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Abstract—Modern parallel codes are often written as a
collection of several diverse modules. Different programming
languages might be the best or natural fit for each of these
modules or for different libraries that are used together in an
application. For such applications, the restriction of implementing
the entire application in a single parallel language may impact
the application’s performance and programmer’s productivity
negatively.

This paper studies interoperation among parallel languages
that differ with respect to the driver of program execution. We
describe the challenges in enabling interoperation among user-
driven and system-driven languages, and present techniques for
managing important attributes of a program, such as the control
flow, resource sharing, and data sharing, in an interoperable
environment. We also present a generalized framework that en-
ables interoperation between two production languages, MPI and
Charm++. Finally, we study the application of the presented tech-
niques and demonstrate the benefits of interoperation through
several case studies using production codes including CHARM,
EpiSimdemics, NAMD, FFTW, MPI-10 and ParMETIS, executed
on IBM Blue Gene/Q and Cray XE6.

I. INTRODUCTION

The increasing computational power of supercomputers, as
attested by the existence of tens of machines with Petaflop/s
performance, is expected to lead to breakthroughs in science
and engineering. These breakthroughs will come from accurate
predictions arising from faithful modeling of physical phenom-
ena, which in turn will require multi-physics modeling and
coupled simulations. Further, effective use of increased com-
putational power will require more sophisticated techniques
such as dynamic adaptive refinements.

The toolbox of the parallel programmer should also be rich
to manage the complexity of parallel simulations. In particular,
it should include multiple programming languages. For sim-
plicity, we use the term language to refer to all the entities
that provide a mechanism for writing a parallel program —
a communication library, a runtime system, a programming
model or a compiler supported parallel language. Different
languages provide various features that are instrumental in
designing and implementing parallel applications in them.
Most of the existing parallel applications are implemented
in a single language. Hence, they are limited in their ability
to exploit features provided by other languages. As modern

parallel codes get more complex and are implemented as a
collection of several diverse modules, features from different
programming languages might be the best or natural fit for each
of these modules. As a result, the restriction of using only
one language may impact the application’s performance and
programmer’s productivity negatively. Moreover, it is crucial
to be able to reuse parallel software developed in different
languages since it is complex and expensive to develop.

Effectively developing a rich, interoperable toolbox that
allows for seamless mixing of different parallel languages is
fraught with challenges. In this paper, we describe and address
the challenges in enabling interoperation among languages that
differ with respect to the driver of program execution — user-
driven languages, e.g. MPI, where the programmer explicitly
defines the control flow, and system-driven languages, e.g.
Charm++, where a runtime system drives the execution based
on availability of data (described in §II). The most critical
component of enabling interoperation among these languages
is the transfer and management of control flow between
the languages. We present an easy-to-use method that can
be deployed for any pair of user-driven and system-driven
languages (§III).

In an interoperable environment, presence of multiple lan-
guages requires sharing of resources, such as cores, network,
etc. and information, such as application data. Depending on
the application at hand and the physical system being used,
the best method to enable such sharing may also vary. In
8§V & §VI, we describe various techniques for resource and
data sharing, and later summarize our experience on their
suitability to various scenarios (§VIII).

For wide-spread acceptability, it is critical that the methods
for enabling interoperation are both easy-to-use and scalable.
In order to demonstrate these capabilities of the proposed
ideas, we have developed a generalized framework that en-
ables interoperation between MPI and Charm++ (§IV). Using
this framework, we study the application of the proposed
methods and demonstrate the benefits of interoperation using
production parallel codes — CHARM [1], EpiSimdemics [2],
and NAMD [3], and libraries including FFTW [4], MPI-
10, and ParMETIS [5] — executed on thousands of cores
of IBM Blue Gene/Q and Cray XE6 (§VII, summarized in
Table II). These examples establish the utility of interoperation



in eliminating performance bottlenecks in the applications with
minimal effort. At the same time, they demonstrate how inter-
operation leads to code reuse and eases programmers’ burden
by allowing them to use features that match the requirements
of the individual application modules.

II. BACKGROUND

We divide languages into two sets for the purposes of this
work: user-driven and system-driven. A language is considered
user-driven if the program control flow is explicitly defined
by the programmer. Data exchanges among processes are
predetermined and the execution is defined as a single flow of
control. MPI [6], UPC [7], and High Performance Fortran [§]
are examples of user-driven languages; exceptions such as
MPI_ANY_* exist, wherein the programmer delegates the
ordering to the system, but are discouraged.

In a system-driven language, a runtime system (RTS)
decides what computation to execute next, typically selecting
one from many potential computations. This execution model
allows for many concurrent control flows with progress driven
by the availability of data (data-driven execution) and system’s
preferences. Charm++ [9], X10 [10], and HPX [11] are exam-
ples of system-driven languages.

In this paper, we focus on MPI and Charm++ as con-
crete instances of user-driven and system-driven languages
respectively. Table I lists some of the features provided by
them and their ease-of-use. MPI provides support for impor-
tant features such as expression of global control flow and
global communication. However, it may not be ideal for a
dynamic, data-dependent control flow due to limited support
for load balancing and handling message-driven interactions.
Significant changes are required to provide such support in
MPI [12], [13].

