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Abstract

Solving sparse triangular systems of linear equations is a performance bottle-
neck in many methods for solving more general sparse systems. Both for direct
methods and for many iterative preconditioners, it is used to solve the system
or improve an approximate solution, often across many iterations. Solving tri-
angular systems is notoriously resistant to parallelism, however, and existing
parallel linear algebra packages appear to be ineffective in exploiting significant
parallelism for this problem.

We develop a novel parallel algorithm based on various heuristics that adapt
to the structure of the matrix and extract parallelism that is unexploited by
conventional methods. By analyzing and reordering operations, our algorithm
can often extract parallelism even for cases where most of the nonzero matrix
entries are near the diagonal. Our main parallelism strategies are: (1) iden-
tify independent rows, (2) send data earlier to achieve greater overlap, and (3)
process dense off-diagonal regions in parallel. We describe the implementation
of our algorithm in Charm++ and MPI and present promising experimental
results on up to 512 cores of BlueGene/P, using numerous sparse matrices from
real applications.

Keywords: Triangular solver, Parallel algorithms, Sparse linear systems,
Distributed memory computers

1. Introduction

Solving sparse triangular linear systems is an important kernel for many
numerical linear algebra problems, such as linear systems and least squares
problems [1, 2, 3], that arise in many science and engineering simulations. It is
used extensively in direct methods, following a triangular factorization, to solve
the system, possibly with many right-hand sides, or to improve an approxi-
mate solution iteratively [4]. It is also a fundamental kernel in many iterative

∗Corresponding author: address: 201 N. Goodwin Avenue, Urbana, IL 61801; email: to-
toni2@illinois.edu; Tel: 1-217-4199843

Preprint submitted to Parallel Computing March 25, 2014



methods (such as Gauss-Seidel method) and in many preconditioners for other
iterative methods (such as Incomplete-Cholesky preconditioner for Conjugate
Gradient) [5]. Unfortunately, the performance of parallel algorithms for trian-
gular solution is notoriously poor, so they are performance bottlenecks for many
of these methods.

As an example, a Preconditioned Conjugate Gradient (PCG) method with
Incomplete-Cholesky as the preconditioner has two triangular solves with the
preconditioner matrix at every step. The preconditioner matrix has at least as
many nonzeros as the coefficient matrix. Therefore, the number of the float-
ing point operations for the triangular solves is proportional to the number of
nonzeros of the coefficient matrix. Thus, the triangular solves take about the
same time as the Sparse Matrix Vector product (SpMV), accounting for 50% of
the floating point operations (assuming sufficiently many nonzeros that the vec-
tor operations are negligible). Thus, if the triangular solves do not scale (which
is the case in most standard packages [6]), then according to Amdahl’s Law,
the parallel speedup of the PCG method is at most two no matter how many
processors are used. Therefore, improving the scalability of solving triangular
systems is crucial.

Solving sparse triangular systems is particularly resistant to efficient use of
parallel machines because there is little concurrency in the nature of the com-
putation and the work per data entry is small. The lack of concurrency is due
to structural dependencies that must be satisfied for the computation of each
solution entry. By the nature of the successive substitution algorithm, compu-
tation of each solution component potentially must await the computation of
all previous entries. Once these dependencies have been satisfied, computation
of the next solution component requires only one multiply-add and one divi-
sion. Thus, the communication cost is high compared with the computation,
especially on distributed-memory parallel computers.

Despite the apparent lack of parallelism and relatively high communication
overhead, sparse triangular systems are nevertheless usually solved in paral-
lel, both for memory scalability and because the matrix is typically already
distributed across processors from a previous computation (e.g., factorization).
This is probably why some standard packages implement triangular solves in
parallel even though parallel performance may be much slower than sequen-
tial computation, as we will observe later. Thus, it is desirable to achieve as
much efficiency as possible in parallel triangular solution, especially in view of
the many iterations often required that can dominate the overall solution time.
Our algorithm improves the performance of parallel triangular solution and pro-
vides good speedups for many matrices, even with strong (i.e., fixed problem
size) scaling.

Previous work on this problem has focused on two main directions. First,
various techniques, such as dependency analysis and partitioning, have been
employed to exploit sparsity and identify parallelism [7, 8, 9]. For example,
a level-set triangular solver constructs a directed acyclic graph (DAG) captur-
ing the dependencies among rows of the matrix. Then it processes each level
of the DAG in parallel and synchronizes before moving on to the next. Since
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data redistribution and many global synchronizations are usually required, these
methods are most suitable for shared memory machines, and most recent studies
have considered only shared memory architectures [8, 9]. Second, partitioning
the matrix into sparse factors and inversion is the basis of another class of meth-
ods [10, 11]. However, the cost of preprocessing and data redistribution may be
high, and the benefits seem to be limited. In addition, numerical stability may
be questionable for these nonsubstitution methods. Nevertheless, after years
of development, these methods have not found their way into standard linear
algebra packages, such as HYPRE [12], because of their limited performance.

Because of this lack of scalable parallel algorithms for solving triangular
systems, many packages such as HYPRE avoid algorithms that require it, often
thereby incurring numerical issues [6]. An example is hybrid smoothers that use
Gauss-Seidel within each processor but use Jacobi method between processors.
In addition, incomplete factorization schemes often drop interprocessor connec-
tions to be able to utilize faster algorithms. However, these methods introduce
new numerical issues, which our algorithm is likely to mitigate.

