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Abstract—We present an approach to improving data locality
across different phases of fork/join programs scheduled using
work stealing. The approach consists of: (1) user-specified and
automated approaches to constructing a steal tree, the schedule of
steal operations, and (2) constrained work-stealing algorithms that
constrain the actions of the scheduler to mirror a given steal tree.
These are combined to construct work-stealing schedules that
maximize data locality across computation phases while ensuring
load balance within each phase. These algorithms are also used
to demonstrate dynamic coarsening, an optimization to improve
spatial locality and sequential overheads by combining many
finer-grained tasks into coarser tasks while ensuring sufficient
concurrency for locality-optimized load balance. Implementation
and evaluation in Cilk demonstrate performance improvements
of up to 2.5x on 80 cores. We also demonstrate that dynamic
coarsening can combine the performance benefits of coarse task
specification with the adaptability of finer tasks.
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I. INTRODUCTION

Fork/join parallelism implemented using work stealing
is a popular choice to enable productive programming on
multi-core systems and can be found in Java [1], Cilk [2],
OpenMP [3], X10 [4], and extensions to C/C++ [5], [6].
Fork/join parallelism focuses on the control flow and involves
dividing a task into concurrent sub-tasks and combining their
results in a follow-on task. A fork/join parallel program
scheduled using work stealing is typically oblivious to data
locality and incurs data access penalties on multi-core systems
with non-uniform memory and caches. Aligning the work
performed, thus the data accesses, by a given processor across
similar phases of a computation reduces its data access costs,
potentially improving performance. However, this needs to be
achieved without interfering with the essential dynamic load
balancing benefits of fork/join programs scheduled using work
stealing.

In this paper, we present an approach to improve data
locality across the phases of a fork/join program while ensuring
load balance. We begin with the efficient extraction of an initial
load balanced schedule for a given phase in the form of a steal
tree. We present user-specified and automated approaches to
steal tree extraction. User specification allows precise control
over partitioning, while automated extraction minimizes user
effort. The actions of the work stealing scheduler in subsequent
phases are then constrained to match this initial schedule.
A fixed schedule ensures data locality across phases, but

it might not be effective in supporting phases with similar
but not identical characteristics. Therefore, we design three
constrained scheduling algorithms that follow a given schedule
with varying degrees of fidelity: strict ordered, to precisely
follow a given schedule; strict unordered, to improve schedule
flexibility when waiting on steals; and relaxed, to permit
additional steal operations while respecting the given schedule.
We demonstrate the usefulness of these algorithms by devising
two optimizations for fork/join programs.

Programs with non-cache resident working sets operating
on systems with non-uniform memory access latencies can fur-
ther benefit from data redistribution. We treat data distributions
as execution schedules of a fork/join initializer. This allows us
to align data distributions with computation phases. We show
these elements can be flexibly combined to improve the data
locality and, in turn, the scalability of fork/join programs.

The performance of fork/join programs is significantly im-
pacted by the amount of work encapsulated in each task. Fine-
grained tasks allow effective load balancing while potentially
incurring significant task management overheads. Coarse-
grained tasks can reduce these overheads but potentially suffer
from load imbalance due to lack of sufficient parallelism.
Manual tuning of task granularity is a non-trivial challenge. We
demonstrate the use of constrained work-stealing algorithms to
dynamically coarsen the tasks in an iterative fashion.

These algorithms are implemented in the context of the
Cilk runtime. The experimental evaluation demonstrates that
initial schedules can be efficiently constructed, the constrained
work-stealing algorithms effectively combine data locality and
load balance, and these can be combined to greatly improve
overall performance. The evaluation also demonstrates that dy-
namic coarsening automatically adapts the execution to achieve
the performance benefits of manual coarsening while providing
sufficient parallelism to ensure load-balanced execution.

The primary contributions of this work are:

• Programmatic support for specifying work-stealing sched-
ules to allow user guidance on data locality

• Constrained work-stealing algorithms that expose varying
degrees of exactness and adaptivity

• Demonstration of data locality and dynamic coarsening
optimizations

• Implementation and detailed evaluation in the context
of Cilk, demonstrating low overheads and performance
improvements up to a factor of 2.5x on 80 cores compared
to traditional random work stealing.
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II. BACKGROUND

We present our approach in the context of Cilk, an ex-
emplar fork/join model. In this section, we briefly describe
the Cilk scheduler and its data access behavior. More detailed
descriptions can be found elsewhere [7], [8].

Cilk is a parallel programming extension to the C language
that introduces three additional keywords: cilk, spawn, and
sync. The cilk keyword specifies that a function is capable
of being executed in parallel. The spawn keyword specifies
that the invoked function, referred to as the spawned task,
is concurrent with the statements that follow in the spawning
task. No statement following the sync statement in a task can
be executed until all preceding tasks have completed.

Every function invocation is treated as a task. At any given
point in time, the sequence of instructions remaining to be
executed in a task is referred to as the task’s continuation. A
continuation often is marked by a goto label and referred to
by an integer. A closure refers to the partially executed state
of a task, or the state of the local variables in the function
invocation. Execution begins with one of the threads executing
the closure corresponding to the main() function. The actions
of the scheduler can be described by the following loop:

void Cilk Scheduler():
foreach (w in workers):

while (/∗not terminated∗/):
Closure cl = try steal from deque(w);
if (!cl) cl = Closure steal(w, random victim());
if (cl) execute closure(cl);

void execute closure(Closure∗ cl):
// execute the corresponding closure starting at continuation

A worker with a valid closure executes the closure in a
work-first (i.e. depth-first) fashion. A spawned task is imme-
diately executed, allowing the continuation of the currently
executing task to be stolen. Upon fully executing a task, a
worker returns to execute the invoking task. When no local
work is available, a thread becomes a thief and randomly
attempts to steal the oldest continuation from another thread.
The state of this continuation is encapsulated in a closure,
which is then executed. This proceeds until the root task
completes execution. A schedule is a specification of an
ordered list of tasks executed by each thread.

