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Abstract—Fine-grained communication in supercomputing ap-
plications often limits performance through high communication
overhead and poor utilization of network bandwidth. This paper
presents Topological Routing and Aggregation Module (TRAM),
a library that optimizes fine-grained communication performance
by routing and dynamically combining short messages. TRAM
collects units of fine-grained communication from the application
and combines them into aggregated messages with a common
intermediate destination. It routes these messages along a virtual
mesh topology mapped onto the physical topology of the network.
TRAM improves network bandwidth utilization and reduces
communication overhead. It is particularly effective in opti-
mizing patterns with global communication and large message
counts, such as all-to-all and many-to-many, as well as sparse,
irregular, dynamic or data dependent patterns. We demonstrate
how TRAM improves performance through theoretical analysis
and experimental verification using benchmarks and scientific
applications. We present speedups on petascale systems of 6x for
communication benchmarks and up to 4x for applications.

Keywords-Communication Optimization, Message Aggrega-
tion, Interconnection Networks

I. INTRODUCTION

Architectural trends in capability-class supercomputing sys-
tems point to a rapid increase in the number of processing
elements, while the available memory or data movement
capacities are not increasing as fast [1]. These trends, and
the computational requirements of grand challenges in many
domains, indicate that parallel applications will have to opti-
mize for the strong scaling regime. Additionally, application
classes with unstructured, data-dependent, and fine-grained
communication patterns are becoming increasingly prominent.
Hence, large-scale parallel execution will be increasingly fine-
grained, and both compute and communication grain sizes will
become smaller.

Programming models that are evolving to harness such ex-
treme scale concurrency are also encouraging the increased ex-
pression of parallelism. Consequently, techniques like overde-
composition and lightweight work or control units are resulting
in increasingly fine-grained communication patterns. Even in

established parallel programming systems like MPI, many
small control messages and acknowledgements are sent by the
underlying messaging library to orchestrate data movement.
As we scale to tens and hundreds of thousands of nodes, the
number of such messages can become significant. For these
reasons, it is essential to optimize fine-grained communication
and to provide abstractions that protect applications from this
burden.

In this paper we present Topological Routing and Aggrega-
tion Module (TRAM), a library for improving communication
performance of fine-grained and/or bandwidth-heavy parallel
applications. At the core of TRAM is the idea of aggregation
and routing of data items, or small units of communication,
over a virtual N-dimensional mesh mapped onto the processes
of a parallel application. For fine-grained communication,
each application-level message can typically be represented
by a single data item. By combining data items, which are
typically on the order of tens of bytes, into larger units, TRAM
reduces the impact of per message overhead and the amount
of bandwidth consumed by the message header, improving
communication throughput. TRAM is a streaming library.
Rather than send using a synchronized schedule and deliver the
full payload for each destination all at once, TRAM sends and
delivers data gradually. This allows for a significant overlap of
communication and computation. Using TRAM requires only
minor changes to application code.

The main contributions of this paper are: (1) the introduction
of TRAM, a generic streaming library for topological routing
and aggregation over arbitrary virtual mesh topologies, (2) an
analysis of the underlying message aggregation and routing
approach to determine how it improves performance, (3)
automatic selection of TRAM aggregation buffer size and
virtual topology specification, and (4) speedups in scientific
applications of up to 4x using TRAM.

In the rest of the paper, section III presents a description
of our library and the underlying parallel runtime system.
Used properly, TRAM can greatly improve communication



performance, but there are computation and communication
costs associated with using it which are important to un-
derstand. To further this goal, section IV presents a theo-
retical study of message aggregation as used in our library,
while section V presents analysis and experimental results
showing how virtual topology affects message aggregation,
TRAM memory footprint, and congestion. We conclude the
paper with experimental results for two scientific applications,
demonstrating speedups of up to 4x with TRAM.

II. RELATED WORK

The key aspects of our approach, mainly a) message ag-
gregation using a library, b) software routing, the use of a
c) generalized mesh virtual topology, and d) streaming have
each been explored in isolation in a number of contexts. Here
we will compare to work that most closely resembles key
elements of our approach.

Aggregation and software routing of messages has been
studied most prolifically for collective communication, par-
ticularly all-to-all, going back at least 20 years to work on
indirect mesh algorithms by Thakur and Choudhary [2].

Over time, the approach was generalized to other virtual
topologies and a wider class of collectives. Past work from
our group demonstrated improved performance of all-to-all
and many-to-many personalized communication using 2D and
3D virtual meshes for routing and aggregation [3]. Kumar also
presented analysis of the reduction in the number of messages
by using 2D and 3D virtual topologies to aggregate messages
for all-to-all personalized communication [4]. Most of these
algorithms did not employ streaming, however. Kumar’s work
did include a streaming library that used a routing and ag-
gregation approach within a two dimensional virtual mesh
approximating a square, but its topology was not configurable
and the work did not analyze the importance of a good match
between virtual and physical topologies.

A more recent example of aggregation and routing of
messages over virtual topologies using a streaming library
is Active Pebbles [5]. In contrast to our approach, this work
did not involve matching the virtual topology to the physical
network topology to ensure minimal routing.

