instruction L1 (L1I) 32 KB, 4 way
Data L1 (L1D) 32 KB, 8 way, private.
L2 256 KB, 8 way, private.
Memory latency (no contention) 75ns

VariusNTV parameters
Technology 11 nm
Average frequency 2.6 GHz
Vdd 0.765
Correlation range Φ 0.1
Total (σ/µ) for Vth 15%

We use MiniMD and Jacobi3D to represent typical HPC

Fig. 2. An example of load balancing across cores with different frequencies.

workloads. MiniMD represents molecular dynamics work-
loads, which are compute-intensive. Jacobi3D represents sten-
cil computations, which are typically memory-bound. Other
HPC applications are typically between these two in terms of
being compute-intensive or memory-bound. We use instruc-
tions per cycle (IPC) as a proxy for application’s performance.
In each simulation, after initialization, and warm up for two
seconds, we run the application for about six seconds of
simulated time, and take the average of the several IPC samples
collected at the intervals of milliseconds over the period of
six seconds. Since the configuration is heterogeneous and
frequencies are not the same, we normalize the IPC statistics
of different cores by multiplying them with the frequencies
of the corresponding cores and dividing by the frequency of
the slowest core on the chip. We use McPAT [17] to evaluate
dynamic power consumption and VariusNTV to evaluate static
power consumption.

IV. PROGRAMMING SYSTEMS

Some parallel programming systems provide adaptive fea-
tures such as automatic load balancing. Essentially, a scheduler
decides how much work is assigned to each core. For example,
an OpenMP runtime system can assign loop iterations to idle
cores dynamically. Furthermore, the CHARM++/AMPI [18]
runtime system measures the load of different processors and
balances the load accordingly.

In the context of process variation, runtime scheduling is
even more important. For example, the runtime system should
assign more work to faster cores and less work to slower ones.
Otherwise, a multithreaded application will run at the pace of
the slowest core. Figure 2 illustrates how load balancing is
performed by migrating units of work among different cores.
In this study, we assume that the runtime system has a way of
assigning units of work to different cores, but our results do
not depend on how it is done.

A. Impact on Load Balance

In this paper, we assume that the runtime can achieve
perfect load balance, but this is not always the case. Since
the speeds of cores can be widely different, dividing a fixed
number of similar tasks according to their speeds is not always
possible. For instance, if there are three cores with frequencies
of 1 GHz, 2 GHz, and 3 GHz, 7 equal tasks cannot be
scheduled perfectly. In this case, at least one core has more
work than the average load, and some other cores will be
waiting for it to finish.

The work units cannot always be fine-grained enough to
achieve perfect load balance. This is because scheduling and

managing very fine-grained work units has high overhead. For
example, in CHARM++ and AMPI, usually a fixed number of
tasks (e.g. chares or MPI ranks) are scheduled on different
cores. In addition, in shared-memory approaches such as
OpenMP and Intel TBB, chunks of iterations are scheduled
by the runtime system. In this section, we strive to quantify
the load imbalance due to work units not being fine-grained
enough to be balanced perfectly on the chips with high
variation.

We characterize the impact of the granularity of tasks (for
a fixed computation) on load imbalance caused by variation in
different configurations of a chip. A configuration is a subset
of the cores on the chip, on which the parallel application will
be run. We define the overdecomposition ratio as the ratio of
the number of tasks to the number of cores. We also define
our load imbalance metric using the ratio of maximum load to
average load [19]:

I = (
Lmax

Lavg
− 1)× 100 (1)

where, Lmax is the maximum load of any core in the config-
uration, and Lavg is the average load of all the cores in the
configuration. These load values are obtained by appropriately
scaling the assigned load with the frequencies of the corre-
sponding cores. We use a greedy algorithm for load balancing,
which is outlined in Algorithm 1. The algorithm assigns a
capacity for work to each core, which is equal to its frequency
(lines 2-4). In this way, more work will be assigned to faster
cores. It then makes a heap (line 5), which has the core with the
maximum available capacity at the top. The main loop (lines
6-14) removes the core with the maximum capacity from the
heap, assigns a work unit to it, and adds it back to the heap.
If there was not enough capacity on that core, the algorithm
increases the capacity of all the cores by their frequencies
(lines 8-10). This load balancing problem can be modeled as
a variable size bin packing problem [20]. Theoretical analysis
of this algorithm is left for future work.