While shown to be provably space- and time-efficient, Cilk
does not take data locality into account. In particular, we
consider two challenges associated with executing fork/join
programs that incur non-trivial data access costs. First, the lack
of locality-awareness across computation phases significantly
impacts performance. For example, we evaluated the execution
time for performing a parallel memory copy between two 8
GB arrays on an 80-core system after both arrays have been
initialized (system configuration is detailed in Section IV-C).
The memory copy is organized as concurrent tasks operating
on contiguous blocks of the array. A statically scheduled
OpenMP loop aligned the initialization and copy operations
and took 169 ms to perform the memory copy. Conversely,
implementations using Cilk and OpenMP tasks took 436 ms.

Second, the performance of such programs is very sensitive
to task granularity. The preceding results were obtained using
a 512 KB block size, the best performing Cilk and OpenMP
tasks version. Other block sizes, ranging from 4 KB (page

size) to a few MBs, performed worse than this. While compute-
bound programs can be optimized in terms of the smallest task
granularity that maximizes sequential performance, optimizing
data access costs imposes additional challenges.

III. OVERVIEW

In this section, we present an overview of our approach to
data locality optimization for fork/join programs. Our objective
is to match the actions of the work-stealing scheduler across
different phases of a fork/join program. For example, making
the same worker thread execute the initialization and copy
tasks on a given data block would improve data locality and
thus performance, resulting in the same performance as the
OpenMP statically scheduled loops.

Here, we focus on a runtime approach to data locality
optimization by matching the task execution schedules across
different phases with user guidance. This involves efficient
construction of a template schedule and algorithms to con-
strain the actions of the work-stealing scheduler to execute
subsequent phases to follow a previously constructed template
schedule.

We exploit the fact that the schedule for a fork/join program
scheduled using work stealing can be described in terms of
steal operations involved. These steal operations can be com-
bined to construct a steal tree that represent a phase’s execution
schedule. We present two approaches to construct the template
schedules. The first approach involves efficiently tracing the
execution of a phase to extract the corresponding steal tree.
The second approach involves user-specified partitioning of
the work, where the user constructs a synthetic steal tree as
the program is executed. Automated extraction of the steal tree
(in Section IV-A) minimizes user effort but cannot immediately
optimize for data locality and load balance. User-specified steal
trees (discussed in Section IV-B) provide direct control to the
user while requiring additional user effort.

We describe three constrained schedulers (discussed in Sec-
tion IV-C) that present different trade-offs between faithfully
preserving the template schedule and continuing to improve
load balance. The two strict schedulers preserve the steal tree
provided and can avoid the costs associated with work stealing.
The relaxed replay scheduler incrementally load balances the
computation, starting from the template schedule.

The following code snippet illustrates the optimization
approach:

spawn initialization(); sync;
// s <− extract schedule from initialization
for (i = 0; i < numIters; i++)

if (!converged):
// s <− use relaxed scheduler with s on kernel
spawn kernel(); sync;
// use strict scheduler with s on data relocation code

else:
// use strict scheduler with s to maintain locality
spawn kernel(); sync;

In this snippet, the user is interested in matching the schedules
for the initialization (the initialization() spawn) and iterative ker-
nel (the kernel() spawn) phases. The user extracts the schedule
for the initialization phase into s. This schedule may not be
optimal due to data locality inefficiencies in the initialization
phase itself. In addition, the extracted schedule might not result



in a load-balanced execution for the kernel phase. Therefore,
the user employs the relaxed replay scheduler for the kernel
phase. The data used in the kernel is redistributed to match this
new relaxed schedule. When the performance has sufficiently
stabilized (converged is true), the user disables work stealing
and data redistribution and switches to the strict scheduler to
ensure data locality for subsequent kernel phases.

To manipulate the data distribution, the user must write
a fork/join initializer, a code that traverses the data with the
same spawn/sync structure as the kernel, but instead copies and
hence reinitializes the data. We use the fork/join initializer with
the strict ordered scheduler so the data locality matches how
the kernel was executed.

The following code snippet summarizes the application
programmer interface to construct, manipulate, and replay
schedules. The rest of the paper examines the API and the
associated algorithms in detail.

// extract Steal Tree from previous spawn
StealTree extractSchedulePrevious();
// map continuation to worker thread after next spawn
void designateAfterNextSpawn(int worker);
// apply ordered scheduler to next spawn
void applyStOWS(StealTree t);
// apply unordered scheduler to next spawn
void applyStUWS(StealTree t);
// apply relaxed scheduler to next spawn
void applyRelWS(StealTree t);
// prune the Steal Tree
void pruneTree(StealTree t, int percent);

IV. DETAILED DESIGN

A. Automated Schedule Extraction

Cilk programs often are fine-grained to maximize the
concurrency exposed to the runtime. Therefore, efficiently
recording the schedule may be expensive to capture and store
in terms of time and space. Previous work [9] has shown
that work-stealing schedulers can be traced with low overhead.
Instead of explicitly recording the execution order and thread
for every task, the authors build a steal tree that encapsulates
the schedule. The steal tree is a recursive structure that fully
specifies the schedule for every task in a program by exploiting
the hierarchical relationship between steals within the spawn
structure of the application.

As described in [9], the steal tree is built by storing for
each steal: the associated level (the nested spawn depth for a
task), the position of that continuation within the victim’s task,
and the rank of the stealing thread. Due to the properties of
work-first work stealing, a steal from a worker must occur at
the highest level in the tree until all of the continuations at
that level are either stolen or executed.

The steal tree described in [9] records the schedule for
the entire program. We use the theory presented in that paper
but employ a different design. Our goal beyond that work
is to allow the extraction of a steal tree at any spawn in
the computation. To implement this, we associate and track
the information needed to construct the steal tree with every
closure. When a steal occurs, we partition the steal tree at the
closure, creating a new branch for the stolen continuation. For
each steal, the steal tree stores a pointer to a child tree indexed
by the continuation that was stolen.

struct StealTree:
int thd; // the worker that ran this continuation
int cont; // continuation starting point (parent’s branch index)
int seq; // unique sequence number for this worker−(thd,seq)
map<int, StealTree> br; // the branches at each stolen

continuation
struct Closure:

// internal Cilk data, function ptr, etc.
int curSpawn; // current spawn in scope being executed
int level; // global spawn−tree level
StealTree tree; // the steal tree for this closure

struct ThreadLocalData:
int curSequence;

ThreadLocalData data[NUM WORKERS];

The StealTree data structure completely specifies the mapping
of continuations to workers, and the seq field specifies the
order in which the continuations were executed. When a steal
occurs, the newly allocated Cilk Closure is populated with a
new StealTree. The corresponding branch in the old StealTree,
indexed by the current spawn, is set to point to the new
StealTree.