Other research efforts have focused on application and
machine-specific uses of the aggregation and routing approach.
Garg and Sabharwal demonstrated dramatic improvements in
performance of the HPC Challenge Random Access bench-
mark on Blue Gene systems [6]. Kumar et al. used topological
routing and aggregation to improve performance of All-to-All
and FFT on the Blue Gene/L [7].

Message aggregation and routing over virtual topologies
have also each been applied in isolation to reduce runtime
system overhead. For ARMCI on the Cray XT5, Yu et al.
proposed virtual topologies and routing protocols to con-
trol resource management and contention [8]. For Infiniband
networks, Koop et al. described a scheme for MVAPICH
to dynamically coalesce messages for the same destination,
with the effect of reducing memory usage and increasing
the message rate [9]. We believe a scheme like TRAM, that

combines aggregation with routing over a virtual topology,
could further improve the effectiveness of these approaches.

In our performance analysis we consider the impact of
network topology and congestion on communication perfor-
mance. Other research on communication over mesh and torus
topologies which took into account issues of network conges-
tion includes work on MPI collectives [10], topology-aware
mapping [11], and network saturation on Blue Gene/P [12].
Our approach to analyzing message aggregation and determin-
ing a good message size also shares common elements with
work on message strip-mining [13].

While MPI collectives are typically meticulously optimized,
they often artificially limit communication-communication
overlap through the use of a static communication schedule.
Neighborhood collectives, which allow for expression of a
larger range of collective operations and generation of sched-
ules based on link load information, offer an improvement,
but are still limited in dynamic scenarios by the use of a static
communication schedule [14]. TRAM routes messages over a
static communication graph, but it does not follow a prescribed
schedule. Instead, it streams data according to its availability
using a parameterized communication grain size. As such, we
believe TRAM is particularly well suited for implementation
of collectives for sparse, irregular, or dynamic communication
patterns. We hope that the work and application examples
in this paper motivate the need for streaming extensions of
collective operations in a future version of the MPI standard.

III. TOPOLOGICAL ROUTING
AND AGGREGATION MODULE

Topological Routing and Aggregation Module [15] is a
library for optimizing fine-grained communication patterns
in parallel applications. It is implemented as a library in
CHARM++, a mature parallel runtime system for distributed
object-oriented parallel programming [16].

A. Background

For simplicity of discussion, the CHARM++ runtime system
can be assumed to consist of a process on every core involved
in the parallel run. These processes, called Processing Ele-
ments (PEs), are globally ranked. Expressing parallelism in
this system typically involves creating collections of globally
accessible objects called groups and arrays. Groups map
a single runtime-system-managed object to every core in
a parallel run. Arrays, on the other hand, may contain an
arbitrary number of such objects, which are assigned to
physical cores by the runtime system based on predefined
or custom mappings. A parallel program begins from one or
more objects marked as being initial, which in turn create
groups and arrays and invoke methods on these objects to
continue the parallel program. Functions on individual member
objects of groups and arrays can be invoked from any core
using globally unique identifiers. If the invoked object is not
local to the core where the call is made, an asynchronous
message is sent by the runtime system to the appropriate
destination, where the message is delivered to the scheduler



for the local instance of the runtime system. Functions invoked
by the scheduler are non-preemptible. When a scheduler picks
a message from its queue and calls the corresponding function,
it becomes inactive until the function it called returns. TRAM
is implemented as a group, so an instance of TRAM has one
library object on every PE used in the run. We use the term
local instance to denote a member of the TRAM group on a
particular PE.

Most collective communication patterns involve sending
linear arrays of a single data type. In order to more efficiently
aggregate and process network data, TRAM restricts data sent
using the library to a single data type specified by the user
through a template parameter for the library. We use the term
data item to denote a single instance of this data type submitted
to the library for sending. While the library is active (i.e. after
initialization and before termination), an arbitrary number of
data items can be submitted to the library at each PE.

B. Routing

TRAM performs aggregation in the context of a virtual mesh
topology comprising the processes involved in the parallel run.
The number of dimensions in the topology and their sizes
are specified when constructing an instance of the library. Let
the variables j and k denote PEs within the N-dimensional
virtual topology of PEs and x denote a dimension of the mesh.
We represent the coordinates of j and k within the mesh as
(j0, j1, . . . , jN−1) and (k0, k1, . . . , kN−1). Also, let

f(x, j, k) =

{
0, if jx = kx

1, if jx 6= kx

j and k are peers if

N−1∑
d=0

f(d, j, k) = 1. (1)

When using TRAM, PEs communicate directly only with their
peers. Sending to a PE which is not a peer is handled inside the
library by routing the data through one or more intermediate
destinations along the route to the final destination.

Suppose a data item destined for PE k is submitted to
the library at PE j. If k is a peer of j, the data item
will be sent directly to k, possibly along with other data
items for which k is the final or intermediate destination.
If k is not a peer of j, the data item will be sent to an
intermediate destination m along the route to k whose index
is (j0, j1, . . . , ji−1, ki, ji+1, . . . , jN−1), where i is the greatest
value of x for which f(x, j, k) = 1.