TABLE 1. DIFFERENT FEATURES AND THEIR RELATIVE EASE-OF-USE
IN THE CONTEXT OF MPI AND CHARM++ AS REPRESENTATIVES OF
USER-DRIVEN AND SYSTEM-DRIVEN PARADIGMS RESPECTIVELY.

Language Feature MPI [6] Charm++ [9]
User-driven ~ System-driven

Express Global Control Flow Easy Hard

Message-driven Interaction Hard Easy

One-sided Interaction Hard Easy

Global Communication Easy Hard

Exploit Comm.-Comp. Overlap Hard Easy

Concurrency Management Easy Hard

Load Balancing Hard Easy

Existing Libraries Many Few

In contrast to MPI, a system-driven language such as
Charm++ can effectively adapt to dynamic environments due
to its powerful RTS that enables automatic load balancing
and message-driven interactions. However, the inability to
express global control flow and difficulty in performing global
communication limits its use in various scenarios.

Similar conclusions about the benefits and limitations of
other languages can be made. One can imagine a scenario
where a perfect language is designed which is both user-driven
and system-driven, and supports all the features. However, a
more likely end-point is a rich ecosystem of diverse languages
whose interoperation is required to create a powerful toolbox
for the parallel programmer.

A. Related Work

In parallel computing, interoperation was initially explored
by Harper who developed a library that allowed programs
written for version 3 of Parallel Virtual Machine (PVM [14])
to execute in the Legion environment. A runtime library, Meta-
Chaos, was developed to enable data exchange between data
parallel programs written using High Performance Fortran,
Chaos, Multiblock Parti libraries and pC++ [15]. Kale et
al. [16] proposed and demonstrated the use of a common
runtime framework (Converse) for interoperation of various
parallel programming languages such as MPI [6], PVM [14]
and Charm++ [9].

More recently, STAPL [17] has provided a methodology
that enables third party libraries to be used with it. In terms
of languages, hybrid use of MPI [6] and OpenMP [18] has re-
ceived significant attention and has been widely adopted [19],
[20]. Use of MPI in Unified Parallel C [7] programs, where
MPI is available as an additional communication interface,
has also been explored [21]. Efforts have also been made by
MPI implementors to facilitate interoperation and support other
languages. Zhao et al. [13] present an extension to MPI which
supports asynchronous active messages that may overlap with
other communication in MPI applications. Dinan et al. [22]
have proposed adding flexible communication end-points to
MPI to relax the one-to-one relation between processes and
MPI ranks.

The research in this paper differs from previous work in
several aspects. We demonstrate the interoperation of lan-
guages that control parallelism for the entire machine (intra-
node and inter-node) and have very different control flows —
one is user-driven and the other is system-driven. We also
focus on the capability to reuse existing code written in diverse
languages. These have not been attempted before. In addition,
we describe and implement multiple schemes for resource
sharing in a generalized framework for MPI and Charm++.

III. INTEROPERATION: THE CHALLENGE AND SOLUTION

The simultaneous use of multiple languages for writing
a parallel program raises several interesting questions about
managing different aspects of the program. Among these, man-
agement and transfer of control between different language
modules is critical, even more so when the languages differ
with respect to the driver of program execution. In this section,
we try to find answers for the following important questions:
1) How many control flows should be used to execute different
language modules?, 2) How should the control be transferred
from one language module to another?, and 3) How frequently
should the control be transferred?

When interoperating between two languages of the same
kind (user-driven or system-driven), transfer of control from
one language to another is simple. If the two languages are
user-driven, e.g. MPI and UPC, the user explicitly drives the
program with the control being returned to him after every
system-invocation [21]. For the case of two interoperating
system-driven languages, the availability of data drives the
modules written in those languages (either the two languages
will share the same RTS or the two RTSs will coordinate).

In contrast, if one language is user-driven and the other is
system-driven, there is no obvious solution. If the execution
begins in the user-driven language module, there exists no



mechanism to progress the system-driven language module
because the RTS is typically hidden from the user. Similarly, if
the execution begins in the system-driven module, there exists
no mechanism to transfer the control to the user-driven module
because typically the RTS does not support yielding control to
the user.

One possible solution is to avoid the need for transfer of
control by using concurrent flows. In this method, the user-
driven and system-driven language modules are executed in
their own home threads. Thus, these modules make progress
when their home threads are scheduled. While this scheme is
simple and easy to use, it may lead to significant performance
problems. First, the overhead of scheduling threads can impact
performance negatively. Second, a default time-sharing based
scheduling of the threads on processors may result in signifi-
cant idle time. While a module in one language wastes cycles
busy-waiting for data, the modules that could have used these
cycles will have to wait for their turn. Third, although the
performance degradation caused due to busy-waiting can be
addressed by an idle module voluntarily yielding control, im-
plementing this can require significant effort. Such a solution
is feasible only if extensive changes are made to the existing
implementations of production languages such as MPI and
Charm++. Finally, the presence of concurrent flows is likely
to cause cache pollution and branch mispredictions leading to
degraded performance.

