
Mapping to Irregular Torus Topologies and Other
Techniques for Petascale Biomolecular Simulation

James C. Phillips, Yanhua Sun, Nikhil Jain, Eric J. Bohm, Laxmikant V. Kalé

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
{jcphill, sun51, nikhil, ebohm, kale}@illinois.edu

Abstract— Currently deployed petascale supercomputers typi-
cally use toroidal network topologies in three or more dimensions.
While these networks perform well for topology-agnostic codes
on a few thousand nodes, leadership machines with 20,000
nodes require topology awareness to avoid network contention
for communication-intensive codes. Topology adaptation is com-
plicated by irregular node allocation shapes and holes due to
dedicated input/output nodes or hardware failure. In the context
of the popular molecular dynamics program NAMD, we present
methods for mapping a periodic 3-D grid of fixed-size spatial
decomposition domains to 3-D Cray Gemini and 5-D IBM Blue
Gene/Q toroidal networks to enable hundred-million atom full
machine simulations, and to similarly partition node allocations
into compact domains for smaller simulations using multiple-
copy algorithms. Additional enabling techniques are discussed
and performance is reported for NCSA Blue Waters, ORNL
Titan, ANL Mira, TACC Stampede, and NERSC Edison.

I. INTRODUCTION

Petascale computing is a transformative technology for
biomolecular science, allowing for the first time the simulation
at atomic resolution of structures on the scale of viruses and
cellular organelles. These simulations are today a necessary
partner to experimentation, not only interpreting data and sug-
gesting new experiments, but functioning as a computational
microscope to reveal details too small or too fast for any other
instrument. With petascale biomolecular simulation today,
modern science is taking critical steps towards understanding
how life arises from the physical and chemical properties of
finely constructed, but separately inanimate components.

To illustrate the significance of this capability, we consider
two example simulations shown in Figure 1. On the left we
have the first-ever atomic-level structure of a native, mature,
HIV capsid, produced via the combination of cryo-electron
microscopy and a 64 million-atom simulation using our pro-
gram NAMD [1] on the Blue Waters Cray XE6 at NCSA.
Although composed of a single repeating protein unit, arranged
in pentamers and hexamers as in a fullerene, the capsid is
non-symmetric and as such no single part can be simulated
to represent the whole. The publication of the HIV capsid
structure on the cover of Nature in May of 2013 [2] is only
the beginning, and petascale simulations are now being used
to explore the interactions of the full capsid with drugs and
with host cell factors critical to the infective cycle.

On the right of Figure 1 is shown a 100 million-atom model
of the photosynthetic chromatophore, a spherical organelle in
photosynthetic bacteria that absorbs sunlight and generates

Fig. 1. HIV capsid (A) and photosynthetic chromatophore (B).

chemical energy stored as ATP to sustain the cell. A 20
million-atom simulation of a smaller photosynthetic membrane
has been performed already [3]. Simulating the entire spherical
organelle will allow the study of how the 200 proteins of
the chromatophore interlock to carry out some 30 processes,
potentially guiding the development of bio-hybrid devices for
efficient solar energy generation.

In pushing NAMD and its underlying runtime system,
Charm++, towards petascale simulations of 100 million atoms
on machines with hundreds of thousands of cores, many of
the necessary modifications and extensions have been well
anticipated. Having done previous work on topology adaptation
for the Blue Gene series of machines, and anticipating the
much-improved Cray Gemini network, optimization for torus
networks should have been well understood. Unfortunately,
our existing techniques were not suitable for the production
environment we faced on Blue Waters and Titan, as while the
machines were now large enough to face significant topology
effects, the nodes allocated to particular jobs were often not
compact blocks, and were always punctuated by I/O nodes.

This paper presents a collection of related techniques
implemented in NAMD for robustly and elegantly mapping
several object-based parallel decompositions to the irregular
torus topologies found on Cray XE6/XK7 platforms. These
techniques rely on the cross-platform Charm++ topology in-
formation API and recursive bisection to produce efficient
mappings even on non-toroidal networks. The specific decom-
positions addressed are machine partitioning for multiple copy

SC14: International Conference for High Performance Computing, Networking, Storage and Analysis

978-1-4799-5500-8/14 $31.00 © 2014 IEEE

DOI 10.1109/SC.2014.12

81

algorithms, mapping of NAMD’s fixed-size spatial decompo-
sition domains onto the machine torus, and mapping of the
particle-mesh Ewald (PME) full electrostatics 3-D Fast Fourier
Transform (FFT) onto the spatial decomposition. Additional
optimizations presented are the coarsening of the PME grid via
8th-order interpolation to reduce long-range communication,
the offloading of PME interpolation to the GPUs on Cray XK7,
and the removal of implicit synchronization from the pressure
control algorithm.

We present performance data for benchmarks of 21M and
224M atoms on up to 16,384 nodes of the NCSA Blue Waters
Cray XE6, the ORNL Titan Cray XK7, and the ANL Mira
Blue Gene/Q, as well as 4096 nodes of the NERSC Edison
Cray XC30 and 2048 nodes of the TACC Stampede InfiniBand
cluster. The performance impact of individual optimizations is
demonstrated on Titan XK7.

II. BACKGROUND

Both NAMD [1] and Charm++ [4] have been studied
extensively for performance optimizations and scalability. A
significant amount of research has also been performed on
topology aware mapping to improve application performance.
In this section, we briefly summarize these key topics and state
how the presented work differs from past work.

A. Charm++

Charm++ [5], [6] is an overdecomposition-based message-
driven parallel programming model. It encourages decom-
position of the application domain into logical entities that
resemble the data and work units of the application. The
program is defined in terms of these entities, encapsulated
as C++ objects, called chares. Under the hood, a powerful
runtime system (RTS) maps and schedules execution of the
chares on processors. The order of execution is determined
by the presence of data (messages for chares) and priorities
assigned to them by the programmer. Decomposition into
chares and empowering of the RTS enables adaptivity to
enhance both the programming productivity and performance.
In particular, the chares can be migrated from one processor
to another by the RTS, which allows load balancing.

On most machines, Charm++ is implemented on top of
the low-level communication layer, provided by the system,
for best performance (called native builds). PAMI [7], [8],
uGNI [9], [10], [11], and IB-Verbs [12] are used on IBM
Blue Gene/Q, Cray XE6/XK7/XC30, and InfiniBand clusters
respectively for native builds. Charm++ can also be built
on top of MPI on any system. On fat nodes, Charm++ is
typically built in SMP mode, in which a process is composed
of a dedicated communication thread for off-node commu-
nication and the remaining threads for computation. Many
Charm++ applications, including NAMD [1], OpenAtom [13],
and EpiSimdemics [14], have been shown to scale to hundreds
of thousands of cores using the native builds and the SMP
mode.

While the default practice is to delegate all decision making
to the RTS, the programmer can also help the RTS in making
optimal decisions. Given that many programmers are familiar
with the computation and communication characteristics of
their applications, such guidance can improve performance

significantly. Mapping of chares onto the processor allocation
is one of the important decisions in which programmers can
guide the RTS; user-defined novel mapping strategies for
biomolecular applications is a key contribution of this paper.

B. NAMD

The form and function of all living things originate at
the molecular level. Extensive experimental studies, based
on X-ray diffraction and cryo-electron microscopy, are per-
formed to study biomolecular structures and locate positions
of the protein atoms. While these experimentally determined
structures are of great utility, they represent only static and
average structures. Currently, it is not possible to observe the
detailed atomic motions that lead to function. Physics-based
simulations are of great utility here in enabling the study of
biomolecular function in full atomic detail.