Note that in obtaining the coordinates of m from j, exactly
one of the coordinates of j which differs from the coordinates
of k is made to agree with k. It follows that m is a peer
of j, and that using this routing process at m and every
subsequent intermediate destination along the route eventually
leads to the data item being received at k. Consequently, the
number of messages F (j, k) that will carry the data item to

Fig. 1: TRAM routes messages along the dimensions of a
virtual topology, using intermediate destinations for increased
aggregation. The three separate messages in this example are
combined at an intermediate destination and delivered in a
single message to the destination.

the destination is

F (j, k) =

N−1∑
d=0

f(d, j, k). (2)

C. Aggregation

TRAM amortizes communication overhead by aggregating
data items at the source and at every intermediate destination.
Every local instance of the TRAM group buffers the data items
that have been submitted locally or received from another
PE for forwarding. Because only peers communicate directly
in the virtual mesh, it suffices to have a single buffer for
every peer of a given PE. For a dimension d within the
virtual topology, let sd denote its size. Consequently, each
local instance allocates up to sd − 1 buffers per dimension,
for a total of

∑N−1
d=0 (sd−1) buffers. Buffers are of a constant

size. Users can directly control TRAM memory footprint by
specifying individual buffer sizes or total buffer space.

Sending with TRAM is done by submitting a data item
and a destination identifier, either PE or array index, using
a function call to the local instance. The library uses the
previously described algorithm to identify the peer that will
be the final or intermediate destination, and places the data
item in the buffer destined to the resulting PE. Buffers are
allocated lazily only when at least one data item needs to be
sent to a peer. They are sent out immediately upon filling up.
When a message is received at a destination, the contained data
items are distributed into the appropriate buffers for further
routing to their final destinations, or delivered to the user if the
recipient is the final destination. Figure 1 shows an example
of aggregation of messages by TRAM in a 3D topology.

D. Periodic Dispatch and Termination

Data dependent sending patterns, where the delivery of a
data item is required to generate further data item sends, can
suffer deadlocks if the original data item is held up in an
intermediate buffer due to aggregation. This creates a situation
where it is potentially necessary to trade some of the perfor-
mance benefit from aggregation in order to guarantee global
progress. TRAM provides a message dispatch mechanism for



such situations. It periodically checks for progress in the
library and sends all buffers out if no sending took place since
the last time the check was done. The period is configurable,
but should be infrequent enough to permit aggregation.

Termination of a communication step occurs through an or-
dered dispatch of messages along dimensions from highest to
lowest. Termination requires each data sender in a communi-
cation step to specify that it has finished submitting data items.
The underlying runtime system can be queried for the number
of objects sending data on each PE, allowing the activation of
the termination mechanism when all senders on a given PE
signal completion of sending. During termination, each local
TRAM instance ensures that it has finished receiving messages
along a higher dimension before sending out its buffers for the
next dimension. This check is made by comparing the number
of messages received along a given dimension with the sum
of the total message counts that were sent out by the peers
which finished sending along that dimension. These counts
are a small and amortized overhead in TRAM messages.

IV. MESSAGE AGGREGATION ANALYSIS

The topological routing and aggregation approach employed
in TRAM can significantly improve performance, but it also
carries nontrivial costs in resource utilization and computation
time. This section presents analysis and benchmark results
that demonstrate the potential benefits and costs of topological
routing and aggregation. Based on these results, we show how
to select TRAM parameters to increase the effectiveness of the
library while controlling the costs.

A. Experimental Methodology

We used three types of supercomputers for experimental
results: a) Intrepid and Surveyor - Blue Gene/P systems at
Argonne Leadership Computing Facility, 3D network topol-
ogy, rectangular job partitions b) Vesta and Vulcan - Blue
Gene/Q systems at Argonne and Lawrence Livermore National
Laboratories, 5D network topology, rectangular job partitions
c) Blue Waters - Cray XE6/XK7 system at National Center for
Supercomputing Applications, 3D network topology, irregular
job partitions. Benchmark results represent an average of 1000
iterations.

B. Nearest Neighbor Communication

The simple case of network communication between pro-
cesses located on neighboring nodes in the network is suf-
ficient to demonstrate the main benefits of aggregation and
determine bounds on message sizes that may benefit from it.

Figure 2 shows effective bandwidth utilization for single
message sends of various sizes on our test systems. Results
in the plot are represented as percentages of the theoretical
network link bandwidth between the nodes. Bandwidth uti-
lization is as low as 0.1% for small message sizes, and rises
with increasing message size until coming close to saturating
the link bandwidth. For our purposes, we will define the
saturation threshold as 75% of the peak observed bandwidth,
which is about 60% of the theoretical maximum bandwidth
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Fig. 2: Effective bandwidth of nearest-neighbor communica-
tion relative to peak link bandwidth on three supercomputing
systems. Individual sends of small to medium-sized messages
utilize at most a few percent of the network bandwidth.
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Fig. 3: Effective bandwidth for pipelined sends. On each of
the three systems, messages of 16 to 32 KB come close to
saturating the link bandwidth.

on our test systems. This point is reached at message sizes
of 8 KB, 128 KB, and 256 KB, on Blue Gene/P, Blue
Gene/Q, and Cray XE/6 systems, respectively. Aggregating
messages at or above this size will lead to little improvement
in bandwidth utilization. In fact, very large messages may
utilize less bandwidth. We believe this to be a result of cache
overflow, when memory, rather than network bandwidth, may
be a bottleneck. This behavior is apparent for message sizes
above 1 MB on Blue Gene/P and above 4 MB on Blue Gene/Q.