In light of the drawbacks of the approach presented above,
we propose an alternate solution that executes the different
modules in a single control flow. This is made feasible by
exposing the scheduler of the system-driven language and em-
powering the user to control it. In this approach, the execution
of a program begins in a user-driven language module wherein
the semantics of the user-driven language are followed. When
required, the exposed scheduler of the system-driven language
is activated. From this point, the execution is driven by the
RTS following the semantics of the system-driven language.
At a later time, the scheduler is explicitly deactivated and the
control is returned back to the user-driven module as shown
in Figure 1 for MPI and Charm++. Following it, the user-
driven module may again activate the scheduler of the system-
driven language, and hence repeat the cycle. This approach
eliminates the major disadvantages of the former approach —
no thread scheduling overheads and minimal busy-waiting if
implemented correctly. Although, this approach empowers the
users significantly, it also increases their burden by demanding
explicit control transfer.

Explicit transfer of control by the user leads to another
important question — how frequently should the control be
transferred? If an application is written using two user-driven
languages, say MPI and UPC, the programmer is encouraged
to make a fine-grained selection between MPI and UPC calls,
i.e. for every communication operation, select between MPI
or UPC calls [21]. However, a frequent transfer of control
between the user and the system in a program may have
negative impact on productivity and performance. Since the
availability of data drives the execution in a system-driven
language, the user will have to consider all possible orderings
for it to exchange the control with a user-driven language
safely. This may be significantly more demanding if the control
is transferred frequently and may result in deadlocks. At the
same time, performance degradation may be observed since
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Transfer of control between MPI and Charm++ using an exposed

every process is now cycling through the modules in different
languages frequently. A mismatch in the modules executed
by different processes may block one or the other leading to
idle time. Finally, given the differences in semantics of these
languages, it may also be difficult to verify the correctness of
a program in such scenarios.

The disadvantages of frequent control transfer listed in the
previous paragraph suggest that the control is best transferred
between a user-driven and a system-driven language module
infrequently to maintain ease of use and simplicity. More
importantly, coarse grained control transfer allows for reuse of
independent modules/libraries as one unit without significant
modifications. The major drawback is the inability to make
progress simultaneously in different modules.

IV. THE CHARM++/MPI INTEROPERATION FRAMEWORK

Based on the discussion in Section III, we have developed
a generalized framework that enables interoperation between
a user-driven language, MPI, and a system-driven language,
Charm++. Enabling interoperation using this framework does
not require any changes to the MPI implementation being
used. A new API has been added to Charm++ that exposes
its scheduler to the user.

A. Enabling Interoperation

In general, in order to prepare a language for interopera-
tion using our framework, a language should implement the
following constructs to:

e Initialize: given a set of processes, perform setup such
as identify rank space, initialize low-level communi-
cation substrate, etc. to create a language instance.

o Execute: make progress in the given instance follow-
ing the semantics of the associated language.

e Transfer: stop execution in this instance in order to
transfer control to another instance.

e  Clean up: destroy the language instance.

For MPI, all of these constructs already exist in its standard.
Along with MPI_Init, creation of a sub-communicator is
sufficient to perform the initialization. Execute and transfer
constructs are implicitly available since every MPI call returns
the control back to the user after it is complete. Freeing the



communicator and MPI_Finalize perform the necessary
clean up.

For Charm++, a new API has been added to perform these
tasks. CharmLibInit initializes a Charm++ instance for a
given set of processes. In order to execute a Charm++ module,
one should invoke StartCharmScheduler that transfers
the control to the Charm++ RTS. The scheduler can be stopped
either on a single processor using StopCharmScheduler
or collectively on all processes by calling ckExit. Finally,
the clean up is performed by invoking CharmLibExit.

B. Writing Interoperable MPI-Charm++ Programs

For a programmer, interoperation between independent
MPI and Charm++ modules requires minor modifications to
both the modules. Other than including the necessary headers,
following is a list of all the required additional tasks a module
must perform:

Common Tasks: Initialize MPI, create sub-communicator(s),
initialize Charm++ instance(s), destroy Charm++ instance(s),
free sub-communicator(s), finalize MPL.

MPI module: Provide an interface function callable from
Charm++ (a C/C++ function); to transfer control to Charm++
modules, call interface function provided by the Charm++
modules.

Charm++ module: Provide an interface function callable from
MPI — this interface function should initiate start up messages
to the module and activate Charm++ RTS; to transfer control
to MPI modules, call interface function provided by the MPI
modules.

The code snippet below shows an MPI program with all the
changes required to interoperate with a Charm++ module. As
usual, execution begins in main and MPI_Init is invoked
first. After that, the processes are divided into two sets by
creating sub-communicators. One set of processes continues
with MPI work while Charm++ is initialized on the other. This
second set of processes invokes the Charm++ module and on
return, the Charm++ instance is destroyed. If needed, control
can be transferred back and forth multiple times between MPI
and Charm++ modules before the instance is destroyed.

we have modified this aspect of Charm++. When using a
Charm++ module for interoperation, execution in Charm++
begins only when it is invoked explicitly by initiating a
message to one of its objects and starting the Charm++ RTS
using StartCharmScheduler. In the code snippet below,
HiStart is an interface function that performs these tasks.
On processor 0, a message is initiated to the mainHi object
after which all processes activate the Charm++ RTS. In this
simple example, when the RTS receives this message and
schedules it, calling ckExit collectively stops the scheduler
on all processes, thus returning the control to the interface
function.