B. User-Specified Schedule Construction

In addition to extracting the schedule from a given phase
of the computation, we present an approach to program-
ming construct steal trees. In particular, the user can spec-
ify a mapping of a given continuation to a worker using
the designateAfterNextSpawn() call. The following
example specifies that the continuation beginning at spawn
y() is to be executed by worker 1, and the continuation
beginning at spawn z() is to be executed by worker 2.

void fn():
designateAfterNextSpawn(1); // map cont. after x to worker 1
spawn x();
designateAfterNextSpawn(2); // map cont. after y to worker 2
spawn y();
spawn z();

The call to designate a continuation should precede the spawn
whose continuation is being designated. User specification
of the exact order in which the continuations mapped to a
worker need to be executed is a non-trivial challenge. The
strict unordered scheduler addresses this concern. A worker,
on encountering this function, steals from itself and inserts the
created closure into the steal tree as follows:

int designation[NUM WORKERS] = {−1..−1};
void designateAfterNextSpawn(int worker):

designation[get current worker()] = worker;
void pushed spawn(int worker, int spawn, int curLev, Closure c):

int contThd = designation[worker];
designation[worker] = −1;
if (contThd != −1 && contThd != worker):

check validity(c, curLev);
// steal continuation from self
Closure cont = Closure steal(worker, worker);
// transfer current steal tree to stolen continuation
cont.tree = c.tree;
// discard transferred steal tree from current continuation
c.tree = c.tree.br[spawn];
donate continuation(contThd, cont);

We ensure that programmatically created steal trees follow
the same properties as a steal tree constructed at runtime by
the Cilk work-stealing scheduler. Principally, if a continuation
in a task is mapped to a worker, the parent task (the task that



spawned this one) also should have a stolen continuation [9].
This is true when the number of nested steals at this point
equals the number of nested spawns minus one. If this is not
true, then the parent task did not have a stolen continuation.

void check validity(Closure cl, int curLevel):
assert(curLevel == cl.level+1);

Schedule Extraction API. At this point, the schedule con-
structed can be extracted using the routine extractSchedulePre-
vious(). This routine returns a StealTree structure representing
the steal tree rooted at the immediately preceding spawn. Note
that the statements following the spawn can be executed while
the spawned task, and those spawned transitively, continue
to be executed. Therefore, a call to extract the steal tree
must be preceded by a sync to ensure that the steal tree
has been completely constructed before it is extracted. Given
that the steal tree is requested a posteriori, we construct the
steal tree for every spawn throughout the computation. An
optimized implementation could include a split-phase design if
a specification of the intent to extract a steal tree triggered the
steal tree construction for a spawn. However, we observe that
the overheads of steal tree construction are marginal in practice
due to the fact that the steal tree construction operations are
proportional to the number of steals, which are a small fraction
of the total number of tasks in a fork/join program with
sufficient concurrency.

C. Constrained Work Stealing

We have implemented three different scheduling algorithms
that constrain a work-stealing scheduler to a template schedule
with varying levels of fidelity. Depending on how refined and
effective a schedule is for a given computation, it may need
to be exactly followed or revised to adapt to changes in the
environment (e.g., changes in the locality of data accessed).
In Figure 1, we depict how the three types of constrained
schedulers can improve a default schedule:

• STOWS (strict ordered work stealing): the work-stealing
scheduler exactly follows a template schedule t by guid-
ing each worker to execute the tasks in the order pre-
scribed by t.

• STUWS (strict unordered work stealing): the work-
stealing scheduler approximates a template schedule t
by guiding each worker to execute the same tasks it
executed in t, but it allows them to greedily deviate in
order (ensuring that all dependencies are followed).

• RELWS (relaxed work stealing): the work-stealing sched-
uler approximates a template schedule t by guiding each
worker to execute the tasks it executed in t in any order,
while allowing further steals when a worker is idle.

Constraining the execution to a template schedule requires
coordinating the workers so that each worker steals the same
closures as dictated by the schedule. Depending on the level of
fidelity, the order may matter or further steals may be allowed.
A possible method to implement this involves coordinating
the thieves so they steal from the same victims as specified
during the designated working phase. However, this may slow
down the victim if it has to wait for the thief to steal due
to perturbations in the execution or schedule variations from
lower levels of fidelity (unordered or relaxed work stealing).
Hence, we have implemented all of the scheduling algorithms
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Fig. 1: Example computation scheduled with the default sched-
uler and then modified with three types of constrained work
stealing. Default scheduler: all workers begin busy with work
then attempt to steal when they finish. STOWS reproduces this
schedule without having to search for work. STUWS is able
to revise the order on thread 0, reducing the time. RELWS
performs an additional steal, further balancing the workload.

using a donation protocol: when a continuation marked as
stolen in the template schedule is encountered, the victim steals
the next continuation from itself and donates the closure to the
worker designated in the steal tree.

The common operation in constrained work stealing exe-
cutes a closure in the current constrain mode. Once a spawn
is encountered and pushed on the stack, if there exists a steal
point in the steal tree for the continuation after the spawn, the
worker steals from itself and passes the stolen continuation to
the worker designated as thief. Henceforth, we shall refer to
the thief that steals a continuation in a template schedule as
the designed worker for that continuation.

enum constrain mode {RWS, StOWS, StUWS, RelWS};
constrain mode current mode = RWS;

void execute closure(Closure cl, constrain mode m):
// set global work stealing constrain mode
current mode = m;
// execute continuation

// executed after a spawn is encountered and pushed on the stack,
// incrementing the current level
void pushed spawn(int worker, int spawn, int curLevel, Closure

cl):
if (current mode != RWS):

int contThd = cl.tree.br[spawn+1].thd;
if (contThd != worker):

// steal continuation from self
Closure cont = Closure steal(worker, worker);
// transfer current steal tree to stolen continuation
cont.tree = cl.tree;
// discard transferred steal tree from current continuation
cl.tree = cl.tree.br[spawn];
if (current mode == RelR || current mode == StUR):

donate continuation(contThd, cont);
else if (current mode == StOR):

int seq = cont.tree.br[spawn+1].seq;
seqs[contThd][seq].cur = cont;
seqs[contThd][seq].ready = true;



The spawn/sync structure of the computation being con-
strained does not have to exactly match the template schedule.
While the structure can be arbitrarily different, it can only
deviate in two ways to be semantically valid.