A single send, taken in isolation, does not represent the typ-
ical state of a network during execution of a large application.
In order to more confidently bound the region of messages
that will benefit from aggregation in practice, we repeated the
benchmark by sending a stream of messages of a given size
between the nodes. The expectation is that this should lead to
better network utilization for small to medium-sized messages
due to concurrent occupancy of network resources by data for
multiple messages and pipelining of communication with the
send and receive work in the runtime system. The experiment
also more closely approximates the send behavior of TRAM
as it streams messages using aggregation buffers of a constant
size. The results for this test are shown in Figure 3. Compared
to isolated sends, the saturation threshold was reached at lower
message sizes when streaming the messages: 4 KB on Blue



Gene/P and 16 KB on Blue Gene/Q and Cray XE/6. Note that
despite the streaming, sends of messages below 128 bytes on
Blue Gene/P and below 2 KB on Blue Gene/Q and Cray XE/6
still attain less than 10% of the available network bandwidth.
Aggregating these messages into buffers of size 8 or 16 KB
could provide dramatically higher bandwidth utilization and
higher performance for bandwidth-limited applications.

C. Performance Bound Analysis

The previous experiments show that aggregation can signif-
icantly improve network bandwidth utilization. We next exam-
ine the trade-offs involved in using TRAM, and define bounds
on how TRAM affects various performance characteristics. We
will use the following parameters in our analysis:

• m: data item payload size in bytes
• e: size of the message header in bytes
• α: constant overhead per message
• β: inverse of network bandwidth
• g: aggregation buffer size (in units of data items)
• r: rate at which items are submitted to TRAM
• N : number of dimensions in virtual topology
• l: average number of links traversed by a message
• z: total number of data items to send
Message Latency It takes time for an aggregation buffer to

fill as data items are generated by the application, submitted
to the library, and copied into the correct buffer. Buffering can
be treated as directly adding to the latency of each data item,
or the time from submission to receipt of the data item at the
destination. In addition, an aggregate message will generally
take longer to arrive at the destination after being sent out
compared to a single item. As a result, average item latency
can be expected to significantly increase when using TRAM.
This must be taken into account when selecting the data
item types to be aggregated. In particular, latency-sensitive
messages along the critical path should not be aggregated.

Bytes Injected/Sent on the Network TRAM typically
reduces the volume of data sent on the network by decreasing
the aggregate header data sent. It is important for the routing
component not to dilate the path of each data item compared
to a direct send, as a message that travels over multiple links
consumes bandwidth on each link along the route. We will
later see how this can be ensured through careful selection of
the virtual topology. In contrast, TRAM will usually increase
the aggregate data injected onto the network, as it delivers and
later re-injects the same data for every intermediate destination
along the route of an item.

Message Count Aggregation using a multi-dimensional
approach with intermediate destinations reduces the total num-
ber of messages by a factor of g/N . The most important
consequence of the reduced message count is a corresponding
reduction in aggregate message processing overhead.

Table I summarizes the effects of TRAM on the above
performance parameters with lower and upper bounds for each
quantity. The analysis assumes buffers are filled to capacity.
Lower bounds correspond to the most optimistic scenario. For
example, for item latency, the lower bound is an estimate

Direct Sends TRAM L Bound TRAM U Bound

Item Latency α+ β(m+ e) α+ β(gm+ e) N [α + β(gm +
e) + g/r]

Agg. Link Usage lz(m+ e) lz(m+ e/g) lz(m+ e/g)
Injected Bytes z(m+ e) z(m+ e/g) Nz(m+ e/g)
Message Count z z/g Nz/g

TABLE I: Comparison of various performance parameters for
direct sends vs. TRAM aggregation

Topology F(j,k) # Nodes % Nodes

32 x 32 x 32 0 1 3.1e-3
1 93 .28
2 2883 8.3
3 29791 90.9

16 x 16 x 16 x 16 0 1 1.5e-3
1 60 9.2e-2
2 1350 2.05
3 13500 20.6
4 50625 77.2

TABLE II: Distribution of the number of messages required to
deliver a data item using TRAM on two symmetric topologies

for the final item inserted into a buffer before it is sent. For
the number of messages and bytes injected, the lower bound
assumes all data items are delivered to a peer of the source
process (i.e. after a single send). The upper bounds are closer
to what may be expected in practice.

Note that latency, bytes injected, and total number of
messages for TRAM are all affected by the number of dimen-
sions in the virtual topology, which determines the maximum
number of messages needed to deliver a data item from the
source to its destination. The next section explores what the
gains are in return for this significant overhead.

V. VIRTUAL TOPOLOGY ANALYSIS

Topological aggregation with delivery at intermediate desti-
nations involves significant overhead. However, this overhead
is offset by an improved potential for aggregation and reduced
memory usage. Here we seek to determine when multi-
dimensional aggregation is worth the additional overhead
compared to a direct one-dimensional aggregation mechanism.