1 Algorithm: VariationAwareGreedyLoadBalancing
Input: N work units, C cores

2 for each core c ∈ C do
3 c.capacity ← c.frequency;
4 end
5 H ← MakeMaxHeap(C);
6 for each work unit n ∈ N do
7 c← RemoveMaxHeap(H);
8 while c.capacity < n.load do
9 IncreaseAllCapacities(C);

10 end
11 c.workUnits ← c.workUnits ∪ n;
12 c.capacity ← c.capacity − n.load;
13 AddMaxHeap(H ,c);
14 end
Algorithm 1: Greedy variation-aware load balancing algo-
rithm.

Figure 3 summarizes the load imbalance on various con-
figurations of a 12-core chip. We simulated Algorithm 1 with
different over-decomposition ratios for all the 212 − 1 config-
urations of enabled and disabled cores exhaustively, assuming
that the work units are of equal size. The two bars correspond

 1

 10

 100

2 4 8 16 32 64

L
o
a
d
 I
m

b
a
la

n
c
e
 (

%
)

Overdecomposition Ratio

Average Maximum

Fig. 3. The average and maximum load imbalance across all configurations
with different over-decomposition ratios.

to the average load imbalance across all the configurations
and the maximum load imbalance for any configuration, re-
spectively. As illustrated, more over-decomposition reduces the
load imbalance rapidly. With an over-decomposition ratio of
16, the average load imbalance across all the configurations is
2%, while the maximum is 6%. Since an over-decomposition
ratio of 16 is already in use for some current CHARM++
applications [21] and seems extensible to most applications,
we conclude that load imbalance is not a fundamental problem
for our approach. Therefore, in later sections, we assume that
the runtime system can balance the load almost perfectly on
any configuration chosen by the scheduler.

V. PERFORMANCE AND POWER MODELING

To be able to find acceptable configurations, we need power
and performance models that can evaluate each configuration
accurately. Most models in the literature assume homogeneous
chips [10], [11] or heterogeneous ones with only a few differ-
ent processor types (such as GPUs and other accelerators) [12],
[13]. Therefore, new models need to be developed for chips
with high variation and heterogeneity. Building the models
should require only a few (e.g. O(n)) samples, to be feasible
for the runtime system to collect that many samples. In this
section, we assume that the runtime system can balance the
load perfectly.

Figures 4 and 5 compare the performance of miniMD and
Jacobi3D with different number of cores and frequencies of a
12-core homogeneous systems. We use the insights from these
plots to develop our models. For example, compute-bound
applications, such as MiniMD, scale well with more cores
and/or higher frequency. However, memory-bound applications
do not scale beyond a certain point, since memory bandwidth
becomes the bottleneck.

A. Model 1

Our first model assumes that adding each core to the config-
uration improves the application’s performance proportionate
to the core’s frequency. However, this improvement is different
for various applications, and therefore performance samples
are needed.

We assign a performance value to each core (si). The

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8 9 10 11 12

Σ
 I
P

C
i

Number of Cores

MiniMD

Jacobi3d

Fig. 4. Performance scaling with cores.

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 1.1 1.4 1.7 2 2.3 2.6

Σ
 I
P

C
i

Frequency (GHz)

MiniMD

Jacobi3d

Fig. 5. Performance scaling with frequency.

performance of a configuration is modeled as:

Sc =
∑
i∈c

si (2)

For each core i, si is the performance (normalized IPC) of
the application when running on that core alone. Therefore,
n samples can be used to obtain the si values. Note that
since si values are proportionate to the frequencies of the
corresponding cores (see Figure 5), one can sample the slowest
and fastest cores and build a linear model to predict the other
values. Hence, just two samples would suffice for this model
as well.

Figures 6(a) and 6(e) show the error of Model 1 for
Jacobi3D and miniMD. Each point corresponds to a config-
uration. All of the configurations of our 12-core chip (total
number of configurations = 4095) are simulated and evaluated
exhaustively. Positive values mean that the model overesti-
mated the performance, while negative values illustrate that the
model underestimated the performance. As can be seen in the
figure, this model is accurate for miniMD but not for Jacobi3D.
The reason is that, with more cores running at the same time,
memory bandwidth becomes the bottleneck for Jacobi3D and
the performance does not improve proportionately with the
number of cores. The si measurements do not capture this
effect since the performance of each core is sampled executing
alone. This does not capture resource contention, such as
memory bandwidth, that occur in the presence of other active
cores. However, for a compute intensive code such as miniMD,
this problem is not significant and sampling individual cores

 1

 10

 100

 1000

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

#
 o

f
c
o
n
fi
g
u
ra

ti
o
n
s

Error (%)

(a) Error of Model 1 for Jacobi3D

 1

 10

 100

 1000

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

#
 o

f
c
o
n
fi
g
u
ra

ti
o
n
s

Error (%)