NAMD [1] is heavily used for such simulations of the
molecular dynamics of biological systems. Its primary focus is
on all-atoms simulation methods using empirical force fields
with a femtosecond time step resolution. Given that biological
systems of interest are of fixed size, the stress for NAMD
is on strong scaling, which requires extremely fine-grained
parallelization, in order to simulate systems of interest in
reasonable time.

Parallel Decomposition: NAMD is implemented on top of
Charm++, and thus provides an object-based decomposition for
parallel execution. Atomic data is decomposed into equally-
sized spatial domains, called patches, whose extent is de-
termined by the short-range interaction cutoff distance. The
work required for calculation of short-range interactions is
decomposed into computes. Each compute is responsible for
computing forces between a pair of patches. The long range
interaction is computed using the 3-D Fast Fourier Transform
(FFT) based particle-mesh Ewald method (PME). The 3-D
FFT is decomposed into pencils along each dimension (X, Y,
Z). The short-range and long-range interactions are computed
simultaneously as they are scheduled by Charm++’s RTS
with priority being given to long-range interactions. Note that
the object-based decomposition of NAMD is independent of
the process count and allows for fine-grained parallelization
necessary for scalability. At scale, the performance of NAMD
is significantly impacted by the mapping of the patches,
computes, and pencils on the processors (Section VII).

GPU Acceleration: The short-range interaction computation is
the most compute intensive component in NAMD. Therefore,
NAMD offloads this computation to GPUs on systems with
GPUs [15]. Every compute assigned to a GPU is mapped to
a few GPU multiprocessor work units (typically one or two).
After the data is copied to the GPU by the CPU, two sets
of work units are scheduled. The first set calculates forces
for remote atoms, which requires off-node communication;
the second set calculates forces for local atoms only. This
allows some overlap of communication and computation [16].
In the current GPU design of NAMD, each GPU is managed
by a single shared context on a node (in SMP mode). This
arrangement greatly increases the amount of work available to
the GPU to execute in parallel, in comparison to the old mode
in which each thread managed its own context with the GPU.
This also eliminates redundant copying of atom coordinates to

82

the GPU. A similar offload strategy is used for the Intel Xeon
Phi coprocessor.

Petascale Adaptations: Since the advent of petascale systems,
NAMD has been heavily optimized to provide scalability on
leadership class supercomputers. Mei et al. showed the utility
of the node-awareness techniques deployed in NAMD to scale
it to the full Jaguar PF Cray XT5 (224, 076 cores) [17].
Building on that work, Sun et al. explored several techniques
for improving fine-grained communication on uGNI [11]. For
the 100-million-atom STMV system, they improved the time
per step from 26 ms/step on Jaguar XT5 to 13 ms/step
using 298, 992 cores of Jaguar XK6. Kumar et al.’s work on
optimizing NAMD on IBM’s Blue Gene/Q resulted in time
per step of 683 microseconds with PME every 4 steps for the
92,000-atom ApoA1 benchmark.

C. Multiple-copy Algorithms and Charm++ Partitions
Multiple-copy algorithms (MCA) refer to the methodology

in which a set of replicated copies of a system are studied
simultaneously. They provide a powerful method to character-
ize complex molecular processes by providing for enhanced
sampling, computation of free energies, and refinement of
transition pathways. Recently, a robust and generalized im-
plementation of MCAs has been added to NAMD based on
the partition framework in Charm++ [18].

Charm++’s generalized partition framework is designed
to enable execution of multiple Charm++ instances within a
single job execution. When the user passes a runtime argument,
+partitions n, the Charm++ RTS divides the allocated set of
processes into n disjoint sets. Each of these sets are indepen-
dent Charm++ instances (similar to MPI subcommunicators)
in which a traditional Charm++ instance can be executed.
Additionally, there is API support for these instances to com-
municate with other instances executing in the same job, and
for mapping the partitions using topology aware algorithms.

NAMD leverages the partition framework to launch sev-
eral NAMD instances in a replicated execution. In order to
communicate between the NAMD instances, a new API has
been added to its Tcl scripting interface, which in turn uses the
API exposed by Charm++ for inter-partition communication.
The Tcl based API serves as a powerful tool because it
enables generalized MCAs without any modification to the
NAMD source code. NAMD’s MCA implementation has been
demonstrated to be massively scalable, in part due to the
scalable partition framework of Charm++ [18].

D. Topology Aware Mapping
In order to scale to hundreds of thousands of cores, ex-

ploiting topology awareness is critical for scalable applications
such as NAMD. A majority of current top supercomputers
deploy torus-based topologies. IBM Blue Gene/Q is built upon
a 5-dimensional torus with bidirectional link bandwidth of 2
GB/s [19]. Cray’s XE6/XK7 systems are based on Gemini
Interconnect, which is a 3-dimensional torus with variable link
bandwidths [20]. As a result, mapping on torus topologies
has been an active research topic for the HPC community in
general, and for NAMD in particular.

Yu et al. presented embedding techniques for three-
dimensional grids and tori, which were used in a BG/L MPI

library [21]. Agrawal et al. described a process for mapping
that heuristically minimizes the total number of hop-bytes
communicated [22]. Bhatele proposed many schemes and
demonstrated the utility of mapping for structured and un-
structured communication patterns on torus interconnects [23].
The work presented in the current paper differs from all of
the above work in the topology it targets. Finding a good
mapping in the presence of holes in an irregular grid is
significantly harder in comparison to finding a similar mapping
on a compact regular grid. For irregular topologies, Hoefler et
al. presented an efficient and fast heuristic based on graph
similarity [24]. However, the generality in their approach
ignores the fact that the target topology is part of a torus and
thus is not optimal for the given purpose.

Charm++ provides a generic topology API, called Topo-
Manager, that supports user queries to discover the topology
of torus networks. It also provides an API that helps in making
Charm++ applications node-aware. NAMD extensively utilizes
these features to map patches and computes in an efficient
manner on machines that provide compact allocations, such as
IBM Blue Gene/P and IBM Blue Gene/Q [25], [26]. However,
efficient mapping on irregular grids with holes in the allocated
set had not been done in NAMD before, and is the topic of
this paper.

III. MAPPING OF CHARM++ PARTITIONS

Multiple-copy algorithms employ ensembles of similar
simulations (called replicas) that are loosely coupled, with in-
frequent information exchanges separated by independent runs
of perhaps a hundred timesteps. The information exchanged
may be an aggregate quantity, such as the total energy of the
simulation or the potential energy of an applied bias. Based
on the exchanged value and possibly a random number, some
state is generally exchanged between pairs of neighboring
replicas. This state is often a control parameter such as a
target temperature or a bias parameter, but may be as large
as the positions and velocities of all atoms in the simulation.
Still, the data transferred between partitions is almost always
significantly less than the data transferred among nodes within
a partition during a typical timestep. Therefore, data exchange
between partitions can normally be neglected when optimizing
the performance of a multiple-copy simulation.