Rule 4.1: The template schedule and constrained compu-
tation may vary in task depth. The template may have steal
points beyond the computational structure, or the computation
may have deeper tasks. Deeper tasks in the computation are
constrained by the deepest parent task in the template with a
steal point.

Rule 4.2: To match, the spawn/sync structure must be
aligned until the position of the continuation. This could be
followed by an arbitrary task structure of spawns and syncs.

Strict Ordered (STOWS) Scheduling. This scheduling policy
is used when the template schedule exactly matches the
computation and is known to provide good load balance
and data locality. This policy exactly reproduces a template
schedule: the mapping of a continuation to a worker and
the order in which each worker executes the continuations.
Compared to the default Cilk scheduler, the STOWS scheduler
has the advantage that workers do not have to search for work,
which reduces the execution overhead. The donations do not
incur much overhead because they require little coordination
between the workers.

To reproduce the order of previous execution, each worker
creates an ordered list of steal tree branches that it executed
previously from the designated spawn. This list is built by
traversing the steal tree at that spawn and finding the mini-
mum and maximum sequence numbers for each worker. This
operation can be parallelized by performing a parallel tree
traversal and using Cilk++ reducers [8] or an equivalent Cilk
implementation to find the global minimum and maximum for
each worker in the subtree.

Once the ranges are found, sequence arrays are built for
each worker for following the sequence of closures to execute
during STOWS:

struct Sequence:
boolean ready = false;
Closure cur;

Sequence seqs[NUM WORKERS];

void buildWorkerSequences():
foreach (w in NUM WORKERS):

int phases = range[w].max − range[w].min;
seqs[w] = allocate init(phases);

During STOWS, workers do not perform random work
stealing. Instead, they start at the beginning of their sequence
arrays and wait for the next element in the sequence to become
ready (ready field set to true) and the closure to be passed to
that worker by setting the cur field. The first closure is given
to the thread that executed the root of the subtree. After a
thread pushes a spawn, it checks the steal tree to determine
if there was a steal, and donates the continuation if there was
by setting the cur field in the proper location in the sequence
specified by the steal tree.

The following algorithm describes the STOWS scheduler.
The initial closure is passed to the starting sequence. Then each
worker waits until the next closure activates in the sequence.

void StOWS Scheduler(Closure starting):
buildWorkerSequences(seqs);
int startThd = starting.tree.thd;
int startSeq = stating.tree.seq;
seqs[startThd][startSeq].ready = true;
seqs[startThd][startSeq].cur = initial;
foreach (w in workers):

for (i = 0; i < length(seqs[w]); i++):
while (!seq[w][i].ready)

;
execute closure(seq[w][i].cur, StOR);

Strict Unordered (STUWS) Scheduling. The strict unordered
scheduling policy is used when a template schedule provides
a good mapping of tasks to threads, but the ordering in
the schedule must be refined to maximize performance or
the ordering is unspecified (e.g., a user-specified schedule
construction). The advantage of this algorithm over the other
schedulers is that it allows the system to adapt to small
perturbations in the execution without incurring the overhead
of attempting and coordinating steals.

The strict unordered scheduler ensures that each worker
executes the same work as the template schedule, following
the computational dependencies, but relaxes the order in which
concurrent stolen tasks are executed. More specifically, if two
concurrent tasks were executed by a worker in the previous
schedule, they will both be executed by the same worker, but
possibly in a different order than what the template schedule
dictates.

Unordered execution is achieved by using the steal tree
to determine the mapping of tasks to threads, but ignoring
the sequence information. To store donations from multiple
concurrent workers, each worker maintains a bounded buffer
that is protected by a lock. If the bounded buffer is empty and
the worker is idle, the worker spins, waiting for work to arrive.
The bounded buffer may grow in size up to a system-imposed
limit. When the limit is reached, any donating workers spin
until a closure is removed from the buffer. The management
of the bounded buffer causes this scheme to incur slightly more
time and space overhead compared to STOWS.

The following algorithm describes the scheduler. The initial
closure is deposited into the designated bounded buffer, then
each worker checks the buffer for any new closures. If the
continuation following a spawn is designated to be stolen, the
worker donates it to the appropriate worker’s buffer.

void StUWS Scheduler(Closure starting):
int startThd = starting.tree.thd;
donate continuation(startThd, starting);
foreach (w in workers):

while (/∗not terminated∗/):
while (/∗ no continuations ready∗/)

;
Closure cl = try extract continuation(w);
if (cl):

execute closure(cl, StUR);

Relaxed (RELWS) Scheduling. Due to environmental
changes, such as the data locality of tasks, growing load
imbalances, or execution perturbations due to noise, a template
schedule may need to be revised. We have developed the
RELWS algorithm for approximating a template schedule by
following it as much as possible, but deviating from it when



a worker is idle, indicating that the schedule has a deficiency
at this point.

Similar to STUWS, RELWS does not follow the order
and uses the bounded buffer to transfer continuations between
workers. When the bounded buffer is empty, the worker
becomes a thief. If the worker performs a successful steal,
it continues to follow the template schedule for the stolen
continuation. Any descendent continuations from this stolen
continuation that are marked as stolen in the template schedule
continue to be treated as steals and get donated to the desig-
nated worker. Therefore, each overriding steal only modifies,
at most, one branch of the tree.

The primary advantage of RELWS is that it can adapt
to changes that may arise. However, it does incur the most
overhead of the three polices due to its use of the bounded
buffer and the stealing overhead when the buffer is empty.

The following algorithm shows how the relaxed scheduler
functions:

void RelWS Scheduler(Closure starting):
int startThd = starting.tree.thd;
donate continuation(startThd, starting);
foreach (w in workers):

while (/∗not terminated∗/):
Closure cl;
if /∗ ready continuations of w not empty ∗/:

cl = try extract continuation(w);
if (cl):

execute closure(cl, RelR);
else:

cl = Closure steal(w, random victim());
if (cl):

execute closure(cl, RelR);

We now evaluate the overhead of building the steal tree
and adaptability of using the constrained schedulers with the
recursive Fibonacci benchmark (fib) implemented in Cilk. For
all of the experiments conducted with fib, we calculate the
48th Fibonacci number, unless specified differently. When we
reach the depth of fib(30), we invoke a sequential kernel.