A. Aggregation Memory Overhead

In the direct aggregation approach, a separate buffer is
allocated for each destination PE, leading to a high memory
overhead for applications with dense communication graphs.
By contrast, the maximum number of buffers per local TRAM
instance never exceeds its number of peers. For a given
buffer size g, data item size m, and topology dimensions
sd, d ∈ 0...N − 1, the memory footprint for the buffer space
is m × g ×

∑N−1
d=0 (sd − 1) per local instance of the library.

As an example, each local TRAM instance for a 16 x 16 x 16
x 16 virtual topology will allocate up to 15 ∗ 4 = 60 buffers,
which should easily fit in main memory and possibly in cache
for buffer sizes which we had experimentally determined to
be sufficient for good performance (e.g. 8 KB). This offers
a strong reason to prefer TRAM to the direct aggregation
approach. In the example above, the direct approach would



lead to 65535× 8KB = 512MB per core, which may be too
high to fit in the main memory of a compute node.

B. Message Counts and Buffer Fill Rate

Multi-dimensional aggregation has a dual effect on commu-
nication performance. On one hand, peer-based buffering may
lead to a faster buffer fill rate by aggregating into a smaller
number of buffers. On the other hand, using intermediate
destinations increases the number of messages needed to
deliver items to most destinations. To quantify the overall
increase in message counts, consider an instance of TRAM
operating over an N -dimensional virtual topology. A data
item submitted at a PE j to be delivered to PE k will be
communicated using a series of messages whose number is
specified by F (j, k) from Equation 2. Table II shows the
distribution of this function for a fixed source PE j∗ for two
example topologies, a 32 x 32 x 32 3D topology and a 16
x 16 x 16 x 16 4D topology. For an N -dimensional mesh
where each dimension has size d, the number of values of k
for which F (j∗, k) = a can be counted using the expression(

N

a

)
× (d− 1)a. (3)

Sending a message within a PE does not involve network
communication, so the message count for this case is 0.

Results show that a data item sent to a randomly selected PE
within these topologies will typically use N messages along
the route to its final destination. The implications of this are
that for all-to-all communication, the average value of F (j, k)
will be close to N . On the other hand, the location of the
destination in relation to the source in practical communication
scenarios is rarely arbitrary, provided that some care is taken in
mapping application-level objects to processors in a topology-
aware fashion. For example, for applications with mostly
nearest-neighbor communication, F (j, k) will be 1 for most
pairs of communicating PEs.

The overall performance effect of multi-dimensional aggre-
gation will hence depend on a number of factors, including
the total number of items sent, the rate at which items are
submitted, the communication pattern, and the improvement
in cache locality due to the tighter buffer space.

C. Virtual to Physical Topology Mapping

While the choice of a virtual topology to be used for TRAM
is left to the user of the library, we believe that matching the
physical topology typically leads to the best performance. In
this section, we explain why this is the case.

Consider a data item sent over an N -dimensional mesh or
torus using TRAM, and let a = F (j, k) from Eq. 2 be the
number of messages required to deliver it to its destination. As
noted in Sec. III, every intermediate message along the route
makes positive progress toward the destination along a single
dimension of the virtual topology. If the virtual topology is
identical to the physical topology, then as long as the network’s
dynamic routing mechanism does not make an intermediate

message take a non-minimal path, the route to the destination
determined by TRAM will be minimal.

It is also possible to reduce the number of dimensions in
a virtual topology that matches a physical topology while
preserving minimal routing. This can be done by merging any
two dimensions that are consecutive in the order of routing.
For example, a 4 x 4 x 8 topology can be reduced to a 16 x 8
topology by merging the first two dimensions. A data item sent
within the reduced topology obtained in this way will follow
the same route as in the full topology while skipping over
some intermediate destinations. As we have seen, intermediate
destinations add overhead and require re-injecting data onto
the network, but in return allow aggregation of data items
which would otherwise be sent separately. In cases where
the costs outweigh the benefits, a lower dimensional virtual
topology that preserves minimal routing will perform better
than a higher-dimensional one.

In contrast to matched or properly reduced virtual topolo-
gies, topologies which do not maintain minimal routing can
severely degrade performance. For example, assume a random
mapping between the PEs in the virtual topology and the
physical topology, and let sd be the size of dimension d in the
physical topology. On average, each intermediate message will
travel the average distance between pairs of PEs in the physical
topology, which is

∑N−1
d=0

sd
4 for a torus and

∑N−1
d=0

sd
3 for a

mesh. In other words, an intermediate message when using a
random mapping will on average travel as many hops as a full
route would when using a virtual topology that matches the
physical topology. Path dilation due to non-minimal routing
is clearly undesirable, as it wastes link bandwidth and can
increase network congestion. This effect grows in proportion
to the size of the physical topology, which affects the number
of hops traveled by each intermediate message, and also in
proportion to the number of dimensions in the virtual topology,
which affects the average number of intermediate messages
required to deliver a data item.

For runs with multiple PEs per compute node, a natural
extension of the approach of matching the physical topology is
to use an additional dimension in the TRAM virtual topology
for the PEs within a node. As an example, we often used
a 6D topology on Blue Gene/Q, corresponding to the 5
dimensions of the network and the PEs within a node as the
6th dimension. The intranode dimension, when specified as
the final dimension of the topology, provides the benefit of
some level of intranode aggregation in the initial routing step
before data is sent on the network.