Due to the periodic coupling between replica simulations,
the performance of the collective simulation will be limited to
the performance of the slowest replica during each successive
independent run; perfect efficiency is achieved only if all
partitions perform at the same rate. The low performance
of the slowest replica may be due to static effects, result-
ing in consistently lower performance for a given partition
across timesteps and runs. It may also be low due to dy-
namic performance variability, resulting in different partitions
limiting aggregate performance on different runs. Dynamic
performance variability may be due to properties of the code,
such as data-dependent algorithms responding to divergent
replica simulations, or due to properties of the machine,
such as system or network noise. The later, machine-driven
performance divergence, can be minimized by selecting the
division of the nodes assigned to a job such that the partitions
on which the replica simulations run are as compact and
uniform as possible.

83

A naive partitioning algorithm that is employed in
Charm++ by default is to simply assign to each partition a
contiguous set of ranks in the overall parallel job. Thus the
first partition, of size p, is assigned the first p ranks, etc. Naive
partitioning is at the mercy of the job launch mechanism,
and is therefore subject to various pathological conditions.
The worst case would be for the queueing system to use a
round-robin mapping of ranks to hosts when multiple ranks
are assigned to each host, resulting in each partition being
spread across unnecessarily many hosts and each host being
shared by multiple partitions. Assuming, however, that ranks
are mapped to hosts in blocks, then naive partitioning is as
good as one can achieve on typical switch-based clusters for
which the structure of the underlying switch hierarchy is not
known. If the hosts in such a cluster are in fact mapped block-
wise to leaf switches, and this ordering is preserved by the
job scheduler and launcher, then naive partitioning will tend to
limit partitions to a minimal number of leaf switches. Similarly,
any locality-preserving properties of the job scheduler and
launcher of a torus-based machine will be preserved by naive
mapping.

In order to avoid the uncertainty of naive partitioning, we
have implemented in Charm++ a topology-adapted partitioning
algorithm for toroidal network topologies, based on recursive
bisection. Because the method is intended for loosely coupled
multiple-copy algorithms, variation in the degree of coupling
between particular pairs of replicas is neglected, allowing a
simpler algorithm than that described in Section IV for the
mapping of NAMD’s spatial domains. The only goal of the
partitioning algorithm is compactness of partitions, defined
roughly as minimizing the maximum distance between any
two ranks in the same partition.

The first phase of the algorithm is to convert the raw torus
coordinates provided by the Charm++ TopoManager API to an
optimized mesh topology. We note that Cray XE/XK machines
can be configured as torus or mesh topologies. While an API
for determining the torus/mesh dimensions exists, the API
does not distinguish between torus and mesh configurations.
We are therefore forced to assume a torus configuration in
all cases, based on the logic that all large machines use the
torus configuration, while any topology-based optimization on
smaller mesh-based machines will be of little effect anyway.

Having assumed a torus topology, the optimized mesh
topology is determined as follows. First, to guard against
fallback implementations of the TopoManager API, the torus
coordinates of each rank are mapped to the coordinates of
the first rank in its physical node, employing an independent
Charm++ API that detects when ranks are running on the
same host. This mapping to physical nodes also guards against
round-robin rank assignment. Second, all nodes are iterated
over to determine for each torus dimension those positions
that are occupied by one or more ranks. The set of occupied
positions in each dimension is then scanned to find the
largest gap, taking the torus periodicity into account; the torus
coordinates along each dimension are shifted such that the first
position past the end of the gap becomes zero. For example, a
torus dimension of length 12 with the occupied positions 3, 5,
6, 9 would be found to have a largest gap of length 5 spanning
positions 10, 11, 0, 1, 2. It would then be shifted by -3 to
optimized positions 0, 2, 3, 6 with an optimized mesh length

Fig. 2. Two stages of recursive bisection topology-adapted partition mapping.
The underlying grid represents nodes in the torus, with gaps for nodes that are
down, in use by other jobs, dedicated to I/O, or otherwise unavailable. The
dark lines represent the sorted node traversal order for bisection, aligned on
the left with the major axis of the full allocated mesh and on the right with the
major axes of the bisected sub-meshes. Grid element color represents recursive
bisection domains after each stage.

of 7. Similarly, occupied positions 2, 3, 10 have a largest gap of
length 6 spanning 4−9, and would be shifted by -10 (modulo
12) to optimized positions 0, 4, 5. Finally, the optimized mesh
dimensions are re-ordered from longest to shortest occupied
span.

The above optimized mesh topology is implemented as a
TopoManagerWrapper class with an additional functionality
of sorting a list of ranks by their optimized mesh coordinates
hierarchically along an ordered list of dimensions, with the
first dimension varying most slowly and the last dimension
varying most rapidly. The sorting is further done in the manner
of a simple “snake scanning” space-filling curve, reversing
directions at the end of each dimension rather than jumping
discontinuously to the start of the next line (see Fig. 2). This
sort functionality allows the recursive bisection partitioning
algorithm to be written simply as follows: Given a range of
partitions [0, N) and a set of P ranks such that N evenly
divides P (assuming equal-sized partitions), (1) find the min-
imal bounding box of the optimized mesh coordinates for all
ranks in the set, (2) sort the ranks hierarchically by dimension
from the longest to the shortest bounding box dimension
(longest varying most slowly), (3) bisect the partition range
and (proportionally for odd N) the set of ranks, and (4) recurse
on the lower and upper halves of the partition range and rank
set.

The above partitioning algorithm, illustrated in Fig. 2,
extends to any dimension of torus, makes no assumptions about
the shape of the network, handles irregular allocations and gaps
implicitly, and reduces to the naive partitioning algorithm in
non-toroidal topologies.

IV. MAPPING OF NAMD SPATIAL DOMAINS

We now extend the above topology-adapted partitioning
algorithm to support mapping of the fixed size 3-D grid of
spatial domains (termed patches). The primary goals of this
mapping is to achieve both load balance among the available
ranks and compactness of the patch set assigned to each
physical node, thus minimizing the amount of data sent across

84

the network. Mapping the patch grid to the torus network
of the machine is of secondary importance. This assignment
is complicated by the facts that not every PE (a Charm++
processing element, generally a thread bound to a single core)
may have a patch assigned to it, and that patches have different
estimated loads based on their initial atom counts.

The set of PEs to which patches will be assigned is
determined by excluding PEs dedicated to special tasks, such
as global control functions on PE 0. If the remaining PEs
exceed the total number of patches, then a number of PEs
equal to the number of patches is selected based on bit-reversal
ordering at the physical node, process, and thread-rank level
to distribute the patches evenly across the machine. Thus the
set of available PEs is never larger than the set of patches.
The load of each patch is estimated as a + natoms, where
a represents the number of atoms equivalent to the per-patch
overheads.

Recursive bisection of the patch mesh is analogous to the
recursive bisection of the network optimized mesh topology
above. The complications are that the set of PEs must be split
on physical node boundaries, and that the set of patches must
be split to proportionately balance load between the lower and
upper sets of PEs, but still guaranteeing that there is at least
one patch per PE in both the lower and upper sets of PEs.

The patch mapping algorithm begins by associating the
longest dimension of the full patch grid with the longest
dimension of the network optimized mesh topology, and sim-
ilarly the second and third-longest dimensions of both. These
associations are permanent, and when dividing the patch grid
along any dimension, the set of available PEs will be divided
along the corresponding dimension, if possible, before falling
back to the next-longest dimension.