(b) Error of Model 2 for Jacobi3D

 1

 10

 100

 1000

 0 100 500 1000 1500

#
 o

f
c
o
n
fi
g
u
ra

ti
o
n
s

Error (%)

(c) Error of Model 3 for Jacobi3D

 1

 10

 100

 1000

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

#
 o

f
c
o
n
fi
g
u
ra

ti
o
n
s

Error (%)

(d) Error of Model 4 for Jacobi3D

 1

 10

 100

 1000

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

#
 o

f
c
o
n
fi
g
u
ra

ti
o
n
s

Error (%)

(e) Error of Model 1 for miniMD

 1

 10

 100

 1000

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

#
 o

f
c
o
n
fi
g
u
ra

ti
o
n
s

Error (%)

(f) Error of Model 2 for miniMD

 1

 10

 100

 1000

 0 100 500 1000 1500

#
 o

f
c
o
n
fi
g
u
ra

ti
o
n
s

Error (%)

(g) Error of Model 3 for miniMD

 1

 10

 100

 1000

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

#
 o

f
c
o
n
fi
g
u
ra

ti
o
n
s

Error (%)

(h) Error of Model 4 for miniMD

Fig. 6. Distribution of errors of different models for Jacobi3D and miniMD performance. The number of configurations on y-axis is shown in log scale. Model
4 performs very well, with average prediction errors of only 1.6%and0.7% across all the configurations for miniMD and Jacobi3D, respectively.

separately gives accurate performance predictions. In general,
the disadvantage of Model 1 is that it does not consider the
bottlenecks that limit the performance when there are multiple
cores running at the same time.

B. Model 2

The second model tries to avoid the drawbacks of the
first model by using a random set of samples that potentially
have multiple cores running at the same time. Furthermore,
it assumes that the application execution time has a memory
component (Tmem) that does not become faster with more
cores.

Model 2 uses the sum of the frequencies as the variable
that determines the application’s performance for each config-
uration. It uses n random samples to fit a linear function of
the following form:

Fc =
∑

i∈c
fi

tc =
Tcomp

Fc
+ Tmem

In this equation, tc is the predicted execution time of config-
uration c. Tcomp and Tmem are constants that represent the
computation and memory time of the application (which are
found by function fitting). Fc is the sum of the frequencies of
the cores of the configuration.

Figures 6(b) and 6(f) show the error of Model 2 for
Jacobi3D and miniMD. The results illustrate that this model
is not very accurate in predicting the performance. Similarly,
one might fit a linear function of the sum of the frequencies
with the following form:

Sc = a1Fc + a2 (3)

However, we verified that this model does not predict well and
has similar accuracy to Model 2. These models do not work
because they fail to take into account the number of cores that
are executing the parallel application.

C. Model 3

To have more accurate predictions than Model 2, one might
consider second degree curve fitting. In this model, the runtime
samples n random configurations as before, but fits a second
degree curve to predict the performance:

Sc = a1(Fc)
2 + a2Fc + a3 (4)

Figures 6(c) and 6(g) show the prediction error of Model 3.
There are extremely large error values for some configurations,
which make the use of this model impractical. This model
suffers from overfitting; although the curve is very close to
the few sample values, it cannot capture the trend and can be
very inaccurate for other configurations.

D. Model 4

Previous models could not capture various aspects of the
configurations simultaneously (such as memory bandwidth
limitations and frequency sensitivity). Considering Figures 4
and 5, we observe that both the frequencies and the number
of cores influence the performance. Moreover, just adding the
frequencies does not capture the effect of additional cores. For
example, two 1 GHz cores are not the same as one 2 GHz core.
Therefore, an accurate model needs to consider the frequencies
as well as the number of cores in each configuration.

To consider both the frequencies and number of cores,
Model 4 fits a linear function for each possible number of
cores, i.e. one line for configurations with only one core, one
line for configurations with two cores, and so on. Therefore,
a 12-core chip will have 12 linear functions. A line for k-core
configurations is a linear function of the sum of frequencies
of the k cores of each configuration.

In general, each line needs at least two samples but more
samples can make it more accurate by using regression tools to
fit the best possible line for all the samples. To keep the number
of samples needed low, we use only two samples. Hence, 2n
samples are needed, which is more than other models but still
low enough for the runtime system to collect with negligible
overhead. As a heuristic, we choose the configuration with
the minimum sum of frequencies and the configuration with
the maximum sum of frequencies for sampling. Finding the

M
o
d
e
l
4
 p

re
d
ic

ti
o
n

Performance (IPC)

(a) Jacobi3D

M
o
d
e
l
4
 p

re
d
ic

ti
o
n

Performance (IPC)

(b) miniMD

Fig. 7. Model 4 predictions as a function of actual (simulated) performance.

configuration with minimum (or maximum) sum of frequencies
is easily done by choosing the needed number of cores from
the list of cores sorted by frequencies.