#include "mpi-interoperate.h"

// function invoked from MPI
// marks the begining of Charm++
void HiStart (int elems) {
if (CkMyPe () == 0) {
mainHi.StartHi (elems);
}
StartCharmScheduler () ;
}

// Charm++ function that deactivates scheduler
void MainHi::StartHi (int elems) ({

ckExit ();
}

#include "mpi-interoperate.h"

int main(int argc, char xxargv) {

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &myrank);

MPI_Comm_split (MPI_COMM_WORLD, myrank%2, myrank, &

newComm) ;

if (myrank % 2) {
// Create Charm++ instance on subset of processes
CharmLibInit (newComm, argc, argv);
HiStart (16); // Call Charm++ library
CharmLibExit (); // Destroy Charm++ instance

} else {
// MPI work on rest of the processes

}

MPI_Finalize();

A standalone Charm++ program begins execution in the
constructor of a special C++ object called mainchare and exits
the program by calling ckExit. To enable interoperation,

V. SHARING RESOURCES AND DATA

In an interoperable environment, the presence of different
modules requires explicit coordination of certain aspects that
are otherwise handled by the language implementations. We
focus on two such important issues — 1) How are resources
shared?, and 2) How is data shared? between modules written
in different languages.

A. Resource Sharing

Execution of multiple modules written in different lan-
guages on the same physical resources is only possible through
the sharing of hardware such as cores, the memory subsys-
tem and the network. These resources can be allocated to
individual modules either explicitly by the programmer, or
implicitly by a framework based on the preferences expressed
in the application. Figure 2 presents three schemes provided in
our framework for sharing resources — time division, space
division and hybrid division.

Language | N | anguage 2
(1) ] | I . | ]
(2) | L 1 1 1 | | |
P(n-1) ] |
P(n) | L
Time >

(2) Time Division (b) Space Division (c) Hybrid Division

Fig. 2. Schemes for sharing resources between languages in an interoperable
environment.

Time Division: During the execution of an application on a
system, if all the processes switch from one language module
to another synchronously, we refer to this way of interoperation
as time division. As depicted in Figure 2(a), the execution of
an application begins in one of the languages. At some point in




the execution, all the processes switch to executing a module
written in another language. Such an exchange may happen
multiple times before the application exits. This method of
interoperation is useful for applications that have an ordering
among the tasks to be executed in different language modules.

Space Division: Instead of time slicing the resources, if
subsets of processes are assigned to different languages for
the entire duration of program execution, it is referred to
as a space-based division of resources. Figure 2(b) shows
this scenario in which modules written in one language run
on some of the processes, while modules written in other
languages run on the rest. Space division is useful for making
simultaneous progress in modules that are loosely connected
to one another.

Hybrid Division: Combination of time division and space
division provides a hybrid method of resource sharing. In
this scheme, a subset of processes execute modules written
in different languages during an execution. Different subsets
may execute different modules independently of other subsets.
For example, in Figure 2(c), a subset of processes transfer
control among modules written in two languages, while an-
other subset executes modules written in only one language.
A hybrid model of interoperation can be particularly useful in
applications that require different subsets to perform different
tasks during application execution.

Simultaneous use of low-level resources such as network
FIFOs and links by multiple high-level language clients may
require a customized solution for each type of hardware. In
Section VI, we describe the mechanisms used on machines
such as IBM Blue Gene/Q and Cray XE6 to divide low-level
resources among the languages.

B. Data Sharing

Modules implemented in different programming languages
may need to exchange data during program execution. Unlike
programs written in a single language, it is not possible
to invoke regular communication mechanisms, e.g. it is not
possible to invoke an MPI_Send for sending data from an
MPI module to a Charm++ module. To solve these problems,
the following methods are supported for exchanging data
among different modules in the presented framework.

Pointer-based Data Sharing: This method is based on ex-
changing data by explicitly passing memory pointers. Let us
consider two processes, P/ and P2, executing two modules,
A and B, written in different languages (Figure 3). If data is
to be transferred between modules within a process, say from
P1-A to PI-B, it can be exchanged via use of reserved memory
space. PI-A copies the data to a predefined memory space, and
thereafter P/-B accesses it.

This approach can be extended to communicate data to a
different module on a different process in two steps, say from
PI-A to P2-B. Using Path I, PI-A on PI first communicates
data to P2-A on P2, and then to destination P2-B — transfer
across processes first and then to the destination module.
Alternatively, using Path 2, data can be sent to module P/-B on
the source process first, and then transferred to the destination
process, P2.

Process 1 Process 2
>
Path 2
Shared A
Memory
P1-A
| Path 1 |

Fig. 3. Pointer-based Data Sharing.

It is obvious that this mechanism puts the entire burden of
data exchange on the programmer. In addition to implementing
the code responsible for data transfer, the programmer is
also responsible for ensuring correctness and avoiding race
conditions. However, this scheme is very flexible, and is often
the best option if few data exchanges are performed.

Data Transfer Repository: Alternatively, a generic data trans-
fer repository can be used for intra-process and inter-process
communication. An API is used for depositing and retrieving
data to and from the local client modules in various languages
(a pull model). Under the hood, the data transfer repository
communicates with its counterparts on other processes to
service the requests.

Development of a data transfer repository increases pro-
ductivity as it leads to code reuse and relieves the end user
from the burden. It also allows for implementing more complex
schemes for data exchange that may be used by a wide range
of applications. For example, in addition to data exchange via
deposition and retrieval based on source and destination, data
can be elevated to being named entities and be universally
accessible (as is done by PGAS languages [7]).