Having associated axes of the patch grid with those of
the network torus, the assignment of patches to PEs proceeds
as follows: Given a set of patches and a set of at most
the same number of PEs, (1) find the minimal bounding
boxes of both the patches and the PEs, (2) sort the patches
hierarchically by dimension from longest to shortest, (3) sort
the PEs hierarchically by dimensions corresponding to those
by which the patches are sorted and then the remaining longest
to shortest, (4) bisect the PEs on a physical node boundary,
(5) bisect the patches proportionately by estimated load with
at least one patch per PE, and (6) recurse on the lower and
upper halves of the PE and patch sets.

If at step (4) all PEs are on the same physical node, then
the PEs are sorted by rank within the node and the patches are
sorted along the original user-specified basis vectors (typically
x,y,z) since these correspond to the alignments of the PME
1-D (slab) and 2-D (pencil) decomposition domains and this
sorting reduces the number of slabs or pencils with which each
PE will interact.

V. REDUCING PME COMMUNICATION

The PME full electrostatics evaluation method requires two
patterns of communication. The first pattern is the accumu-
lation of gridded charges from each PE containing patches
to the PEs that will perform the 3-D FFT, with the reverse
communication path used to distribute gridded electrostatic

potentials back to the patch PEs, which then interpolate forces
from the electrostatic gradient. The second pattern is the 3-D
FFT and inverse FFT, which requires a total of two transposes
for a 1-D decomposition or four for 2-D. In general a 1-D
decomposition is employed for smaller simulations and a 2-
D decomposition is employed for larger simulations on larger
node counts.

In optimizing the charge/potential grid communication pat-
tern we exploit the fact that both the patch grid and the PME
grid share the same origin in the simulation space and fill the
periodic cell. Unfortunately, the dimensions of the 3-D patch
grid and the 2-D PME pencil grid share no special relationship,
and, as discussed above, the patch grid mapping is designed for
3-D compactness. Finally, we require the PME pencil mapping
to perform well independently of what topology mapping is
employed for the patch grid.

On larger node counts not all PEs will contain a PME
pencil. This is due to decomposition overhead as pencils
approach a single grid line and due to contention for the
network interface on the host. There are three types of pencils:
Z, Y, and X, with the 2-D grid of Z pencils distributed across
the X-Y plane communicating with patches, and Y and X
pencils only participating in the 3-D FFT transposes. Pencils
of each type are distributed evenly across the processes and
physical nodes of the job to better utilize available network
bandwidth, preferring in particular for the Z pencils any PEs
that do not contain patches.

Thus our goal is to efficiently map the Z pencil grid of size
nx by ny to a pre-selected set of exactly nx × ny PEs. We
begin by calculating for each PE the average spatial coordinate
of the patches it contains or, if it has no patches, the average
coordinate of the patches of PEs in its process or, failing that,
the average coordinate of the patches of PEs on its physical
node. Extending the search for patches to the physical node
is common, as for smaller simulations NAMD is often run in
single-threaded mode with one process per core.

Having associated x, y coordinates with each PE (the z
coordinate is not used), we now employ recursive bisection
to map the pencil grid to the PEs as follows: Given an nx

by ny pencil grid and an equal number of PEs, (1) select the
longer dimension of the pencil grid (preferring X if equal), (2)
bisect the pencil grid on the selected dimension only (i.e, 5×5
becomes 2×5 and 3×5) (3) sort the PEs by the corresponding
coordinate, (4) bisect the sorted PEs proportionately with the
pencil grid (i.e, 25 above becomes 10 and 15), and (5) recurse
on the lower and upper halves of the pencil and PE sets.

With the Z pencils thus aligned to the patch grid, the next
issue is the mapping of the Y and X pencils so as to perform
the 3-D FFT transposes most efficiently. Beyond distributing
the pencils evenly across processes and physical nodes, as
noted above, we have as yet no clear answer, as optimizing Z
pencil to Y pencil communication (nx simultaneous transposes
between Z and Y pencils with the same X coordinate) tends
to pessimize Y pencil to X pencil transpose communication.
This is not unexpected, given that the algorithm evaluates
long-range electrostatics, an inherently global calculation. Our
current compromise is to optimize the Y to X to Y pencil
transposes by keeping X and Y pencils with the same Z
coordinate on contiguous ranks on the assumption that rank

85

proximity correlates with network connectivity.

Fortunately, FFT transpose communication for most
NAMD simulations is effectively overlapped and hidden by
short-range force evaluations. It is only for the largest simula-
tions on the largest and fastest machines that PME communi-
cation becomes a severe drag on performance and scaling. It is
also for very large simulations that the runtime of the FFT itself
becomes significant, due to its N log N scaling and the parallel
bottleneck of individual FFTs in each dimension. Therefore,
it is desirable to reduce both the size of PME communication
and the FFT runtime by coarsening the PME mesh from the
standard 1Å to 2Å.

There are two methods for preserving accuracy while
coarsening the PME mesh. The first method is to proportion-
ally increase the cutoff distance of the PME direct sum, which
is integrated into the NAMD short-range nonbonded force
calculation, while accordingly modifying the Ewald factor. The
cost of the direct sum is proportional to the cube of the cutoff
distance, so doubling the cutoff distance for a 2Å grid would
greatly increase an already major part of the calculation by up
to a factor of 8. Although in NAMD’s multiple timestepping
scheme this longer cutoff would only be required in theory
for timesteps on which PME is performed, maintaining multi-
ple cutoffs, pairlists, and short-range communication patterns
would greatly complicate the code.

The second method is to increase the PME b-spline in-
terpolation order from 4 to 8. 4th-order interpolation spreads
each charge to a 4× 4× 4 area of the PME charge grid, while
8th-order interpolation spreads each charge to an 8 × 8 × 8
area. While this is a factor of 8 increase in interpolation
work per atom, the total number of charge grid cells affected
per patch is greatly reduced; also each patch PE sends less
overall data to a larger number of pencils. A PME interpolation
order of 8 has long been supported in NAMD, so the only
additional development required was optimization of this little-
used code path. Note that 8th-order interpolation with a 2Å
mesh is only a performance benefit for petascale simulations,
as smaller simulations on smaller machines do not achieve
sufficient benefit from the reduced FFT and communication to
compensate for the increased cost of interpolation.

For traditional CPU-based machines such as Blue Gene/Q
and Cray XE6, even the increased cost of 8th-order PME
interpolation is small compared to the short-range nonbonded
calculation. For GPU-based machines such as Cray XK7,
however, the short-range nonbonded calculation is greatly
accelerated by the GPU and 8th-order PME interpolation
becomes of comparable cost, but performance is still limited
by GPU performance in many cases at this time. For very
large simulations on large machines, however, the PME FFT
transpose communication becomes a limit on performance and
it is therefore desirable to move PME interpolation to the GPU,
allowing PME communication to begin earlier and end later
in the timestep.

The NAMD PME interpolation CUDA kernels target the
NVIDIA Kepler architecture, using fast coalesced atomic
operations to accumulate charges onto the grid. The initial
implementation maintained a separate charge grid for each
PE, but this was later aggregated into a single grid per GPU.
This aggregation eliminated multiple messages being sent to

the same pencil by PEs sharing the same GPU, and was a
necessary optimization to realize a performance increase from
offloading PME interpolation to the GPU. A performance
improvement would also likely be observed on non-PME-
offloaded runs or CPU-only machines from similarly aggre-
gating PME data to a single grid per process or per physical
node, particularly going forward due to the continuing increase
in core and thread counts per node.