The runtime system builds the model as follows.

∀k ∈ (1..n):

K = {c|c has k cores}, where c is a configuration

ckmin = c ∈ K|
∑
i∈c

fi is minimum

ckmax = c ∈ K|
∑
i∈c

fi is maximum

F k
min =

∑
i∈ckmin

fi

F k
max =

∑
i∈ckmax

fi

Y k
min = performance of ckmin

Y k
max = performance of ckmax

ak1 =
(Y k

max − Y k
min)

(F k
max − F k

min)

ak2 = Y k
min − a1F k

min

The performance of any configuration with k cores is then
predicted by a simple linear formula:

Sk
c = ak1Fc + ak2 (5)

Figures 6(d) and 6(h) show the accuracy of Model 4 for
Jacobi3D and miniMD. Compared to other models, the points
are closer to the zero error line, meaning that this model is
much more accurate.

For each application, Figure 7 illustrates the performance
predictions of Model 4 for the chip configurations as a function
of their actual performance obtained by simulation. There are
some jitters but both of the functions are mostly monotonic.
This means that, given two configurations, the model predicts
higher performance for the configuration that is actually faster.
Therefore, Model 4 is accurate at comparing configurations.

E. Summary of Performance Models

Figures 8 and 9 compare the accuracy of the discussed
models. Model 4 is superior to others in all of the metrics.
The average error of Model 4 for miniMD is 1.6%, and it is
0.7% for Jacobi3D. In the worst case, the maximum error of
Model 4 is 9.2% for miniMD and 4.3% for Jacobi3D. Thus,

 0

 5

 10

 15

 20

 25

 30

M
odel1

M
odel2

M
odel3

M
odel4

M
o
d
e
l
E
rr

o
r

(%
)

Average
Most Overestimated

Most Underestimated

.

.
37

.

.
1420

Fig. 8. Prediction accuracy of different models for Jacobi3d. Numbers on
top of the Model 3 bars represent the values that are beyond the plotted range.

 0

 5

 10

 15

 20

 25

 30

M
odel1

M
odel2

M
odel3

M
odel4

M
o
d
e
l
E
rr

o
r

(%
)

Average
Most Overestimated

Most Underestimated

.

.
46

.

.
1779

Fig. 9. Prediction accuracy of different models for MiniMD. Numbers on
top of some bars represent the values that are beyond the plotted range.

we conclude that Model 4 is sufficiently accurate for predicting
the performance of various configurations of a heterogeneous
chip.

F. Modeling Dynamic Power

Model 4 predicts performance accurately but dynamic
power also varies with configuration and needs to be predicted.
The dynamic power of a processor core can be formulated as
follows:

Di = αiCV
2fi (6)

In this formula, fi is the frequency of the core, V is its voltage,
C is its capacitance, and αi is the activity of the core. Except
the activity level of the core αi, which varies in different
configurations, other parameters are constants. Therefore, αi

needs to be taken into account for accurate dynamic power
predictions.

The dynamic power of a configuration is the sum of the
dynamic powers of the cores:

Dc =
∑
i∈c

αc
iCV

2fi = CV 2
∑
i∈c

αc
ifi (7)

We strive to adopt our performance model (Model 4) to
predict dynamic power due to the following observations.
First, dynamic power has similar properties to performance
in general. Dynamic power is higher when there are more
cores and when the cores have higher frequencies. Second, the
activity level of each core is correlated with performance, and
hence, correlated with the sum of frequencies. We therefore
formulate our dynamic power model as follows:

 1

 10

 100

 1000

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

#
 o

f
c
o
n
fi
g
u
ra

ti
o
n
s

Error (%)

(a) Jacobi3D

 1

 10

 100

 1000

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

#
 o

f
c
o
n
fi
g
u
ra

ti
o
n
s

Error (%)

(b) miniMD

Fig. 10. Distribution of errors of Model 4 for power consumption prediction.

Zk
min = dynamic power of ckmin

Zk
max = dynamic power of ckmax

bk1 =
(Zk

max − Zk
min)

(F k
max − F k

min)

bk2 = Zk
min − a1F k

min

The dynamic power of a configuration with k cores is then
predicted by a simple linear formula:

Dk
c = bk1Fc + bk2 (8)

Figure 10 illustrates the accuracy of our model for predict-
ing the dynamic power of all of the configurations of a 12-core
chip. The errors of the model are all before 2%, which means
the accuracy is very high. Furthermore, since the accuracy
of the model is higher for dynamic power than performance,
one can conclude that predicting dynamic power is easier than
performance.