C. Rank Mapping

Dinan et al. [21], [22] have provided various alternatives
for managing the rank space between interoperable MPI and
UPC modules. We believe that the flar and nested models
proposed by them are adequate for interoperation between
user-driven and system-driven languages. We will refer to their
flat model as a one-to-one mapping — for every rank in one
module, a corresponding rank exists in other modules on the
same process. The nested model can be seen as a one-fo-
many mapping — for every rank in one module, multiple ranks
exist in other modules on the same process. However, in the
presence of space division of processes, the rank mapping
is neither one-to-one nor one-to many. If ranks for certain
modules are not available on certain processes, we refer to
this mapping as one-to-none or many-to-none.

VI. IMPLEMENTATION DETAILS

In this section, we provide details of how low-level re-
sources are used and shared between different modules in the
Charm++/MPI interoperation framework.

A. Communication Substrate

Inter-process communication in most languages is imple-
mented using a low-level communication API exposed by the
machine, e.g. PAMI and uGNI on IBM Blue Gene/Q and Cray
XE6 respectively. The presence of multiple modules requires
that the communication started by any one of them be delivered



to the intended receiver module at the destination. We use
distinct communication domains for each module in the low-
level API to ensure this property.

For uGNI, a domain is created by GNI_CdmCreate,
which enables interoperation on Cray machines such as Cray
XE6 (Blue Waters, Titan) and Cray XC30 (Edison). When us-
ing PAMI, on IBM Blue Gene/Q (Sequoia, Mira), communica-
tion is isolated by creating a distinct communication client for
each module using PAMI_Client_create. Alternatively
on Blue Gene/Q, it is possible to register distinct dispatch IDs
with a common communication client for different modules.
This approach may be better since it avoids a static division
of resources among the clients. However, we use the former
approach in our framework due to the unavailability of the
client created by MPI outside of it.

An interesting alternative, which has also been imple-
mented, is to use MPI as the communication substrate for
Charm++ modules. It enables interoperation between MPI
and Charm++ on any system that supports MPI. A potential
disadvantage of this approach is the lower performance of
Charm++ built on top of MPI in comparison to a low-level
communication APIL.

B. Resource Sharing

The three resource sharing schemes described in Sec-
tion V-A are implemented by means of MPI communica-
tors. The user splits the given set of processes into sub-
communicators that should execute various modules. The sub-
communicator is passed to Charm++ as an argument during
its initialization. If Charm++ is built on top of MPI, the
sub-communicator is passed directly as an argument in the
communication calls, thus dividing the set of processes and
their communication in a manner that most MPI programmers
are familiar with. If Charm++ is not built on top of MPI, the
RTS uses this information to find the set of processes on which
the given Charm++ instance should be initialized.

C. Data Repository

The data repository for exchange of data has been im-
plemented as a C++ module, which uses Charm++ in the
background for communication. To keep things simple, the
current interface to the data repository is not generic, but
is customized based on the application needs. As a result,
depending on the application being used, the data repository
stores data of one type or the other. Work on fully generalizing
the data repository (using templates and related concepts) is
under progress.

D. Multi-threading

Unlike MPI, Charm++ can also be built in a shared memory
mode. In this setup, the RTS launches only one Charm++
process for each multi-socket compute node. The RTS spawns
multiple threads within that process, which share the memory
and a communication thread. In MPI, similar shared memory
optimizations are typically enabled via use of OpenMP [18].
Currently, our framework supports interoperation only if both
MPI and Charm++ are being used in similar modes, i.e. if
MPI has one rank per compute node, Charm++ will also have
one process per compute node. In this scenario, both MPI and
Charm-++ spawn threads of their own to enable shared memory
based optimizations.

VII. APPLICATION STUDIES

An important goal of this study is to explore the benefits
of multi-language interoperation in the context of production
parallel codes. This section examines the interoperation of
MPI, Charm++, and OpenMP using many production codes,
and demonstrates the productivity and performance benefits
derived from their synergistic existence.

A. CHARM and HistSort

Our first example demonstrates the use of a parallel sorting
library, HistSort [23], written in Charm++, in a production
cosmological and astrophysical code called CHARM [1] (not
to be confused with Charm++). CHARM is implemented
on top of the Chombo framework [24] which is written in
MPI. Use of HistSort in CHARM eliminates a performance
bottleneck in the code that arises from a critical global sort
operation, and hence enables CHARM to scale to large core
counts.

CHARM, and cosmology codes in general, have very non-
uniform particle distributions. Load balance and data locality
of the particles, with respect to the mesh, are of critical impor-
tance for the performance of such particle in cell (PIC) codes.
To optimize load balance and data locality (and hence optimize
particle-mesh interactions), CHARM takes the approach of
periodically sorting particles with a space-filling curve index.
Hence, this global sort of particles is a critical component
of this algorithm but has been a scalability bottleneck in its
current implementation.

Benefits: Charm++ is a suitable candidate for performing an
operation such as sorting because of the features it provides
(Table I): message-driven interaction and ease of exploiting
communication-computation overlap. Moreover, a highly scal-
able histogram-based sorting library, HistSort, already exists in
Charm++ [23]. The HistSort library in Charm++ overlaps the
search for global splitters with the sorting of input data local to
each process. The splitters are based on a global histogram and
are used to determine the final destination of the input data. As
the splitters are determined, each process sends the sorted local
data to their respective destinations asynchronously, thereby
exploiting Charm++’s ability to handle unexpected messages.