VI. REDUCING BAROSTAT SYNCHRONIZATION

The design of NAMD attempts to avoid global synchro-
nization whenever possible so as to allow staggering and
overlap of computation and communication between different
PEs. This design is enabled by the message-driven program-
ming style of Charm++, and is one of the unique features of
NAMD among molecular dynamics programs. Explicit global
barriers in NAMD are used only to simplify the code and to
ensure correctness in non-performance-critical operations, such
as separating startup phases or when returning control to the
master Tcl interpreter. These explicit barriers rely on Charm++
quiescence detection to ensure that all messages in flight have
been received and processed and have themselves generated
no additional outgoing messages.

It is still possible in Charm++ message-driven program-
ming to introduce implicit synchronization via serialization
of the control flow of the program through an (otherwise
nominally asynchronous) reduction and broadcast. An example
of implicit synchronization would be a simulation temperature
control mechanism (i.e., a thermostat) that requires a reduction
of the total kinetic energy of the simulation, followed by a
broadcast of a velocity rescaling factor that must be received
to advance atomic positions so that force evaluation for the
next timestep can begin. Such synchronizations cause spikes
in network traffic and contention, and can generate cascading
message floods as atomic coordinate messages from early
broadcast recipients overtake and delay the broadcast itself.

NAMD avoids implicit synchronization in temperature con-
trol by employing the non-global method of weakly-coupled
Langevin dynamics, in which the average temperature of each
atom is controlled stochastically by the addition of small
friction and random noise terms to the equations of motion.
The total system temperature is used to monitor the simulation,
but is not a control parameter and the simulation proceeds even
if the kinetic energy reduction is delayed.

Unfortunately, the method of controlling pressure in the
simulation cell (i.e., the barostat) is to adjust the cell volume
by rescaling the cell periodic basis vectors and all atomic
coordinates, which is necessarily a global operation requiring
the globally reduced pressure as a control parameter, and hence
introducing synchronization. As the PME contribution to the
pressure is available only on timesteps for which PME is
calculated it is not valid to calculate the pressure more often
than PME, and hence with multiple timestepping the frequency
of synchronization is reduced to that of PME full electrostatics
evaluation (2–4 steps).

The barostat equation of motion used in NAMD is in
essence (neglecting damping and noise terms) of the form
V ′′ = (P − Ptarget)/W , where V is the cell volume, P
and Ptarget are measured and target pressures, and W is the

86

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

N
o

d
e

 C
o

lu
m

n
 I

D

Node Row ID

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 2.2e+06

(a) randomized mapping (maximum)

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

N
o

d
e

 C
o

lu
m

n
 I

D

Node Row ID

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 2.2e+06

(b) optimized mapping (maximum)

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

N
o

d
e

 C
o

lu
m

n
 I

D

Node Row ID

 0

 200000

 400000

 600000

 800000

 1e+06

(c) randomized mapping (average)

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

N
o

d
e

 C
o

lu
m

n
 I

D

Node Row ID

 0

 200000

 400000

 600000

 800000

 1e+06

(d) optimized mapping (average)

Fig. 3. Maximum and average number of packets sent over each node’s ten 5-D torus network links by NAMD running the 21M atom benchmark on 1024
nodes of Mira IBM Blue Gene/Q using randomized and optimized topology. The nodes are represented in a 32 × 32 grid for presentation purposes only. The
value of each element is the number of 32-byte chunks sent. Darker shades indicate more communication.

conceptual “mass” of a piston that compresses or expands the
cell. The piston mass W is set large enough that the piston
oscillation period is on the order of 100 timesteps, to allow the
high level of noise in the instantaneous pressure to be averaged
out over time. The barostat is discretized with timestep h as
V ′i+1 = V ′i + h(Pi − Ptarget)/W and Vi+1 = Vi + hV ′i+1
(neglecting multiple timestepping for clarity). The broadcast of
Vi+1 is necessary to begin force evaluation for step i + 1, but
depends on the Pi pressure reduction, introducing the implicit
synchronization.

For very large simulations for which this synchronization
imposes a significant performance penalty, NAMD can intro-
duce a single timestep (i.e., a full force evaluation cycle) of
delay between the pressure reduction and the cell rescaling
broadcast. This delay is possible because the cell strain rate V ′
changes slowly. The lagged integrator is Vi+1 = Vi + 2hV ′i −
hV ′i−1; V ′i+1 = V ′i +h(Pi−Ptarget)/W . Note that Vi+1 is now
available before the Pi reduction is received, allowing the Pi−1

reduction and Vi+1 broadcast to overlap with the step i force
evaluation, and thus eliminating the implicit synchronization.

The error induced by the modified barostat integrator may
be made arbitrarily small by increasing the barostat mass and

therefore period. The barostat period is very long already due
to the high noise level in the instantaneous pressure that dwarfs
barostat feedback, and noise/damping terms are used to ensure
barostat thermal equilibrium and avoid sustained oscillation.

VII. RESULTS

A. Benchmark Simulations

Developing biomolecular model inputs for petascale sim-
ulations is an extensive intellectual effort in itself, often
involving experimental collaboration. As this is leading-edge
work we do not have previously published models available,
can not justify the resources to build and equilibrate throw-
away benchmarks, and cannot ask our users to provide us
their in-progress work which we would then need to secure.
By using synthetic benchmarks for performance measurement
we have a known stable simulation that is freely distributable,
allowing others to replicate our work.

Two synthetic benchmarks were assembled by replicating
a fully solvated 1.06M atom satellite tobacco mosiac virus
(STMV) model with a cubic periodic cell of dimension
216.832Å. The 20stmv benchmark is a 5 × 2 × 2 grid con-
taining 21M atoms, representing the smaller end of petascale

87

simulations. The 210stmv benchmark is a 7×6×5 grid contain-
ing 224M atoms, representing the largest NAMD simulation
contemplated to our knowledge. Both simulations employ a
2fs timestep, enabled by a rigid water model and constrained
lengths for bonds involving hydrogen, and a 12Å cutoff. PME
full electrostatics is evaluated every three steps and pressure
control is enabled.

Titan Cray XK7 binaries were built with Charm++ platform
gemini gni-crayxe-persistent-smp and launched with aprun
arguments “-r 1 -N 1 -d 15” and NAMD arguments “+ppn
14 +pemap 0-13 +commap 14”. Blue Waters Cray XE6
binaries were built with Charm++ platform gemini gni-crayxe-
persistent-smp and launched with aprun arguments “-r 1 -
N 1 -d 31” and NAMD arguments “+ppn 30 +pemap 1-
30 +commap 0”. Mira Blue Gene/Q binaries were built
with Charm++ platform pami-bluegeneq-async-smp-xlc for
single-copy runs and pamilrts-bluegeneq-async-smp-xlc for
multiple-copy runs, and launched in mode c1 with envi-
ronment BG SHAREDMEMSIZE=32MB and NAMD argu-
ment +ppn48. Edison Cray XC30 binaries were built with
Charm++ platform gni-crayxc-smp and launched with aprun
arguments “-j 2 -r 1 -N 1 -d 47” and NAMD arguments “+ppn
46 +pemap 0-22,24-46 +commap 23” except for the 21M
atom benchmark on 4096 nodes, which was launched with
aprun arguments “-r 1 -N 1 -d 23” and NAMD arguments
“+ppn 22 +pemap 1-22 +commap 0”. Stampede InfiniBand
cluster binaries were built with Charm++ platform net-linux-
x86 64-ibverbs-smp-iccstatic and launched with one process
per node with charmrun arguments “++ppn 15 ++mpiexec
++remote-shell /path/to/ibrun wrapper” (ibrun wrapper is a
script that drops its first two arguments and passes the rest
to /usr/local/bin/ibrun) and NAMD arguments “+commap 0
+pemap 1-15” (except “++ppn 14” and “+pemap 1-14” for
21M atoms with Xeon Phi on 2048 nodes), adding “+devices
0” for Xeon Phi runs to avoid automatically using all Phi
coprocessors present on a node. Reported timings are the
median of the last five NAMD “Benchmark time” outputs,
which are generated at 120-step intervals after initial load
balancing.