For some network types, network switches form a topology
that is distinct from the compute node topology. A common
example are Clos networks, such as Infiniband networks.
These networks have multiple levels of switches, where only
switches at the lowest level are directly connected to compute
nodes. Matching the virtual topology to the network topology
will not work on these systems. Our approach on these systems
has been to use a 2D topology, with compute nodes as one
dimension and PEs within a node as the second. Techniques
that further optimize TRAM for this important class of systems



1

10

100

1000

10000

100000

32 64 128 256 512 1K 2K 4K 8K 16K

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

Number of bytes

32k Nodes No TRAM
32k Nodes TRAM

16k Nodes No TRAM
16k Nodes TRAM

4k Nodes No TRAM
4k Nodes TRAM

512 Nodes No TRAM
512 Nodes TRAM

(a) All-to-all benchmark on Blue Gene/P

 1

 4

 16

 64

 256

 1024

 4096

 16384

32 128 512 2K 8K 32K 128K 512K

T
im

e
 (

m
s
)

Buffer Size (B)

8192 bytes 
2048 bytes 

512 bytes
128 bytes
 32 bytes

(b) Effect of aggregation buffer size

 1

 4

 16

 64

 256

 1024

32 64 128 256 512 1K 2K 4K 8K 16K

Ti
m

e(
m

s)

Number of bytes

 1 dimension
2 dimensions
3 dimensions 
6 dimensions

(c) Effect of virtual topology dimensionality

Fig. 4: All-to-all benchmark: (a) on Blue Gene/P (b,c) Effect of various parameters on Blue Gene/Q with TRAM

are part of our future work.

D. Experiments with Fine-grained All-to-all

To verify the effectiveness of TRAM in improving fine-
grained communication performance, we ran tests of an all-
to-all benchmark on the ALCF Intrepid Blue Gene/P system
with the following partition topologies: a) 512 (8 x 8 x 8),
b) 4096 (8 x 16 x 32), c) 16384 (16 x 32 x 32), and d) 32768
(32 x 32 x 32) nodes. We used a single PE per compute
node in these tests. To simulate high-volume fine-grained
communication, the benchmark was performed in rounds by
looping over all the destinations and sending 32 bytes to
each destination per round, without synchronizing between
rounds. For TRAM runs we used data items of size 32 bytes,
set the size of aggregation buffers to 2 KB and used a 3D
virtual topology that matched the physical topology. To reduce
congestion, we used a standard optimization of randomizing
the order in which sends are performed for both versions of
the benchmark. Results are shown in Figure 4a. Using TRAM
led to speedups of between 3.5 and 6.25, indicating a clear
performance advantage for fine-grained communication.

We ran further tests of this benchmark on the ALCF Vesta
Blue Gene/Q system to measure how buffer size and virtual
topology affect performance. Figure 4b shows the results using
TRAM on 64 nodes with various aggregation buffer sizes.
The same 3D virtual topology was used for all runs. The
benefits of the multi-dimensional aggregation approach, which
aggregates items into fewer buffers, can be seen in the test
with 32 B per destination, which improved in execution time
up to a buffer size of 8 KB. For most cases, performance
improved with increased buffer size up to the experimentally
determined saturation threshold of 32 KB, and leveled off for
buffer sizes higher than that. However, in all-to-all tests of
size up to 128 bytes where there was little data to aggregate,
using very large buffers hurt performance. Although TRAM
sends only the valid items in a partially filled buffer, per-item
book-keeping data is stored separately at the head of the pre-
allocated message buffer to reduce alignment padding and is
hence sent even for the unfilled portion of the buffer. This
overhead degraded performance in pathological cases with
very large buffers and little data to send.

The Blue Gene/Q 5D network topology makes it particularly
suitable for testing the effects of virtual topology. Figure 4c

presents all-to-all results on a 64-node partition for a set of
virtual topologies that preserve minimal routing. The differ-
ence in execution time between the best and worst topology
was as high as 4.4x, demonstrating the importance of taking
some care in selecting a virtual topology when using TRAM.
The 3D virtual topology was best for low total payload
sizes, while a 2D virtual topology was better for higher total
payload size. For higher payload sizes, there was sufficient
data available for aggregation when using lower dimensional
virtual topologies, so that a 3D or higher topology was not
worth the overhead of additional intermediate destinations.
The 6D topology, matching the five dimensions of the network
topology and cores per node as the sixth dimension, further
reinforced this conclusion, generally performing worse than
the 3D topology at this node count.

Additional benchmark performance results using TRAM are
available in the CHARM++ submission to the HPC Challenge
Competition [17].

E. Automatic Selection of Library Parameters

In order to automate the process of selecting TRAM config-
uration parameters, we employed the Performance-Analysis-
Based Introspective Control System (PICS) [18], which dy-
namically tunes performance parameters within a search space
specified by the user. Our tests of TRAM using the Control
System show it to be effective in selecting aggregation buffer
size and virtual topology specifications which maximize per-
formance. Figure 5 plots the performance of runs of the all-
to-all benchmark on 64 nodes of Blue Gene/Q. The Control
System converged to a proper buffer size within 5 decisions
and to a good virtual topology within 25 decisions.