Resource Sharing: The global sorting in CHARM needs to be
performed in every iteration before the computation of particle-
mesh interactions can proceed. This dependency suggests that
a time division of the resources between HistSort (Charm++)
and CHARM (MPI) with one-to-one rank mapping would be
ideal.

Data Sharing: The data is explicitly transferred between
CHARM and HistSort using local memory pointers. These
pointers are passed between the modules when the MPI code
invokes HistSort through a simple C++ function call. This
is possible because CHARM stores the data in a distributed
manner that matches the input/output of HistSort.

Figure 4 shows all the changes that were made to make
Charm++’s HistSort an interoperable library callable from any
MPI program, and its use in CHARM. The interface function
shown in Figure 4 (right) performs the actions described in
Section IV-B — initiate a message to the main object and
activate Charm++ RTS. CHARM uses HistSort by invoking



/+ CHARM code that prepares the input =/

195 lines of Multi-way Merge sort in MPI
/# Computation code in CHARM+*/

CHARM code flow with Multi-way Merge Sort

/+ CHARM code that prepares the input =/

// call to HistSort

HistSorting<key_type, std::pair<partType,
char [MAX_PART_SZ]>>(loc_s_len, dataln,
&loc_r_len, &dataOut);

/# Computation code in CHARM+*/

CHARM code flow with Charm++’s HistSort

// interface function for HistSort
template <class key, class value>
void HistSorting(int input_elems_, kv_pair<key,

value>* dataIn_, int » output_elems_, kv_pair<
key, value>x* dataOut_) {

// store parameters to global locations

dataIn = (voidx)dataln_;

dataOut = (wvoidxx)dataOut_;

in_elems = input_elems_;

out_elems = output_elems_;

// initiate message to main object

if (CkMyPe () == 0) {

static CProxy_Main<key,value> mainProxy =
CProxy_Main<key, value>: :ckNew (CkNumPes ()) ;
mainProxy.DataReady () ;

}
StartCharmScheduler () ;

Fig. 4.
called from any MPI program.
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Fig. 5. CHARM using Charm++’s histogram sorting: scaling bottleneck

caused due to sorting can be resolved using Charm++’s sorting library.

the interface function instead of the default Multiway-merge
Sort implementation as shown in Figure 4 (left).

Figure 5 compares the performance of HistSort with
Multiway-merge Sort. The plot shows the global sorting time
for a strong-scaling experiment with 131,884,914 keys (72
bytes of data attached to each key) executed on Hopper, a Cray
XE6. HistSort, written in Charm++, outperforms the MPI-
based Multiway-merge Sort for large core counts (48x speed
up on 16,384 cores). While the performance of Multiway-
merge Sort gets worse, HistSort’s performance improves sig-
nificantly with increasing core count. The improvement in
performance resolves the scaling bottleneck of CHARM due
to sorting. In addition, replacing the sorting code in CHARM
with a call to HistSort reduces the source lines of code (SLOC)
by 195.

B. EpiSimdemics and MPI-I0

This second case study shows the coupling of the MPI-IO
library [6] with a contagion simulation code called EpiSim-
demics [2], implemented in Charm++. Use of MPI-IO enables
generation of output data at scale, enables fast writing to a
single file, and helps alleviate the performance bottleneck in
EpiSimdemics caused by I/O operations.

(left) Modifications required to transfer control from CHARM to Charm++’s HistSort; (right) The interface function for HistSort library that can be

EpiSimdemics is an agent-based simulator used to study
the spread of contagious diseases over social contact networks.
EpiSimdemics requires three types of input files. The person
file and the location file contain the attributes of each person
and each location respectively. The schedule file contains a list
of edges, where an edge represents the visit of a person to a
location. The sizes of these files for the entire US population
are 2.1 GB, 1 GB, and 28 GB respectively.

Among the many output files of EpiSimdemics, the disease
and dendogram files are of large sizes. The disease file records
the time of every health state transition for the people. The
dendogram file records the information related to every disease
transmission event. For our simulation setup, the former is 7.7
GB and the latter is 5.5 GB in binary format. These two files, in
addition to the one recording the summary of global simulation
states, allow the scientists to understand the simulation results
in detail.

Given the large input files, the use of sequential input
is a performance bottleneck in EpiSimdemics. It impacts the
performance in two ways - time taken to read the data on one
process and time spent in a scatter operation from that process
to distribute data among all processes. Performance tests using
sequential input showed that while the actual simulation may
complete in tens of minutes, the setup including the input takes
approximately an hour!

EpiSimdemics has a custom application-specific parallel
output scheme in which the output is written by all processes
to distinct files. This scheme improves the performance but
requires post-processing of data before it is used for any
analysis. Also, due to a limitation on the number of file
descriptors per job on Blue Gene/Q, this output scheme is not
feasible at scale. A possible solution is to implement an ad-
hoc scheme to collect data on a limited number of processes,
and perform writing from these designated processes. Instead,
we propose the use of MPI-IO enabled by the interoperation
of Charm++ with MPL

Benefits: Included in the MPI standard, MPI-IO defines an
API for parallel I/O. Most vendors provide a high-performance
implementation of MPI-IO, making it a portable solution
expected to deliver good performance on high-end parallel
computers. Scalable performance of MPI collectives helps
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descriptors as each node writes to individual files.

improve performance of these implementations. The use of
MPI collectives also helps in performing efficient global com-
munication required for orchestrating writes to the same file
in EpiSimdemics.