B. Network Metrics

In order to quantify how the various topology map-
pings affect the network communication, we have measured
the network packets sent over each link for every phys-
ical node using the Blue Gene/Q Hardware Performance
Monitoring API (BGPM), which provides various network
event counters. In our experiments, we have collected the
count of 32-byte chunks sent on a link for each of the
10 links connected to a node. The corresponding event is
PEVT NW USER PP SENT.

Figure 3 shows the maximum and average communication
over 10 links on each node of 1024 nodes using randomized
and optimized topology mappings for the 21M atom bench-
mark. Optimized mapping significantly reduces the maximum
chunks sent over each link as shown in Figs. 3(a) and 3(b).
The maximum communication for each node using randomized
topology ranges from 932, 291 32-byte chunks to 2, 038, 856
32-byte chunks. In contrast, the range using an optimized
topology is from 420, 075 chunks to 755, 867 chunks. The
ratio is as high as 2.70. Meanwhile, the average chunks sent

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 256 512 1024 2048 4096 8192 16384

Number of Nodes

21M atoms

224M atoms

P
er

fo
rm

an
ce

 (
ns

 p
er

 d
ay

)

Topology Adapted
Machine Node Ordering

Topology Randomized

Fig. 4. NAMD strong scaling on Mira IBM Blue Gene/Q for 21M and 224M
atom benchmarks. Topology adaptation has little impact on performance.

over all 10 links are also greatly reduced as shown in Figs. 3(c)
and 3(d). The average count for 1024 nodes using randomized
topology is 657, 748 chunks, while it is 340, 279 chunks
using optimized topology. The ratio is as high as 1.93. These
numbers shows that our topology mapping scheme decreases
both the maximum number of chunks sent over any link and
the average traffic sent over the network.

C. Performance Impact of Optimizations

Having demonstrated that our topology mapping method
does reduce network traffic on Blue Gene/Q, we run the two
benchmark systems across a range of node counts for three
conditions: fully topology adapted, machine node ordering
(topology adaptation disabled and taking the nodes in the ma-
chine native rank order), and topology randomized (topology
adaptation disabled and node order randomized). The results,
shown in Fig. 4, demonstrate no improvement. This is in fact a
great triumph of the 5-D torus network, at least relative to the
performance achieved by NAMD on the machine. The limited
scaling from 4096 to 8192 nodes for the smaller benchmark is
likely due to parallelization overheads, as 48 threads per node
are used to keep the 16 cores, each with 4 hardware threads,
busy. Even 4096 nodes represents 196,608-way parallelism for
21M atoms, barely 100 atoms per PE.

We repeat this experiment on the GPU-accelerated Titan
Cray XK7. While on Blue Gene/Q jobs run in isolated parti-
tions of fixed power-of-two dimensions and therefore exhibit
consistent and repeatable performance, on Cray XE6/XK7
nodes are assigned to the jobs by the scheduler based on
availability. Hence, even jobs that run back-to-back may expe-
rience greatly differing topologies. In order to eliminate this
source of variability, all comparisons between cases for the
same benchmark system on the same node count are run within
a single job and therefore on the exact same set of nodes.

As shown in Fig. 5, significant topology effects are ob-
served, with topology adaptation increasing efficiency for
the larger simulation by 20% on 8192 nodes and 50% on
16,384 nodes. A 60% performance penalty for the randomized
topology is also observed.

88

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 256 512 1024 2048 4096 8192 16384

Number of Nodes

21M atoms

224M atoms

P
er

fo
rm

an
ce

 (
ns

 p
er

 d
ay

)

Topology Adapted
Machine Node Ordering

Partitioner Node Ordering
Topology Randomized

Fig. 5. NAMD strong scaling on Titan Cray XK7 for 21M and 224M atom
benchmarks. Topology adaptation has a significant impact on performance.

An additional condition is added in which the node order-
ing is taken from the topology-adapted Charm++ partitioning
algorithm described in Sec. III applied in the degenerate case
of a single partition, yielding a node ordering sorted along the
longest dimension of the allocation. The Charm++ partitioner
node ordering is shown to be inferior to the machine native
ordering, which appears to be some locality-preserving curve
such as the Hilbert curve. For some tests of the smaller bench-
mark on 4096 nodes, the machine native ordering without
topology adaptation is superior to the partitioner ordering even
with NAMD topology adaptation (results not shown). The ideal
combination is machine native ordering with NAMD topology
adaptation.

The effect of node ordering on performance despite NAMD
topology adaptation can be attributed to parts of NAMD
that are not topology adapted but rather assume a locality-
preserving node ordering. Examples include PME X and Y
pencil placement, broadcast and reduction trees, and the hier-
archical load balancer, which only balances within contiguous
blocks of PEs. This suggests that the Charm++ partitioner
could be improved by imposing a Hilbert curve ordering
on nodes within each partition, or by simply sorting by the
original machine native ordering.

We have tested the topology-adapted Charm++ partitioner
on Blue Gene/Q and confirmed that it works as expected. For
example, a 4096-node job with torus dimensions 8× 4× 4×
16× 2 partitioned into 128 replicas using the naive algorithm
yields for every partition a mesh topology of 1×1×1×16×2,
while the topology-adapted partitioner yields ideal 2×2×2×
2 × 2 hypercubes. Unfortunately, we are unable to measure
any performance improvement, which is unsurprising given
that no impact of topology on performance was observed for
large single-copy runs in Fig 4.

Testing the topology-adapted Charm++ partitioner com-
pared to naive partitioning on Titan XK7 yielded similarly
ambiguous results, likely because the machine native ordering
is already locality-preserving, and possibly better at dealing
with bifurcated node assignments than our recursive bisection
method. In both cases, one or a small number of partitions
were seen to have consistently lower performance, suggesting

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 256 512 1024 2048 4096 8192 16384

Number of Nodes

21M atoms

224M atoms

P
er

fo
rm

an
ce

 (
ns

 p
er

 d
ay

)

With All Optimizations
Without Reduced Barostat Synchronization

Without PME Interpolation Offloaded to GPU
Without 2A PME Grid and 8th-Order Interpolation

Fig. 6. NAMD strong scaling on Titan Cray XK7 for 21M and 224M atom
benchmarks, demonstrating effect of disabling individual optimizations.

a strategy of allocating more nodes than needed and excluding
outliers that would result in stretched partitions.

To observe the effects of the other techniques presented, we
repeat the Titan runs while disabling individual optimizations
separately (not cumulatively or in combination), as shown
in Fig. 6. The greatest improvement is due to the PME
grid coarsening via switching from 4th-order to 8th-order
interpolation, which doubles performance. Offloading PME
interpolation to the GPU has a 20% effect, followed by
removing synchronization from the pressure control algorithm
at 10%.