VI. MODEL DRIVEN SCHEDULING

The runtime system should intelligently select the fre-
quency domains of the chip to execute the application intel-
ligently in order to meet the performance, power, and energy
demands/constraints. There are various tradeoffs that need to
be considered. For example, choosing a configuration with too
many cores for a memory-bound application might not improve
the performance much, but it can consume excessive power
and energy. In addition, a configuration might be fast but have
high power consumption.

The number of configurations can be prohibitively large
for the runtime system to try exhaustively. For a chip with
n frequency domains, there are 2n − 1 configurations since
each domain can be turned on or off (with at least one domain
on). This exponential growth is due to the heterogeneity of the
chips. Otherwise, analogous homogeneous chips with n cores
have only n distinct configurations. In the previous section, we
developed a model to predict the running application’s perfor-
mance on any configuration of the cores of a heterogeneous
chip. In this section, we use the model to solve the scheduling
problem in the presence of variation, given the performance
and power constraints.

A. Efficient Configuration Space Exploration

Using our performance and power models, the runtime
system can evaluate many configurations quickly (with only
a few samples), but exhaustive exploration is not always
practical. For our example processor chip with 12 frequency

domains, the runtime only needs to evaluate the models for
(212 − 1 = 4095) configurations. However, future processors
will have more frequency domains and the number of config-
urations increases exponentially with the number of frequency
domains. Therefore, exploring all of the configurations in the
runtime can be impractical.

We propose the use of integer linear programming (ILP)
by the runtime system for finding the best (or very close
to the best) configuration given the performance and power
constraints. Using ILP (in many cases) needs linear objective
functions and constraints. Our performance and power models
are linear for configurations with the same number of cores, but
the overall functions are not linear. To solve this issue, we setup
separate ILP problems for configurations with different number
of cores (36 ILP problems for a 36-core chip). Therefore, to
maximize performance given a power budget, an ILP problem
for a given number of cores (k) is formulated as follows :

Parameters
xi : binary variable indicating whether core i is used
F =

∑
i∈all cores

xifi

P : power budget of the chip
psi : static power of core i

Objective function

Maximize performance:

Sk
c = ak1F + ak2 (9)

Constraints

Only configurations with k cores:∑
i∈all cores

xi = k (10)

Cap total power according to budget:∑
i∈all cores

xip
s
i + bk1F + bk2 ≤ P (11)

After solving these ILPs, the runtime system needs to compare
the results and choose the best one. Note that in our formula-
tion, we considered performance as the main objective metric
that needs to be maximized given a power budget. One can
similarly minimize power given performance constraints. In
this case, the roles of Equations 9 and 11 are switched, and
performance becomes a constraint, while power becomes the
objective function.

Note that if one wants to minimize energy without any per-
formance constraints, our ILP framework in this form cannot
be used since the objective function will not be linear anymore.
Energy minimization without performance constraints is left
for future work.

B. Incorporating DVFS

Previous studies suggest Dynamic Voltage and Frequency
Scaling (DVFS) for energy-efficient computing for some cases,
such as for memory bound applications. Our framework can
incorporate DVFS as well. We only need more binary variables
and constraints that indicate at which DVFS level each core

should operate. The constraints make sure that the solver does
not choose illegitimate conditions, such as a core operating at
two DVFS levels simultaneously.

Parameters

xij : binary variable indicating core i at DVFS level j
is used or not

F =
∑

i∈ all cores

∑
j∈ all DVFS levels

xijfij

P : power budget of the chip
psi : static power of core i

Objective function

Maximize performance:

Sk
c = ak1F + ak2 (12)

Constraints

Only configurations with k cores:∑
i∈all cores

∑
j∈ all DVFS levels

xij = k (13)

Only one DVFS level is selected per core:∑
j∈ all DVFS levels

xij ≤ 1,∀i ∈ [1..n] (14)

Cap total power according to budget:∑
i∈all cores

∑
j∈ all DVFS levels

xijp
s
i + bk1F + bk2 ≤ P (15)

Further study and evaluation of DVFS in our framework
is left for future work. For the chips we evaluate, the static
power is high and therefore, operating more cores at lower
frequencies is not very well justified, even for memory-bound
applications. It is most often more beneficial to turn as many
cores off as possible and operate the rest at full speed.
However, DVFS might be beneficial in other cases.

C. Incorporating Communication Performance

So far we have assumed that on-chip communication
performance of different configurations does not differ sig-
nificantly, but this can be incorporated in our framework as
well. Depending on several factors, such as the application’s
communication pattern, network design, and the routing algo-
rithm, a communication model needs to be included in the ILP
framework.