Resource Sharing: Input in EpiSimdemics is read once by
all processes at program startup. The output is produced
incrementally by processes in every iteration, hence periodic
flushing is required. This suggests a hybrid division of re-
sources to interoperate EpiSimdemics with MPI-IO. A set of
processes switch from Charm++ to MPI, once at program
startup to perform input and periodically for output. The rank
mapping is many-to-one as Charm++ uses threads for optimal
performance.

Data Sharing: Data is transferred between MPI and Charm++
during input and output through a data transfer repository.
When the input data is read by MPI tasks, it is deposited
locally for retrieval by the corresponding Charm++ tasks.
For the output, data is first buffered on some processes that
maintain the data repository. Every few iterations, the control
is transferred on these processes to MPI, which retrieve the
data and perform a collective write to a single file.

The productivity benefits of using MPI-IO are obvious —
reimplementation of a parallel I/O library is avoided, and all
output data is obtained as a single file which eliminates the
post processing step. In Figure 6, we compare the performance
obtained using MPI-IO and EpiSimdemics’ default schemes.
Figure 6 (left) shows that the total input time is reduced
significantly from 4,086.56 seconds to 17.34 seconds using
MPI-1IO. On 262,144 cores, the time spent in the input phase
is only 4.77 seconds. The location file follows similar trends
as the person file.

Figure 6 (right) compares the sum of the simulation time
and output time when using MPI-IO with EpiSimdemics’
custom scheme that outputs to multiple files. Note that this
time does not include the time spent in reading input files. At
small scales, the performance of the two versions is similar.
At 65,536 cores, use of MPI-IO improves the performance of
the application by 10% in comparison to the custom scheme.
Beyond this, use of the custom parallel-IO scheme is not
feasible given the restriction on the number of file descriptors
per job. However, the use of MPI-IO enables us to execute the
application at very large scales with output being obtained as
desired.

Time spent in simulation + output on Blue Gene/Q
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EpiSimdemics using MPI-IO: use of MPI-IO library enables faster execution with writes to a single file. At scale, the Custom I/O runs out of file

C. NAMD and Parallel FFTW

NAMD [3] is a parallel molecular dynamics code, written
in Charm++, and designed for high-performance simulations
of large biomolecular systems. NAMD uses a fast Fourier
transform (FFT) calculation over a charge grid to approx-
imate long-range force calculations. This three-dimensional
transform is broken down into one-dimensional FFTs (that
use serial FFTW [4]) with transposes in between. Through
this example, we demonstrate the replacement of a custom
implementation of a parallel 3D FFT in NAMD with a standard
parallel library.

Features: Many parallel FFT libraries exist, e.g. FFTW and
ESSL; most of them are written using MPIL. It is desirable
from a productivity standpoint that NAMD utilizes one of
these libraries, and thus benefit from reduced workload in
code development and maintenance. Moreover, vendors often
provide highly optimized implementations of FFT algorithms.
Use of these versions, provided by the vendors, may also
improve performance.

Resource Sharing: During one iteration of NAMD, short-
range forces and long-range forces can be computed in parallel.
A space division of the resources can enable the progress of
both modules in parallel. Hence, the Charm++ tasks calculate
the short-range forces while the MPI tasks perform a parallel
FFT for long-range forces. As stated earlier, the rank mapping
for space-division is one-to-none.

Data Sharing: Data is communicated using a dedicated data
transfer repository. The Charm++ tasks that produce the charge
grid deposit their data with this repository and on receiving the
data, the repository triggers the execution of a parallel FFT in
MPI.

The changes required to replace NAMD’s FFT code with
parallel FFTW call are minimal and similar to the changes
made in the CHARM/HistSort example (§VII-A). Replacing
the parallel FFT code in NAMD reduces the source lines of
code (SLOC) by 280. More importantly, use of a well-known,
actively-developed, third-party library relieves the NAMD de-
velopers from the additional task of maintaining the FFT
library. It also ensures that any improvements made to FFTW
(or any other FFT library that can be used instead of FFTW)
will be available to NAMD without any extra effort.

Figure 7 presents the time step comparison between NAMD
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Fig. 8. Load balancing Charm++ applications using ParMETIS: kNeighbor is communication intensive, and benefits significantly from a global graph partitioning
enabled by use of ParMETIS. LeanMD is compute intensive and uses OpenMP to further parallelize its computation.
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Fig. 7. NAMD with Parallel FFTW

using its highly optimized FFT implementation and that using
parallel FFTW. These runs on Blue Gene/Q use the ApoAl
dataset. It can be seen that the two versions of NAMD have
similar performance. Thus, the use of a generic FFT library
in NAMD provides similar performance, but leads to the
productivity benefits listed above.