D. Performance Comparison Across Platforms

We compare performance across the Cray XK7, Cray XE6,
and Blue Gene/Q platforms as shown in Fig. 7 and Table I. Ti-
tan achieves better performance than Blue Waters XE6 (CPU-
only) on half the number of nodes, while Mira Blue Gene/Q
is slower than Blue Waters on even four times the number of
nodes. On the same number of nodes, Titan performance for
224M atoms exceeds Mira performance for 21M atoms. While
a Blue Gene/Q node is much smaller and consumes much less
power than a Cray node, parallelization overhead limits the
maximum achieved performance of the current NAMD code
base. Further, efficiently scaling the 224M-atom benchmark
to 32,768 nodes of Mira would require additional memory
optimizations in NAMD that we are not willing to pursue at
this time.

We finally compare in Fig. 8 the performance and scaling
of the torus-based Cray XK7/XE6 platform to machines with
non-toroidal networks as represented by the NERSC Edison
Cray XC30 and the TACC Stampede InfiniBand cluster with
Intel Xeon Phi coprocessors. Cray XC30 uses the same GNI
Charm++ network layer as Cray XK7/XE6 and a similarly
optimized ibverbs layer is used for InfiniBand clusters. We
observe excellent scaling and absolute performance for Edison
XC30 through 4096 nodes, but caution that this represents a
large fraction of Edison’s 5576 total nodes and therefore there
is little opportunity for interference from other jobs compared
to the much larger Blue Waters XE6, which scales nearly
as well. As the XK7/XE6 topology issues addressed in this

89

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 256 512 1024 2048 4096 8192 16384

Number of Nodes

21M atoms

224M atoms

P
er

fo
rm

an
ce

 (
ns

 p
er

 d
ay

)

Titan XK7
Blue Waters XE6

Mira Blue Gene/Q

Fig. 7. NAMD strong scaling on Titan Cray XK7, Blue Waters Cray XE6,
and Mira IBM Blue Gene/Q for 21M and 224M atom benchmarks.

paper were not observed on smaller machines the excellent
performance of the XC30 network on Edison should not be
extrapolated to larger future machines.

Stampede compares well to the Cray platforms considering
that the ibverbs Charm++ network layer is seldom exercised at
these node counts while the GNI network layer has been exten-
sively tuned for petascale simulations [10], [11]. Stampede has
6,400 nodes, which are connected by an FDR InfiniBand fat
tree network of eight core-switches and over 320 leaf switches
with a 5/4 oversubscription, but the largest job size supported
in normal operation is 2048 nodes. To this point on 224M
atoms Stampede using only CPUs nearly matches Blue Waters
XE6 node-for-node on both scaling and absolute performance,
while on 21M atoms Stampede falls only slightly short. The
inferior performance relative to Titan XK7 of Stampede using
CPUs and Xeon Phi coprocessors can be attributed somewhat
to the lack of PME interpolation offloading (of lesser impact
on Stampede with two CPUs per node than on Titan with
one), but mostly to the immaturity of the Xeon Phi offload
implementation in NAMD, particularly for 21M atoms on
2048 nodes (similar scaling issues are observed on smaller
simulations).

VIII. CONCLUSIONS

We have demonstrated that NAMD and Charm++ are
capable of harnessing the current generation of petascale
machines to enable atomic-resolution biomolecular simulations
of ground-breaking scale. Such simulations have in fact been
ongoing for several years, driving our software to its current
point of maturity.

We have implemented and tested simple, robust algorithms
for overcoming topology-related performance issues observed
for full-machine runs on the Cray XE6/XK7 toroidal network.
We are hopeful that the next generation Cray XC30 network
will not require similar topology awareness. Future related
work includes extending topology awareness to 3-D FFT
transposes, broadcast and reduction trees, and load balancing
in both Charm++ and NAMD.

We have also described and demonstrated the performance

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 256 512 1024 2048 4096 8192 16384

Number of Nodes

21M atoms

224M atoms

P
er

fo
rm

an
ce

 (
ns

 p
er

 d
ay

)

Titan XK7
Stampede CPU+Phi

Edison XC30
Blue Waters XE6

Stampede CPU only

Fig. 8. NAMD strong scaling on Titan Cray XK7, Blue Waters Cray
XE6, Edison Cray XC30, and Stampede InfiniBand cluster with Xeon Phi
coprocessors for 21M and 224M atom benchmarks.

TABLE I. NAMD PERFORMANCE AND EFFICIENCY

21M Atoms on 4096 Nodes
Machine ns/day ms/step Efficiency
Cray XC30 48.0 3.6 67%
Cray XK7 44.2 3.9 39%
Cray XE6 30.8 5.6 58%
Blue Gene/Q 7.9 20.1 65%

224M Atoms on 16,384 Nodes
Machine ns/day ms/step Efficiency
Cray XK7 23.0 7.5 47%
Cray XE6 14.3 12.1 79%
Blue Gene/Q 3.7 46.8 80%

impact of several optimizations for PME full electrostatics
and pressure control that enable the current level of NAMD
performance.

All code described is available free of charge online
in the NAMD 2.10 (http://www.ks.uiuc.edu/Research/namd/)
and Charm++ 6.6 (http://charm.cs.illinois.edu/) releases under
custom licenses that allows small sections of code to be copied
and reused in other programs without restriction.

ACKNOWLEDGMENTS

This work and other NAMD development is supported by
the National Institutes of Health via grant 9P41GM104601
“Center for Macromolecular Modeling and Bioinformatics”,
directed by Klaus Schulten. Assistance with GPU-acceleration
of NAMD has been provided by NVIDIA. Xeon Phi accelera-
tion in NAMD is largely the work of David Kunzman of Intel.
Fig. 1 was provided by Danielle Chandler and Juan Perilla.

This research is part of the Blue Waters sustained-petascale
computing project, which is supported by the National Science
Foundation (award number OCI 07-25070) and the state of
Illinois. Blue Waters is a joint effort of the University of Illinois
at Urbana-Champaign and its National Center for Supercom-
puting Applications. This work is also part of the Petascale

90

Computational Resource (PRAC) grant “The Computational
Microscope”, which is supported by the National Science
Foundation (award number OCI-0832673).
An award of computer time was provided by the Innovative

and Novel Computational Impact on Theory and Experiment
(INCITE) program. This research used resources of the Oak
Ridge Leadership Computing Facility located in the Oak Ridge
National Laboratory, which is supported by the Office of
Science of the Department of Energy under Contract DE-
AC05-00OR22725. This research also used resources of the
Argonne Leadership Computing Facility at Argonne National
Laboratory, which is supported by the Office of Science of
the U.S. Department of Energy under contract DE-AC02-
06CH11357, with access to Mira provided by Beniot Roux.
Computer time on Stampede at the Texas Advanced Com-

puting Center (TACC) at The University of Texas at Austin
was provided by grant MCA93S028 from the Extreme Science
and Engineering Discovery Environment (XSEDE), which
is supported by National Science Foundation grant number
OCI-1053575. This research used resources of the National
Energy Research Scientific Computing Center, a DOE Office
of Science User Facility supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

REFERENCES
[1] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,

C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, “Scalable molecular
dynamics with NAMD,” Journal of Computational Chemistry, vol. 26,
no. 16, pp. 1781–1802, 2005.