As an example, we consider a case where the application
has a heavy all-to-all communication pattern, the network
topology is a 2D mesh, and a minimal adaptive routing
algorithm is used. In this case, one heuristic is to use the cores
that are farther apart on the chip. This lets the application use
more of the network links and have less congestion.

To handle this case in our framework, communication
performance needs to be incorporated in the objective function
as a linear expression. We assign a communication score (ei) to
each core on the chip. Figure 11 shows an example of possible
core assignments. The cores closer to the corners and sides are

Fig. 11. Assigning communication scores to different cores on a chip.

assigned higher scores because they can potentially use more
of network’s links to send and receive messages. Using this
model, we extend the object function of the ILP as follows:

Sk
c = E1(ak1F + ak2) + E2(

∑
i∈all cores

xiei) (16)

In this equation, E1 and E2 are constants that give weights to
computation and communication performance depending on
the application. They can be tuned offline, or online by the
runtime system using measurements.

Further study and evaluation of communication models is
beyond the scope of this study and is left for future work.

D. Adapting to Application Phases

Some HPC applications have multiple phases with dif-
ferent characteristics. Our previous study demonstrates how
application phases can be recognized and exploited effectively
in the runtime system [22]. One could use our scheduling
framework for different phases separately as well. In this case,
the runtime needs to migrate the tasks and turn cores on and
off when changing the configurations. The overheads of this
reconfiguration and task migration should also be considered.
Extensive study of of this feature is left for future work.

VII. EVALUATION

In this section, we evaluate our ILP-based scheduling
framework by comparing it against two heuristic based
scheduling algorithms. The goal of these algorithms is to max-
imize the performance of a parallel application under a given
power budget for the chip. Evaluation and analysis of cases
that consider other aspects such as DVFS and communication
constraints is left for future work.

The first heuristic, called the MIN heuristic, chooses as
many cores as possible with the lowest frequencies as possible
such that the selected configuration remains within the given
power budget and the performance is maximized. Although
this heuristic does not consider static power for core selection,
most often the slower cores also have lower static power. A
previous study confirms this correlation using silicon measure-
ments [14]. Hence, this heuristic strives to choose as many low
power cores as possible. The second heuristic, called the MAX
heuristic, chooses as many of the highest frequency cores as

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

Power Threshold (Watts)

0.0

0.5

1.0

1.5

2.0

2.5
N

o
rm

a
liz

e
d
 ∑ I

P
C

Min Heuristic
Max Heuristic
ILP

Fig. 12. Comparison of our ILP-based scheduling approach to simple
heuristics for miniMD.

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

Power Threshold (Watts)

0.0

0.5

1.0

1.5

2.0

2.5

N
o
rm

a
liz

e
d
 ∑ I

P
C

Min Heuristic
Max Heuristic
ILP

Fig. 13. Comparison of our ILP-based scheduling approach to simple
heuristics for Jacobi3D.

possible, while staying within the power budget. In contrast
to the first one, this heuristic therefore most often choose the
highest power consuming cores and probably fewer cores.

Figures 12 and 13 compare our ILP framework to the
heuristics for miniMD and Jacobi3D applications. The bars
represent the average benefits of the different schemes across
100 chips, and are normalized to the MIN heuristic. The
vertical lines on the ILP and the MAX heuristic bars illustrate
the maximum and minimum benefit obtained with the cor-
responding approach across all the chips for the given power
budget. MiniMD’s power caps are lower since it consumes less
power in general compared to Jacobi3D. One can conclude
that MIN and MAX heuristics have similar results, while
intelligent ILP scheduling can be considerably better. ILP finds
configurations that are up to 1.85 times faster for Jacobi3D
and up to 2.5 times faster for miniMD. On average, for all
the cases we examined (various power caps for 100 chips),
ILP scheduling is 25% faster for miniMD and 16% faster for
Jacobi3D as compared to the MIN heuristic.

The results indicate that the benefit of intelligent ILP
scheduling is more with lower power budgets. This is because
with lower power caps (that still allow multiple cores to
be selected), there are more choices. On the other hand, if
the power budget allows many of the cores to be selected,
the different configurations chosen by different schemes have

many overlapping cores and are similar. If there is enough
power, all cores will be chosen by all of them and there is no
other choice for the ILP. One can also see that the benefit of
intelligent ILP scheduling can be much higher for compute-
bound applications such as miniMD, since they are more
sensitive to the frequencies of the chosen cores (as illustrated
in Figure 5).