D. Charm++ codes and ParMETIS and OpenMP

Our final example demonstrates the use of ParMETIS [5]
to enable parallel graph partitioning in the automatic load bal-
ancing framework of Charm++. Measurement-based strategies
in Charm++ instrument the application (computational load
and communication graph) for a brief period of time, and use
the instrumented data to redistribute the objects to balance the
load. In addition to the built-in strategies, end-users can easily
integrate new strategies specific to their applications. This
provides a great opportunity for using external MPI libraries
for load balancing if interoperation is possible. ParMETIS [5],
and Trilinos [12] are examples of such libraries.

Resource Sharing: Most iterative Charm++ applications use
periodic load balancing. In this mode, all objects in the
application invoke the load balancer periodically (every n
iterations) where by the control is transferred to the load
balancing framework. Once load balancing is completed, the
objects resume execution. This barrier-style load balancing
makes it an ideal candidate to use the time division of resources

between Charm++ applications and the MPI-based ParMETIS
library. Rank mapping is either one-to-one or many-to-one
depending on Charm++’s use of threads.

Data Sharing: Data is shared between the load balancing
framework in Charm++ and ParMETIS through pointers when
calls are made to the ParMETIS library. This is feasible since
Charm++ stores the load balancing database in a distributed
manner.

We use two Charm++ programs, LeanMD and kNeighbor
to demonstrate the performance benefits of using ParMETIS.
LeanMD is a proxy application for NAMD that calculates the
Lennard-Jones potential for a molecular system. kNeighbor is
a communication-intensive benchmark where each Charm++
object exchanges 256 KB messages with 14 other objects in
each iteration. Imbalanced computational load is also associ-
ated with these programs.

Figure 8 (left) presents the performance improvement in
the time per step of kNeighbor from using ParMetisLB, a
ParMETIS-based load balancer in Charm++. The time per step
is reduced to one-third or one-fourth (66%-75% improvement)
of the time per step obtained when no load balancing is
performed. ParMetisLB does much better than RefineLLB, an
existing strategy in Charm++ that aims at balancing computa-
tional load only. The time spent in load balancing is similar
for both ParMetisLB and RefineL.B.

In contrast to kNeighbor, LeanMD is a computation-
intensive benchmark. It uses OpenMP to parallelize parts of
code that perform force calculations among particles. Hence,
minimizing the edge cut in a partitioned communication graph
is not optimal for this benchmark. In this case, we do not
provide edge weights to ParMetisLB, and hence the graph
partitioner tries to balance the vertex weights among par-
titions (processes). Figure 8 (right) shows the performance
benefits of using ParMetisLB. Use of ParMETIS for balancing
load reduces the time per step by 30% to 40%. Charm++’s
computation aware strategy, RefineLB, also obtains similar
performance.

VIII. LESSONS LEARNED

Our experience with interoperation for various production
applications in the previous section has helped us formulate
some basic guidelines for selecting the right technique for



TABLE IL

PRODUCTIVITY AND PERFORMANCE BENEFITS FOR THE APPLICATION STUDIES PRESENTED IN THIS PAPER.

Application Library Productivity Performance
CHARM HistSort Efficient sorting requires support for asynchronous 48x speed up in sorting; Removes scaling bottleneck.
and unexpected messages — a feature provided by
Charm++; Reuse of Charm++’s HistSort.
EpiSimdemics MPI-IO EpiSimdemics I/O is a synchronous operation that 256x input speed up; Enables output at scale.
can be implemented efficiently using MPI collectives;
Enabled organized output to a single file (avoids post
processing); Reuse of a standard library, MPI-IO,
implemented by vendors.
NAMD FFTW Offloads development of the critical FFT component  Similar performance.
to experts; Reuse of FFTW library.
kNeighbor ParMETIS Enables parallel graph partitioning based load bal- Better time per step for applications: 30-40% better
LeanMD ancing in Charm++; Reuse of ParMETIS. for LeanMD; 66-75% better for kNeighbor.

sharing resources and data in various scenarios. When deciding
on the best strategy to share resources, it is important to
understand various phases and modules in an application. If the
modules that need to be implemented in different programming
languages are clearly demarcated by phases in time, then time
division of the resources is advisable. This is often the case
when there is an input-output sort of data dependency across
different phases. When the application has modules that can
proceed in parallel, a space division of resources can help
overlap the progress in these modules. In any other situation,
either time or space division can be used in different phases of
the application, referred to as a hybrid division of resources.

The sharing of data depends on how various modules that
have to interoperate have been implemented. If the data to
be exchanged between the modules is already local to each
process where it is required, then pointer-based sharing is
straightforward. In most other cases, the user has to develop
a scheme or set up a data transfer repository for exchange of
data across modules.

A. Conclusion

The use of multiple programming languages is necessary
to match the complexity of modern applications that consist
of diverse software modules. Each module could be written
in a programming language that is most suited to the feature
requirements of that module, independent of the language
choices for other modules. Moreover, code reuse should not
be limited by the choice of the implementation language.

In this paper, we have presented an easy to use scal-
able method to enable interoperation among user-driven and
system-driven languages. For a generalized framework, we
have proposed and implemented multiple schemes for man-
aging important attributes of programs in an interoperation
environment. Productivity and performance benefits of inter-
operation using production applications and libraries imple-
mented in MPI and Charm++ have been demonstrated on IBM
Blue Gene/Q and Cray XEG6 systems. Table II summarizes our
findings on productivity and performance benefits. It is evident
that enabling interoperation can bring the best of different
worlds together for achieving good performance and high
programmer productivity.
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