Experimental Setup. All of the experiments in this paper were
performed on an Intel 80-core machine, composed of eight
2.27 GHz E7-8860 processors, each with 10 cores. They are
connected via Intel QPI 6.4 GT/s, and the machine has 2 TB of
DRAM. All our codes were compiled with GNU GCC version
4.3.4, using the MIT Cilk 5.4.6 translator [7] or just with GCC
and OpenMP 3.0 (version 200805). For the OpenMP results,
we tried using ICC with the Intel OpenMP implementation,
but found no significant scaling difference. The machine runs
Red Hat Linux version 4.4.7-3 and has been configured to use
a page size of 4096 bytes. All of our codes set the affinity of
created threads that pins each thread (in Cilk or OpenMP) to a
specific core during the execution. The first 10 threads created
are pinned to a single socket.

Overhead Evaluation. In Figure 2a, the first set of bars
plots the normalized execution time compared to executing fib
without tracing for the four different configurations. Building
the steal tree, shown as “Trace” on the plot, incurs very little
overhead and is within the standard deviation. We observe that
the strict ordered scheduler speeds up execution by 1.4%, but
unordered and relaxed work stealing incur an execution time
penalty of about 6.8% and 7.8% with standard deviations of

0.8% and 2.2%, respectively. This matches our expectation that
the strict ordered scheduler slightly improves performance if
the computation is sufficiently load balanced and the schedule
is appropriate, but unordered or relaxed schedulers may impose
overheads if they are not needed to refine the schedule.

Adaptability Evaluation. In the second set of bars, we test
the efficacy of RELWS by using a schedule from a smaller
problem size for a larger problem to observe how it adapts.
We first execute fib(48), extract the schedule, and use that
schedule as a template for fib(48 + 6). We compare this to
running fib(48+6) with the default Cilk scheduler. We find that
using the strict ordered scheduler incurs a performance penalty
of around 8% due to scheduling deficiencies. This is from the
mismatch between the template schedule and the work being
performed.

The strict unordered scheduler causes high average over-
head but with a large standard deviation, indicating that the ex-
ecution time is unpredictable, because the unordered scheduler
has varying performance depending on the order of execution.
However, RELWS recovers the lost performance entirely by
adapting to the new problem size, achieving performance close
to the native schedule.

In Figure 2b, we vary the number of working threads to
further show the flexibility of the RELWS scheduler. The first
bar in each set plots the execution time from fib(48) with
p − 10 threads. The second bar shows the execution time
with p threads. In the third bar, we show the execution time
using the schedule produced with p−10 threads as a template
for p threads. We observe the performance almost matches
a schedule natively generated by Cilk for the scenario with
RELWS. In the case of p = 20, the performance is within
0.35% of the native. For p = 40, it is 2.6%, and for p = 60,
it is 3.97%.

In the final fib experiment shown in Figure 2c, we present
the baseline execution time for fib(48). Then, we arbitrarily
slow down a single worker by inflating the size of every task
at the bottom of the tree for only those tasks the slow worker
executes. This is performed by enlarging every task the slow
worker executes from fib(n) to fib(n + 3). Using the strict
ordered scheduler with a slow worker increases the execution
time by a factor of 4. Using RELWS on this same schedule
restores the performance almost entirely by stealing work away
from the slow worker.

V. WHOLE PROGRAM DATA LOCALITY OPTIMIZATION

We demonstrate the usefulness of the algorithms presented
for optimizing data locality for six benchmarks. To iteratively
optimize data locality, we start with a template schedule that
may be extracted from the data initialization code, depending
on whether of not the initialization code has similar structure
to the kernel. If not, the initial template schedule is derived
from applying random work stealing on the kernel code. After
we apply RELWS to the template schedule for the kernel,
we redistribute the data by invoking a fork/join initializer that
copies and reinitializes the data constrained by the strict or-
dered scheduler. We iteratively apply this method to gradually
localize data and correspondingly load balance the schedule.
For the benchmarks tested, we found that the schedules and
data distributions converge quickly, within about three to five
iterations.
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Fig. 2: The overhead of the fib microbenchmark with tracing and three scheduling schemes (2a) along with benchmarks to show
how RELWS adapts to dynamic variations (2b, 2c).

spawn initialization(); sync;
StealTree t = extractSchedulePrevious();
for (i = 0; i < numIter; i++):

if (!converged):
applyRelWS(t); spawn kernel(); sync;
t = extractSchedulePrevious();
applyStOWS(t); spawn forkjoin initializer(); sync;

else
applyStOWS(t); spawn kernel(); sync;

For iterative computations, we employ two metrics to
determine when the execution can be considered to have
converged to a good schedule: (1) idle time and (2) number of
non-uniform memory access (NUMA)-remote accesses. Time
spent waiting for a closure to be ready or looking for work
is considered idle time. A schedule can be considered to have
converged in terms of load balance if the idle time does not
improve in subsequent iterations. The number of accesses
to NUMA-remote accesses can increase the task execution
time. This can be measured by tracking each memory access.
Alternatively, we indirectly measure improvements in data
locality in terms of the decrease in the task execution times.
When the total time spent executing the tasks stabilizes, we
consider the schedule to have converged in terms of NUMA-
remote accesses.

For non-iterative applications, we use the strict unordered
scheduler to constrain the schedule to the data locality induced
by the initialization structure. Similar to the iterative code,
the user extracts the schedule from the initialization then
calls applyStUWS(...) before the spawn of the non-iterative
computational kernel.