Table II presents an example scheduling case, demonstrat-
ing that the ILP is choosing cores intelligently and its choices
are different from the heuristics. In this case, the power cap
is 40 W and the schemes strive to find the highest performing
configuration for a 36-core chip running miniMD. The cores
are numbered by their frequencies in increasing order. One can
conclude that ILP is choosing the cores intelligently resulting
in higher performance within the power budget.

TABLE II. EXAMPLE SCHEDULING CASE COMPARING VARIOUS
SCHEMES

Scheme Selected Cores Relative Performance
MIN Heuristic 0, 1, 2, 3, 4, 5, 6 1
MAX Heuristic 31, 32, 33, 34, 35 0.97

ILP 7, 13, 14, 17, 21, 24, 31 1.19

Integer program optimization is an NP-hard problem and
can be computationally very expensive in the worst case, but it
is very fast for our scheduling framework. Our ILP solver took
only 37 ms on average across all the chips and power budgets
we examined. The underlying simplex algorithm performed
only 217 iterations on average across all the nodes of the
branch-and-bound tree for the corresponding ILP. This is
negligible compared to the typical execution time of HPC
applications, which can run for up to several days in many
cases. We used the state-of-the-art Gurobi [23] optimizer for
solving the ILPs.

VIII. RELATED WORK

Process variation has been explored from the manufac-
turing and circuit perspective [1], [24], [25], [26]. Dighe et
al. [14] measured the process variation of Intel TeraFLOPS
experimental chips and studied the optimal operating point
of different applications. We use the valuable insights of
these studies for our assumptions about the properties of the
processor chips.

The proposed Exascale architectures such as Run-
nemede [8] and Echelon [9] consider hundreds of cores
on a chip, which are arranged in many frequency domains
(with power gating). Furthermore, those architectures are over-
provisioned, and need extensive power management to stay
within the power budget [8]. However, previous studies do
not provide scheduling algorithms that meet these constraints.
A framework like ours seems essential for such architectures,
as it provides the necessary runtime component to perform
scheduling and power management depending on the applica-
tion characteristics.

Previous studies have explored scheduling in the presence
of process variation for multiprogrammed environments [3],
[6], [7]. For example, Winter et al. [7] use a Hungarian
optimization algorithm to assign different sequential programs
to the best matching cores. Karpuzcu et al. [3] use heuristics
to map different multithread applications to the many-core

chip’s cores. However, in HPC environments, a single parallel
application almost always runs on the whole chip, and the
previous algorithms cannot be used. Since all the threads of
the application usually have similar behavior, switching threads
among cores is not very useful. In addition, previous [7] work
either ignored the interference of different cores (e.g. memory
bandwidth contention), or assumed that load balancing is not
possible and the parallel application’s speed is determined by
the slowest core [3]. To the best of our knowledge, this is the
first study to propose a variation-aware scheduling approach
for HPC systems.

In their studies on overprovisioned HPC data centers, Sa-
rood et al. [27] and Patki et al. [28], have proposed frameworks
that distribute power to nodes such that the performance is
maximized under a given power budget for the data center.
However, they do not propose how the chosen power budget
for each node will be used for achieving maximum perfor-
mance from the node, which is the focus of this work. The
proposed framework in this paper can be combined with their
frameworks for maximizing the performance of future HPC
data centers with a fixed power budget.

IX. CONCLUSION AND FUTURE WORK

Process variation causes performance and power hetero-
geneity among various cores of a many-core chip. We studied
various performance and power models for such chips. Based
on the models, we developed a novel scheduling framework
that uses integer linear programming (ILP) to explore the
configuration space efficiently. This enables intelligent HPC
runtime systems to enforce different performance and power
constraints and schedule work units effectively. We also il-
lustrated how different constraints, such as communication
performance, can be enforced in our framework.

There are many future research directions based on our
study. More in depth evaluation and analysis of different HPC
applications on heterogeneous chips needs to be performed.
Furthermore, the use of our framework to find different
configurations for different application phases needs to be
studied. In addition, we assumed that tasks of the application
have the same amount of work but this is not always the
case. Variation-aware load balancing of complex applications
that have different workloads in different tasks needs further
exploration. Moreover, the development and evaluation of new
scheduling constraints dependent on the application and system
characteristics requires much research.

REFERENCES

[1] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De,
“Parameter variations and impact on circuits and microarchitecture,” in
Proc. of DAC, 2003.

[2] J. Torrellas, “Extreme-scale computer architecture: Energy efficiency
from the ground up,” in Proc. of DATE, 2014.

[3] U. R. Karpuzcu, A. Sinkar, N. S. Kim, and J. Torrellas, “EnergySmart:
Toward energy-efficient manycores for Near-Threshold Computing,” in
Proc. of HPCA, 2013.