VI. APPLICATION RESULTS

We will now take a look at two production-level applica-
tions whose performance improved when we used TRAM to
aggregate fine-grained messages.

For each of these applications, using TRAM required mak-
ing relatively minor code changes to instantiate, initialize and
terminate the library, process data items, and replace sends
with submission of data items to TRAM. These changes
amounted to an additional 141 lines of code for EpiSimdemics
and 171 lines of code for ChaNGa. For each application, less
than 0.5% of the application code was affected.
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A. N-Body Simulations: ChaNGa

ChaNGa [19], [20] is a code for performing collisionless
N-body simulations. It simulates cosmological phenomena
with periodic boundary conditions in comoving coordinates or
isolated stellar systems. It uses a Barnes-Hut tree to calculate
gravity, with hexadecapole expansion of nodes and Ewald
summation for periodic forces. The same tree is also used for
neighbor finding required by the hydrodynamics component
that uses the Smooth Particle Hydrodynamics (SPH) algo-
rithm. Timestepping is done with a leapfrog integrator with
individual time steps for each particle.

Gravity is a long-range force, so ChaNGa simulations
involve heavy network communication. Most of this com-
munication is not fine grained. Although individual particles
are only 40 bytes in size, a hierarchy of abstractions in the
code groups the particles into structures of increasing size to
control the grain size for computational and communication
purposes. While the messages which communicate the data
are typically not fine-grained, the messages which request the
data for particles or groups of particles are very fine-grained,
having just 16 bytes of payload data. These messages, typically
representing 30 - 50% of the total number of messages in a
run, are a good match for aggregation using TRAM.

Figure 6 shows average iteration time with and without
TRAM for a 50 million particle simulation of a dwarf galaxy
formation, using 10-iteration runs on Vesta with 64 processes
per node. We found that using TRAM to aggregate the request
messages improved execution time for the gravity-calculation
phase of the application by 20 - 25%, leading to a 15 -
20% overall performance improvement for most node counts.
At 512 nodes with this dataset, the application reached its
scaling limit, where the portion of the time spent in the
gravity phase was smaller, and the impact of using TRAM
less noticeable as a result. For the TRAM runs, we used a
3D virtual topology and a buffering memory footprint of just
4096 data items of size 16 bytes, reinforcing the idea that
a relatively small aggregation buffer space provides a large
performance improvement.

B. Contagion Simulations: EpiSimdemics

EpiSimdemics [21], [22] is an agent-based application
which simulates the spread of contagion over extremely large
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Fig. 6: ChaNGa performance on Blue Gene/Q

interaction networks. Contagion refers to transmitted phe-
nomena such as diseases, opinions, malware propagation in
computer networks, spread of social movements, etc. Here,
we consider the spread of a disease over the contact net-
work of a population. Person agents send visit messages to
locations they plan to visit. When a location receives all the
visit messages, interactions between spatially and temporally
colocated people are computed and infection messages are
sent to newly infected agents. Once an agent receives all the
infection messages destined for it, its health state is updated.

For this simulation, the primary communication pattern
is the person to location communication. In the CHARM++
implementation, there are two types of object arrays called
LocationManager and PersonManager to handle collections
of location and person objects. The PersonManager to Loca-
tionManager communication can be expressed as a bipartite
graph. Since PersonManager contains many persons and each
person can visit many locations, this communication pattern is
many to many. In a typical simulation scenario, visit messages
have size 36 bytes and account for more than 99% of the total
communication volume.

Manual buffering vs. TRAM The initial implementation
of EpiSimdemics used manual application-specific buffering
for reducing communication overhead. This manual buffering
operates at the object level, and combines the messages des-
tined to the same LocationManager object. There is one fixed-
size buffer for each pair of PersonManager-LocationManager
objects, making the total number of buffers M ∗N if there are
M PersonManager objects and N LocationManager objects.
The buffer size parameter is controlled through the configu-
ration file. The application aware nature of manual buffering
allows some optimizations. Since all the messages originating
from an object are combined and sent to the same destination
object, some fields, such as the index of the source object,
need to be sent only once. In our case, this resulted in an
extra 12 bytes (hence 48 bytes total) overhead per data item
when using TRAM compared to application-specific buffering.

However, TRAM provides multiple benefits compared to
application-specific buffering: (1) it saves programming ef-
fort since it is a library as opposed to application-specific
implementations; (2) it operates at processor level, allowing
it to perform more aggregation than the object-level manual
buffering; (3) it is topology-aware; (4) it generally uses less
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memory for buffering. Manual buffering allocates a fixed
buffer for each object pair, while TRAM can share the
buffer space over multiple source and destination objects. The
maximum memory required per process for manual buffering
in our simulations is (36×PerChareBufferSize×P ) bytes
whereas for TRAM it is (48 × PerProcessBufferSize).
Hence, per process memory requirement for manual buffering
grows as θ(P), making it unscalable.