Table I shows the problems and configurations for each
benchmark. For each application, we used the block size
that performed best. The heat benchmark solves the two-
dimensional (2D) heat equation and is included with the MIT
Cilk package as a test benchmark. The finite-difference time-
domain (fdtd) benchmark is a grid-based 2D finite differ-
ence time domain method from the PolyBench Benchmark
Suite [10]. The floyd-warshall benchmark finds the shortest
paths in weighted graphs. While floyd-warshall is akin to
matrix-matrix multiplication, the in-place nature and arithmetic

operations involved complicate tiling along the lines of matrix
multiplication. The correct recursive version of floyd-warshall,
similar to the Cilk version for matrix-matrix multiplication,
is effectively serial due to the dependencies involved [11].
Therefore, we implemented a version that performs one in-
place outer-product update, implemented as 2D recursive
loops, per iteration. The conjugate gradient (cg) benchmark
is a sparse numerical solver that uses the conjugate gradient
method and was taken from the NAS Parallel Benchmark
suite [12], implemented in C and OpenMP [13]. The multi-
grid (mg) benchmark is an implementation of the multi-grid
numerical method for solving partial differential equations
using a hierarchy of calculations at varying resolutions. The
pattern of the computation is a V-cycle, where calculations
are performed from coarsest to finest then back to coarsest.
The benchmark was taken from the NAS Parallel Benchmark
suite [12], implemented in C and OpenMP [13]. The parallel
prefix benchmark performs a prefix sum on an array of doubles
in parallel [14].

For each benchmark, we demonstrate data locality opti-
mization using (a) user-specified work partitioning with con-
strained work stealing and (b) iterative optimization using
RELWS.

The benchmarks can be classified into four groups:

Iterative, matching structure. The heat, fdtd, and floyd-
warshall benchmarks have a similar structure for initialization
and their corresponding kernels, so the template is extracted
from the initialization loops and RELWS is used for five
iterations until convergence. For the user-specified work par-
titioning, the programmatically constructed steal tree is used
for both phases.

Iterative, differing structure. The cg benchmark has a more
complex access pattern across phases. Therefore, we start with
random work stealing on the kernel and iteratively refine that
schedule. For user-specified work partitioning, we program-
matically construct multiple steal trees that match each phase.

Non-iterative, matching structure. The parallel prefix sum
benchmark is not iterative. Hence, we extract the steal tree
from the initializer and use it to constrain all of the phases



Benchmark Problem Configuration Tasks

heat nx = ny = 32768 block = 64x8192 2k
floyd-war. n = 32768 block = 64x4096 4k

fdtd ey = ex = hz = 32768 block = 64x8192 2k
cg NA=221, NNZ=15 rows = 1024 2k

mg N{X,Y,Z}=1024,LM=11 block=16x16x4MB 64–4k
scan N = 256 MB block = 512 512

TABLE I: Benchmark configurations (for mg, the number of
tasks depends on the level).

of the parallel prefix kernel, scheduling them with STUWS.
For user-specified work partitioning, we programmatically
construct a steal tree that is used for all of the phases.

Iterative, multiple structures. The V-cycle in the mg bench-
mark results in phases of several different sizes, corresponding
to different grid resolutions. We evaluate three approaches to
optimize this benchmark. In the first scheme, we extract the
steal tree from one kernel at each grid resolution and use that
to iteratively optimize the data locality for all other kernels at
the same grid resolution. In the second scheme, we extract
the steal tree from the finest grid resolution and use that
to iteratively optimize the data locality of all kernels at all
grid resolutions using unordered work stealing. In the third
scheme, we programmatically construct a steal tree for each
grid resolution and use that to constrain execution.

For each benchmark, we implemented two OpenMP
schemes: one using parallel-for loops with a static schedule and
the other with OpenMP tasks. We found that OpenMP static
scheduling performed better than OpenMP dynamic or guided
for all of the benchmarks. For the OpenMP tasks, we used
recursive tasks, similar to a recursive Cilk implementation.
The Cilk first-touch and interleaved curves on each graph
are the result of running the baseline Cilk code with either
the first-touch or interleaved memory policies enforced by the
numactl Linux utility. For of the OpenMP task versions,
we used the interleaved memory policy because it performed
better. For all the constrained work stealing versions and
OpenMP static, we used the default first-touch policy.

A. Empirical Evaluation

1) Measuring Overheads: We first measure the overhead
of tracing and the constrained schedulers. We compare the
execution time using a baseline Cilk (MIT Cilk version 5.4.6)
to a modified version of Cilk that traces the computation using
the steal tree. Figure 3 shows the normalized execution time
compared to the baseline Cilk without tracing on 80 cores.
We also present the normalized execution time for the three
types of constrained work stealing. We observe that tracing
incurs very low overhead. The heat benchmark incurs the
most overhead, about 1.5% with a standard deviation of 0.2%.
The strict ordered scheduler, which exactly reproduces the
execution, speeds up execution in some cases. For example,
the floyd-warshall benchmark has a 2.1% decrease in execution
time. The strict unordered scheduler executes any ready task
without regard for the original order executed. We expect this
may incur some overhead in cases were ordering is important
within the composed schedule. The scan benchmark shows
the most overhead, about 6.3% with a 2% standard deviation.
Finally, RELWS has the most overhead due to following the
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Fig. 6: Execution time for data redistribution with the fork/join
initializer exploiting first-touch. Each point is the mean and
standard deviation of five runs.

template schedule and overriding steals. The heat benchmark
has the most overhead, incurring 10.4% with a 2.2% deviation.
Although the benchmarks exhibit overhead with RELWS, we
intend to use it primarily to adapt schedules. Hence, the
overhead will be amortized once the adaptation is complete.

Figure 4 shows the speedup of all six benchmarks on up
to 80 threads. In the speedup plots, we do not include the
data redistribution overhead because this cost will be amortized
once the schedule converges. The “Constrained Iter. RELWS”
label corresponds to the result of using our iterative data local-
ity optimization scheme over five iterations. The “Constrained
User-Specified” label corresponds to the result of constraining
the scheduler using a user-specified partitioning with STUWS.
The “Constrained STUWS” label corresponds to the result of
extracting the steal tree from one phase followed by STUWS
in subsequent phases.

We observe that maximum speedup obtained for any
benchmark is about 45x. This is due to the lack of memory
bandwidth available within a single NUMA domain. This can
be observed by the sub-linear scalability of all the benchmarks
up to 10 threads. Beyond 10 threads, which constitutes one
NUMA domain, an increase in threads is matched by a
corresponding increase in the number of memory controllers,
and hence the aggregate memory bandwidth.

We observe that Cilk first-touch, Cilk interleaved, and
OpenMP tasks achieve the lowest scalabilites of all the
schemes, achieving around a 15x speedup on 80 cores. This
is due to the lack of locality awareness in these schedulers.
For the cg benchmark, the Cilk interleaved and OpenMP tasks
interleaved perform better, achieving more than a 20x speedup,
due to the less-regular access patterns in the benchmark.