[2] G. Zhao, J. R. Perilla, E. L. Yufenyuy, X. Meng, B. Chen, J. Ning,
J. Ahn, A. M. Gronenborn, K. Schulten, C. Aiken, and P. Zhang,
“Mature HIV-1 capsid structure by cryo-electron microscopy and all-
atom molecular dynamics,” Nature, vol. 497, pp. 643–646, 2013,
doi:10.1038/nature12162.

[3] D. Chandler, J. Strümpfer, M. Sener, S. Scheuring, and K. Schulten,
“Light harvesting by lamellar chromatophores in Rhodospirillum pho-
tometricum,” Biophysical Journal, vol. 106, pp. 2503–2510, 2014.

[4] L. Kale, A. Arya, A. Bhatele, A. Gupta, N. Jain, P. Jetley, J. Lifflander,
P. Miller, Y. Sun, R. Venkataraman, L. Wesolowski, and G. Zheng,
“Charm++ for productivity and performance: A submission to the 2011
HPC class II challenge,” Parallel Programming Laboratory, Tech. Rep.
11-49, November 2011.

[5] B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon, E. Mikida,
X. Ni, M. Robson, Y. Sun, E. Totoni, L. Wesolowski, and L. Kale,
“Parallel Programming with Migratable Objects: Charm++ in Practice,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’14. New York,
NY, USA: ACM, 2014.

[6] L. Kale, A. Arya, N. Jain, A. Langer, J. Lifflander, H. Menon, X. Ni,
Y. Sun, E. Totoni, R. Venkataraman, and L. Wesolowski, “Migratable
Objects + Active Messages + Adaptive Runtime = Productivity +
Performance A Submission to 2012 HPC Class II Challenge,” Parallel
Programming Laboratory, Tech. Rep. 12-47, November 2012.

[7] S. Kumar, A. Mamidala, D. Faraj, B. Smith, M. Blocksome, B. Cer-
nohous, D. Miller, J. Parker, J. Ratterman, P. Heidelberger, D. Chen,
and B. Steinmacher-Burow, “PAMI: A parallel active message interface
for the BlueGene/Q supercomputer,” in Proceedings of 26th IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
Shanghai, China, May 2012.

[8] S. Kumar, Y. Sun, and L. V. Kale, “Acceleration of an Asynchronous
Message Driven Programming Paradigm on IBM Blue Gene/Q,” in Pro-
ceedings of 26th IEEE International Parallel and Distributed Processing
Symposium (IPDPS), Boston, USA, May 2013.

[9] Using the GNI and DMAPP APIs, Cray Inc., 2010, http://docs.cray.
com/books/S-2446-3103/S-2446-3103.pdf.

[10] Y. Sun, G. Zheng, L. V. Kale, T. R. Jones, and R. Olson, “A uGNI-
based Asynchronous Message-driven Runtime System for Cray Super-
computers with Gemini Interconnect,” in Proceedings of 26th IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
Shanghai, China, May 2012.

[11] Y. Sun, G. Zheng, C. M. E. J. Bohm, T. Jones, L. V. Kalé, and
J. C. Phillips, “Optimizing fine-grained communication in a biomolec-
ular simulation application on Cray XK6,” in Proceedings of the
2012 ACM/IEEE conference on Supercomputing, Salt Lake City, Utah,
November 2012.

[12] Infiniband Trade Association, “Infiniband Architecture Specification,
Release 1.0,” Tech. Rep. RC23077, October (2004).

[13] E. Bohm, A. Bhatele, L. V. Kale, M. E. Tuckerman, S. Kumar, J. A.
Gunnels, and G. J. Martyna, “Fine Grained Parallelization of the Car-
Parrinello ab initio MD Method on Blue Gene/L,” IBM Journal of
Research and Development: Applications of Massively Parallel Systems,
vol. 52, no. 1/2, pp. 159–174, 2008.

[14] J.-S. Yeom, A. Bhatele, K. R. Bisset, E. Bohm, A. Gupta, L. V.
Kale, M. Marathe, D. S. Nikolopoulos, M. Schulz, and L. Wesolowski,
“Overcoming the scalability challenges of epidemic simulations on
Blue Waters,” in Proceedings of the IEEE International Parallel &
Distributed Processing Symposium, ser. IPDPS ’14. IEEE Computer
Society, May 2014.

[15] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco,
and K. Schulten, “Accelerating molecular modeling applications with
graphics processors,” vol. 28, pp. 2618–2640, 2007.

[16] J. C. Phillips, J. E. Stone, and K. Schulten, “Adapting a message-
driven parallel application to GPU-accelerated clusters,” in SC ’08:
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing,
Austin, Texas, November 2008.

[17] C. Mei, Y. Sun, G. Zheng, E. J. Bohm, L. V. Kalé, J. C.Phillips, and
C. Harrison, “Enabling and scaling biomolecular simulations of 100 mil-
lion atoms on petascale machines with a multicore-optimized message-
driven runtime,” in Proceedings of the 2011 ACM/IEEE conference on
Supercomputing, Seattle, WA, November 2011.

[18] W. Jiang, J. Phillips, L. Huang, M. Fajer, Y. Meng, J. Gumbart,
Y. Luo, K. Schulten, and B. Roux, “Generalized scalable multiple
copy algorithms for molecular dynamics simulations in NAMD,” in
Computational Physics Communications, 2014.

[19] D. Chen, N. A. Eisley, P. Heidelberger, R. M. Senger, Y. Sugawara,
S. Kumar, V. Salapura, D. L. Satterfield, B. Steinmacher-Burow, and
J. J. Parker, “The IBM Blue Gene/Q interconnection network and
message unit,” in Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’11. ACM, 2011, pp. 26:1–26:10.

[20] R. Alverson, D. Roweth, and L. Kaplan, “The Gemini System Inter-
connect,” in 2010 IEEE 18th Annual Symposium on High Performance
Interconnects (HOTI), 2011.

[21] H. Yu, I.-H. Chung, and J. Moreira, “Topology mapping for Blue
Gene/L supercomputer,” in SC ’06: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing. New York, NY, USA: ACM, 2006, p.
116.

[22] T. Agarwal, A. Sharma, and L. V. Kalé, “Topology-aware task mapping
for reducing communication contention on large parallel machines,” in
Proceedings of IEEE International Parallel and Distributed Processing
Symposium 2006, April 2006.

[23] A. Bhatele, “Automating Topology Aware Mapping for Supercom-
puters,” Ph.D. dissertation, Dept. of Computer Science, University of
Illinois, August 2010, http://hdl.handle.net/2142/16578.

[24] T. Hoefler and M. Snir, “Generic topology mapping strategies for
large-scale parallel architectures,” in Proceedings of the international
conference on Supercomputing, ser. ICS ’11. New York, NY, USA:
ACM, 2011, pp. 75–84.

[25] S. Kumar, C. Huang, G. Zheng, E. Bohm, A. Bhatele, J. C. Phillips,
H. Yu, and L. V. Kalé, “Scalable Molecular Dynamics with NAMD on
Blue Gene/L,” IBM Journal of Research and Development: Applications
of Massively Parallel Systems, vol. 52, no. 1/2, pp. 177–187, 2008.

[26] A. Bhatelé, L. V. Kalé, and S. Kumar, “Dynamic topology aware load
balancing algorithms for molecular dynamics applications,” in 23rd
ACM International Conference on Supercomputing, 2009.

91