[4] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message-Passing Interface. MIT press, 1999.

[5] B. Lewis and D. J. Berg, Multithreaded Programming with Pthreads.
Prentice-Hall, Inc., 1998.

[6] R. Teodorescu and J. Torrellas, “Variation-aware application scheduling
and power management for chip multiprocessors,” in Proc. of ISCA,
2008.

[7] J. A. Winter, D. H. Albonesi, and C. A. Shoemaker, “Scalable thread
scheduling and global power management for heterogeneous many-core
architectures,” in Proc. of PACT, 2010.

[8] N. Carter et al., “Runnemede: An architecture for ubiquitous high-
performance computing,” in Proc. of HPCA, Feb 2013, pp. 198–209.

[9] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“GPUs and the Future of Parallel Computing,” IEEE Micro, vol. 31,
no. 5, pp. 7–17, 2011.

[10] J. L. Gustafson, “Reevaluating Amdahl’s Law,” Commun. ACM, vol. 31,
no. 5, pp. 532–533, May 1988.

[11] A. B. Downey, “A parallel workload model and its implications for
processor allocation,” Cluster Computing, vol. 1, no. 1, pp. 133–145,
1998.

[12] A. Lastovetsky and R. Reddy, “On performance analysis of heteroge-
neous parallel algorithms,” Parallel Computing, vol. 30, no. 11, pp.
1195 – 1216, 2004.

[13] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through performance impact
estimation (PIE),” in Proc. of ISCA, 2012.

[14] S. Dighe et al., “Within-die variation-aware dynamic-voltage-frequency-
scaling with optimal core allocation and thread hopping for the 80-core
TeraFLOPS processor,” Solid-State Circuits, IEEE Journal of, vol. 46,
no. 1, pp. 184–193, Jan 2011.

[15] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring
the level of abstraction for scalable and accurate parallel multi-core
simulation,” in Proc. of SC, 2011.

[16] U. R. Karpuzcu, K. B. Kolluru, N. S. Kim, and J. Torrellas, “VARIUS-
NTV: A Microarchitectural Model to Capture the Increased Sensitivity
of Manycores to Process Variations at Near-Threshold Voltages,” in
Proc. of DSN, 2012.

[17] S. Li, J.-H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi,
“McPAT: An integrated power, area, and timing modeling framework
for multicore and manycore architectures,” in Proc. of MICRO, 2009.

[18] B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon, E. Mikida, X. Ni,
M. Robson, Y. Sun, E. Totoni, L. Wesolowski, and L. Kale, “Parallel
Programming with Migratable Objects: Charm++ in Practice,” in Proc.
of SC, 2014.

[19] H. Menon and L. Kalé, “A distributed dynamic load balancer for
iterative applications,” in Proc. of SC, 2013.

[20] J. Kang and S. Park, “Algorithms for the variable sized bin packing
problem,” European Journal of Operational Research, vol. 147, no. 2,
pp. 365 – 372, 2003.

[21] Y. Sun, G. Zheng, C. M. E. J. Bohm, T. Jones, L. V. Kalé, and J. C.
Phillips, “Optimizing fine-grained communication in a biomolecular
simulation application on Cray XK6,” in Proc. of SC, 2012.

[22] E. Totoni, J. Torrellas, and L. V. Kale, “Using an adaptive HPC runtime
system to reconfigure the cache hierarchy,” in Proc. of SC, 2014.

[23] “Gurobi Optimization Inc. Software, 2014,” http://www.gurobi.com/.
[24] K. Kuhn, M. Giles, D. Becher, P. Kolar, A. Kornfeld, R. Kotlyar,

S. Ma, A. Maheshwari, and S. Mudanai, “Process technology variation,”
Electron Devices, IEEE Transactions on, vol. 58, no. 8, pp. 2197–2208,
Aug 2011.

[25] S. Borkar, “Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation,” Micro, IEEE,
vol. 25, no. 6, pp. 10–16, Nov 2005.

[26] H. Kaul, M. Anders, S. Hsu, A. Agarwal, R. Krishnamurthy, and
S. Borkar, “Near-threshold voltage (NTV) design: Opportunities and
challenges,” in Proc. of DAC, 2012.

[27] O. Sarood, A. Langer, A. Gupta, and L. V. Kale, “Maximizing Through-
put of a Data Center Under a Strict Power Budget,” in Proc. of SC,
2014.

[28] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and B. R. de Supin-
ski, “Exploring Hardware Overprovisioning in Power-constrained, High
Performance Computing,” in Proc. of ICS, 2013.