The constrained user-specified scheme and OpenMP static
scheme often perform the best, achieving a speedup up to
46x. This is due to the potential for a perfect match in access
patterns across the different phases of the computation. We
observe that OpenMP static performs significantly worse for cg
and mg, achieving speedups of 10x and 28x, respectively. This
is due to the non-trivial specification required to match the data
access pattern across the different phases. The user-specified
partitioning scheme can express these complex relationships,
consistently achieving high speedups.
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Fig. 4: Speedup achieved strong scaling to 80 cores with respect to a single thread (legend shown above). Cilk first-touch is
the baseline using the default Cilk scheduler with no tracing overhead and first-touch. Compared to Cilk interleaved, OMP
schedule(static), OMP tasks on all the loops. Speedup shown for constrained work stealing with a user-specified partitioning, and
automatic data locality optimization using RELWS. Each point is the mean of five runs. Error bars are the standard deviation.
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 1

 10

 100

 1000

 10000

sample 1 sample 2 sample 3

C
o
u
n
t

64x512 64x8k 64x16k

(a) heat
sample 1 sample 2 sample 3

128x256 128x4k 128x16k

(b) floyd-warshall
sample 1 sample 2 sample 3

32 Rows
512 Rows

4k Rows
16k Rows

(c) cg

Fig. 7: Histograms that depict the dynamic grain size distribution after convergence for three samples per benchmark.

The iterative data locality optimization scheme consistently
improves upon the baseline Cilk schemes, achieving a speedup
of up to 2.5x over the Cilk first-touch scheme. In many cases, it
approaches the performance of the user-specified and OpenMP
static schemes.

For the mg benchmark, unordered work stealing for all grid
resolutions, based on the steal tree from the finest resolution,
performs surprisingly well (even better than OpenMP static),
achieving a speedup of 30.7x. For the parallel prefix sum
benchmark, despite the infeasibility of iterative data locality
optimization, we observe a significant speedup (1.8x) com-
pared to OpenMP tasks and the Cilk schemes.

RELWS may cause the steal tree to become more par-
titioned over time, incurring storage costs for the template
schedule that also increase over time. We observe that the size
of the steal tree converges quickly, along with the performance.
In the following table, we show the average amount of memory
required to store the steal tree on 80 cores after five iterations.
We find that the standard deviation of five runs is negligible.
For mg, we present the sum of all the steal trees sizes for each
resolution. We also show the amount of memory required to
store the user-specified steal tree on 80 cores. The highest
amount of memory required is 464 KB total memory for 80
threads when using a user-specified steal tree for mg.

Benchmark heat fdtd floyd cg mg prefix

KB/Thread RELWS 1.9 1.9 1.75 1.6 1.2 N/A
KB/Thread User-Specified 1.5 1.5 1.5 1.2 5.8 0.6

To redistribute the data, we tried explicitly migrating pages
using the move pages system call but found it to be more
expensive. Instead, we used the fork/join initializer that copies
and reinitializes the data in a constrained manner. Figure 6
plots the amount of time taken to execute the fork/join ini-
tializer to redistribute the data based on the current template
schedule to localize the accesses. We observe that the amount
of time taken scales with thread count until we are beyond a
single NUMA domain (10 threads). Beyond this point, the time
taken increases likely due to limitations in memory controller
bandwidth or kernel contention in allocating pages in parallel.
The time varies based on the amount of data in each benchmark
that must be redistributed.

B. Productivity

To demonstrate the productivity of our approach,
we measured the lines of code (using David Wheelers
SLOCCount) with and without our locality optimization.
For each benchmark, the iterative data locality optimization
includes API calls for extracting the template schedule,
invoking constrained work stealing to schedule the work, and

calling the fork/join initializer to redistribute the data. The
line counts include the entire source code for each benchmark:

Benchmark heat fdtd floyd cg mg prefix

Baseline Cilk 123 53 86 570 1319 100
Locality-Optimized 138 68 104 594 1336 117

We observe that adding our locality optimization only requires
around 20 additional lines of code, and this does not increase
with the benchmark size.

VI. DYNAMIC TASK COARSENING

Finding the ideal grain size for a given application is a
challenging problem. Selecting a grain size too large will
lead to load imbalance, while a small grain size will increase
runtime overheads. A coarser grain size also enables the use of
efficient sequential implementations as the base case, further
improving performance. Ideally, the user could specify the
minimum grain size allowed, and the system could adapt that
to the largest grain size that maintains a good load balance. We
describe a method to automatically select grain size using the
algorithms described in this paper. The programmer selects a
small grain size, and the system automatically coarsens it to be
sufficiently large to amortize runtime overheads and improve
NUMA locality.

The key observation enabling this optimization is that all
parts of the steal tree do not equally contribute to locality and
load balance. Steals higher up in the steal tree correspond to
large portions of work and fundamentally characterize a sched-
ule. Steals deeper in the tree typically correspond to smaller
amounts of work and result from the work stealing scheduler
reacting to minor load imbalances. As such, these steals are
not fundamental to ensuring data locality or load balance. Even
worse, such steals fragment the schedule, interfere with coarse-
grained data distribution and work partitioning, and preclude
efficient sequential implementations of coarser-grained tasks.

We observe that the load imbalance addressed by these
steals deeper in the tree can be addressed by the RELWS
scheduler. Thus, we begin with a schedule derived from a
random work stealing scheduler to derive a template schedule.
However, the lower steals in the steal tree are pruned before
applying the schedule to subsequent phases. Performing this
procedure iteratively, we encourage and retain stealing of
coarser units of work, making the steals move higher in the
steal tree. We continue this until the schedule does not improve
in subsequent iterations. The resulting tree has many more
coarse-grained steals than the initial schedule. A code snippet
employing this approach follows:



#define PRUNE ITER 5
spawn initialization(); sync;
StealTree t = extractSchedulePrevious();
for (i = 0; i < numIter; i++):

if (i < PRUNE ITER):
pruneTree(t,85); applyRelWS(t); spawn kernel(); sync;
t = extractSchedulePrevious();
applyStUWS(t); spawn forkjoin initializer(); sync;

else if (i == PRUNE ITER):
pruneTree(t,85); applyStUWS(t); spawn kernel(); sync;
t = extractSchedulePrevious();

else:
applyStOWS(t); spawn kernel(); sync;

In the algorithm, we call pruneTree(t,85) before invoking
the constrained scheduler. This prunes the steal tree in level
order, retaining the top 15% of the steal tree. After using
the relaxed scheduler for a few iterations, we use the strict
unordered scheduler that prunes the steal tree for the last
time, composing a final schedule. After this, we use the final
schedule as a template for the strict ordered scheduler.