Results We evaluated the performance using TRAM on the
Vulcan Blue Gene/Q system. EpiSimdemics was run using the
CHARM++ PAMI BlueGeneQ SMP machine layer [23]. For
TRAM, we experimented with various topologies – 6D, 3D
and 2D. Figure 7 shows the execution time for a contagion
simulation on population data of the state of California for
various node counts using a buffer size of 64 items. At medium
scale, 3D topology marginally outperformed 6D, whereas for
8K nodes, 6D was marginally better.

Figure 8 compares the application speedup for three aggre-
gation scenarios: TRAM using 6D topology, manual buffer-
ing, and direct sending without aggregation, for a contagion
simulation over the populations of three different states. A
buffer size of 64 items was used for TRAM and manual
buffering. The speedup is calculated with respect to a base
run. The base run refers to sequential execution, provided
that the memory footprint of the application fit in a single
node. Otherwise, base execution time was approximated by
running on 2 or 4 nodes and assuming ideal speedup up to
that point. For small scale (1–128 nodes), TRAM performs
almost as well as manual buffering and up to 4x better than
without aggregation. At larger scale (beyond 256 nodes),
TRAM outperforms manual buffering. For CA dataset, at 8K
nodes the execution time using TRAM was 7.7s compared to
17.2s using manual buffering.

Understanding TRAM Performance In section IV, we
identified bandwidth utilization improvement and commu-
nication overhead reduction as the two main mechanisms
for performance improvement from using TRAM. Using our
performance model along with experimentally determined
performance parameters, we can separately approximate the
benefit due to each of the two mechanisms. For a given
dataset, the number of visit messages in our simulations was
constant. By multiplying this number by an experimentally

Estimated Observed TRAM
#Nodes CPU Overhead (s) Communication (s) Improve- Final

No Aggr TRAM No Aggr TRAM ment (s) Time (s)

8 6900 646 6900 122 8470 4220
16 3450 324 3610 67.3 4200 2120
32 1720 161 1700 35.9 1960 1080
64 862 80.8 954 19.5 974 542
128 431 40.4 470 11.6 478 283
256 215 20.2 155 9.14 236 147
512 108 10.1 73.1 4.71 113 77.7
1024 53.9 5.06 42.6 2.52 49.0 41.3
2048 26.9 2.52 23.3 1.51 25.6 22.5
4096 13.5 1.26 12.6 .924 14.8 12.4
8192 6.73 .630 9.88 .462 7.13 7.69

TABLE III: Estimated overhead due to message processing
and communication for EpiSimdemics on Blue Gene/Q (CA
dataset) when not using aggregation, compared to the observed
improvement in execution time from using TRAM

determined value for the constant per message runtime system
overhead incurred at the sender and destination (about 5 µs
each), we obtained an upper bound for the communication
overhead incurred in an EpiSimdemics simulation. Likewise,
we approximated network communication time using the total
number of bytes sent on the network for a given simulation
and an experimentally determined bandwidth utilization for an
all-to-all communication pattern for each node count. We also
approximated the corresponding network and processing time
when using TRAM based on the model from section IV.

Table III compares the aggregate time spent for message
processing and network communication when not using ag-
gregation and when using TRAM to aggregate. For reference,
the total observed improvement in execution time from using
TRAM is also presented. Results suggest that the overall
improvement from TRAM is due to a combination of reduction
in CPU overhead and improved bandwidth utilization. As
expected, the processing and network time largely overlap.

VII. CONCLUSION

We have presented and analyzed TRAM, a streaming li-
brary for optimization of fine-grained communication using
aggregation and routing of messages over virtual mesh topolo-
gies. Our experiments have shown TRAM to be an effective
tool in improving performance in benchmarks and scientific
applications (by up to 4x), while our analysis identified the
key performance trade-offs of the approach. We also showed
that parameter selection for the library can be automatically
optimized. Our future plans are to investigate alternative
virtual topologies and aggregation techniques.
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[16] L. Kalé and S. Krishnan, “CHARM++: A Portable Concurrent Object
Oriented System Based on C++,” in Proceedings of OOPSLA’93,
A. Paepcke, Ed. ACM Press, September 1993, pp. 91–108.

[17] L. Kale, A. Arya, N. Jain, A. Langer, J. Lifflander, H. Menon, X. Ni,
Y. Sun, E. Totoni, R. Venkataraman, and L. Wesolowski, “Migratable
Objects + Active Messages + Adaptive Runtime = Productivity +
Performance A Submission to 2012 HPC Class II Challenge,” Parallel
Programming Laboratory, Tech. Rep. 12-47, November 2012.

[18] Y. Sun, J. Lifflander, and L. V. Kale, “PICS: A Performance-Analysis-
Based Introspective Control System to Steer Parallel Applications,”
in ACM Proceedings of 4th International Workshop on Runtime and
Operating Systems for Supercomputers ROSS 2014, Munich, Germany,
June 2014.

[19] F. Gioachin, A. Sharma, S. Chakravorty, C. Mendes, L. V. Kale, and
T. R. Quinn, “Scalable cosmology simulations on parallel machines,” in
VECPAR 2006, LNCS 4395, pp. 476-489, 2007.

[20] P. Jetley, L. Wesolowski, F. Gioachin, L. V. Kalé, and T. R. Quinn, “Scal-
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