The pruneTree() function includes a parameter p that
indicates what percentage of steal points the system should
prune from the steal tree. The pruning is implemented by
traversing the steal tree nodes in level order and removing
the specified percentage of steal points from the bottom of the
tree. We achieve this by (a) counting the number of steal points
in the steal tree, (b) traversing the steal tree and marking the
top 100− p% steal points as persistent, and (c) deleting all of
the non-persistent steal points.

void pruneTree(t, p):
int count = StealTreeNumPoints(t); //total number of steals
int numPersistant = count ∗ (100−p)/100;
for (i = 0; i < t.numLevels and numPersistent > 0; i++):

for (node in t.level): node.persist = true; numPersistent−−;
for (node in t): if (!node.persist): node.delete();

Under strict (ordered or unordered) work stealing, a coarser
sequential kernel can be employed for a given task if it is
guaranteed that no task transitively spawned by it can be
stolen. Each task queries the steal tree to check this condition
and appropriately chooses between spawning sub-tasks and
performing a coarser sequential computation. This enables
the runtime to dynamically coarsen the tasks and improve
performance without impacting load balance.

Figure 5 shows the results of applying dynamic coarsening
to some of the benchmarks. Due to space limitations, we only
show the result for three of the six benchmarks. We plot the
speedup obtained using the iterative relaxed method presented
previously with three different block sizes. We observe that
smaller block sizes perform much worse. The graphs indicate
that increasing the block size improves performance. In fact,
for our experimental evaluation (featured in the previous
section), we used the best-performing block size, which is the
largest shown for each benchmark. Increasing the block size
beyond this results in reduced performance for the default Cilk
schemes and OpenMP tasks due to insufficient parallelism.

We observe that our dynamic coarsening optimization
(labeled as “Dynamic” in the figure) performs competitively
with the largest, static grain size shown, despite starting with
the smallest grain size evaluated. In Figure 7, we present
three histograms (sampling three different executions) per
benchmark that show the block size distribution resulting from
our dynamic algorithm after convergence in five iterations. The

histograms for each benchmark are similar, demonstrating that
the scheduler converges to about the same dynamic grain sizes
each time. For each set of bars, we observe that one set is much
smaller than the rest. This indicates that small blocks are used
to refine the schedule, while the large blocks provide an initial
coarse-grained partitioning.

VII. RELATED WORK

Cilk [7] employs random work stealing with a work-first
execution strategy. Guo et al. [15] studied help-first scheduling
policies to improve the load balance achieved in practice.
Hierarchical place trees [16] and related approaches [17], [18]
adapt the work stealing to promote localized steals, indirectly
improving data locality. These schemes preferentially access
local data but can result in different remote accesses across
phases. Parallel depth-first scheduling [19] improves locality
of access to shared caches in nested-parallel computations,
rather than across sequentially composed nested-parallel com-
putations. We consider the complementary problem of locality
optimization across phases.

Locality-aware scheduling is supported in X10 [20] through
explicit invocation of task execution at the location of specific
data elements. This approach imposes the burden of data
distribution and load balance on the programmer. We employ
the steal tree design by Lifflander et al. [9] but employ
enhanced replay algorithms compared to the strict versions
used in their work. The property we exploit in incremental
optimization of data placement is referred to as the principle
of persistence—the same computation structure is repeated
and can be optimized for. Charm++ [21] explicitly associates
computation with data objects and performs persistence-based
load balancing [22] that is coupled with data migration. Our
approach does not impose such tight binding of computation
and the data it operates upon. Retentive work stealing [9],
[23] incrementally improves load balance by reusing a prior
schedule but does not consider data redistribution.

Nikolopolous et al. [24] studied reusing loop schedules
to improve memory affinity for OpenMP looping constructs.
Olivier et al. [25] observed that non-locality memory accesses
lead to an inflation in an OpenMP task’s execution time. They
present API support that explicitly specifies locality domains
and placement of tasks on them. Explicit data placement and
layout specifications [26], [27], [28] and modifications to the
random work stealing policy [29] also have been considered
for OpenMP task programs.

The Pochoir compiler [30] performs scheduling across
iterations for stencil computations. The transformed code is
generated in Cilk and scheduled as a Cilk program. While
time tiling improves data reuse, the Pochoir compiler does
not specifically optimize for data locality. Our approach to
constraining work stealing computations with data locality can
be used to improve the scheduling of computations generated
by a compiler such as Pochoir.

Grain size control has been studied in many different
contexts. Static compile-time approaches [31] have been em-
ployed. Charm++ has adaptive grain size control for state space
search [32]. Other work has focused on only splitting grain
sizes when a worker is in need of work, which is feasible with
a managed runtime [33], [34], [35]. Lazy task creation has



been used to increase granularity [36], while other work has
focused on increasing the steal granularity [37], [38], which is
different than our approach.

Our approach is applied to the Cilk work-first scheduling
runtime and can be adapted to other fork/join models. It can be
directly applied to other work-stealing models, such as a help-
first scheduler. However, for more divergent models, efficient
tracing and constrained execution algorithms will be required
to effectively implement our methodology.

VIII. CONCLUSIONS

We present an approach to optimize fork/join programs for
data locality and grain size selection. We describe two different
methodologies: (1) user-specified steal tree construction that
requires additional programmer effort and is not adaptive and
(2) an automatic iterative optimization scheme that nearly con-
verges to the same performance. The evaluation demonstrates
that we can obtain up to 2.5x performance improvement using
our iterative scheme. We show that high performance still
can be obtained without the application-specific knowledge
user specification requires while maintaining the efficiency
and automatic load balancing that work stealing provides. We
also show that dynamic coarsening can effectively match the
performance of a manually optimized grain size while retaining
the scheduling flexibility of finer tasks.
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