In this study, we devise an algorithm that uses various heuristics to adapt
to the structure of the sparse matrix, with the goal of exploiting as much par-
allelism as possible. Our data distribution is in blocks of columns, which is
natural for distributed-memory computers. Our analysis phase is essentially a
simple local scan of the rows and nonzeros, and is done fully in parallel, with
limited information from other blocks. The algorithm reorders the rows so that
independent rows are extracted for better concurrency. It also tries to process
the rows that are needed for other blocks (probably on the critical path) sooner
and send the required data. Another positive property of the algorithm is that
it allows various efficient node-level sequential kernels to be used (although not
evaluated here).

We describe our implementation in Charm++[13] and discuss the possible
implementation in MPI. We believe that many features of Charm++, such
as virtualization, make the implementation easier and enhance performance.
We use several matrices from real applications (University of Florida Sparse
Matrix Collection [14]) to evaluate our implementation on up to 512 cores of
BlueGene/P. The matrices are fairly small relative to the number of processors
used, so they illustrate the strong scaling of our algorithm. We compare our re-
sults with triangular solvers in the HYPRE [12] and SuperLU DIST [4] packages
to demonstrate the superiority of our algorithm relative to current standards.

2. Parallelism in Solving Sparse Triangular Systems

In this section we use examples to illustrate various opportunities for paral-
lelism that we exploit in our algorithm. Computation of the solution vector x
for an n× n lower triangular system Lx = b using forward substitution can be
expressed by the recurrence

xi = (bi −
i−1∑
j=1

lij xj)/lii, i = 1, . . . , n.
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For a dense matrix, computation of each solution component xi depends on
all previous components xj , j < i. For a sparse matrix, however, most of the
matrix entries are zero, so that computation of xi may depend on only a few
previous components, and it may not be necessary to compute the solution
components in strict sequential order. For example, Figure 1 shows a sparse
lower triangular system for which the computation of x8 depends only on x1, so
x8 can be computed as soon as x1 has been computed, without having to await
the availability of x2, . . . , x7. Similarly, computation of x3, x6, and x9 can be
done immediately and concurrently, as they depend on no previous components.
These dependencies are conveniently described in terms of matrix rows: we say
that row i depends on row j for j < i if lij 6= 0. Similarly, we say that row i
is independent if lij = 0 for all j < i. We can also conveniently describe the
progress of the algorithm in terms of operations involving the nonzero entries
of L, since each is touched exactly once.

l11
l21 l22

l33
l43 l44

l54 l55
l66
l76 l77

l81 l88
l99





x1

x2

x3

x4

x5

x6

x7

x8

x9


=



b1
b2
b3
b4
b5
b6
b7
b8
b9


Figure 1: Sparse matrix example 1.

Continuing with our example, assume that the columns of L are divided
among three processors (P1, P2, P3) in blocks, as shown by the dashed lines
and the color coded diagonal blocks (blue, green, gray) in Figure 1. Nonzeros
below the diagonal blocks are colored red. If each processor waits for all the
required data, processes its rows in increasing order and sends the resulting
data afterwards, then we have the following scenario. P2 and P3 wait while
P1 processes all its rows in order, then sends the result from l43 to P2 and the
result from l81 to P3. P2 can now process its rows while P3 still waits. After
P2 finishes, P3 now has all the required data and performs its computation.
Thus, all work is done sequentially among processors and there is no overlap.
Some overlap could be achieved by having P1 send the result from l43 before
processing row eight, so that P2 can start its computation earlier. But sending
data as they become available allows only limited overlap.

However, there is another source of parallelism in this example. Row 3 is
independent, since it has no nonzeros in the first two columns. Thus, x3 can
be computed immediately by P1, before computing x1 and x2. P1 can then
process l43 and send the resulting partial sum to P2. In this way, P1 and P2
can do most of their computations in parallel. The same idea can be applied to
processing of l76 and l81, and more concurrency is created.
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To exploit independent rows, they could be permuted to the top within their
block, as shown in Figure 2, and then all rows are processed in order, or the row
processing could be reordered without explicit permutation of the matrix. In
either case, rows 3, 6, and 9 of our example can be processed concurrently. P1
then processes l43, sends the result to P2, processes row 1 (in the original row
order), sends the result from l81 to P3, and finally completes row 2. Similarly,
P2 first processes row 6, sends the result from l76 to P3, receives necessary
data from P1, and then processes its remaining rows. P3 can process row 9
immediately, but must await data from P1 and P2 before processing its other
rows. 

l33
l11
l21 l22

l66
l43 l44

l54 l55
l99

l76 l77
l81 l88


Figure 2: Reordering rows of sparse matrix example 1.

This idea applies to some practical cases, but may not provide any benefit for
others. For example, Figure 3 shows a matrix with its diagonal and subdiagonal
full of nonzeros, which implies a chain of dependencies between rows, and the
computation is essentially sequential.

l11
l21 l22

l32 l33
l43 l44

l54 l55
l56 l66

l76 l77
l87 l88

l98 l99


Figure 3: Sparse matrix example 2.

Our previous example matrices had most of their nonzeros on or near the
diagonal. Matrices from various applications have a wider variety of nonzero
structures and properties. Another common case that may provide opportu-
nities for parallelism is having some denser regions below the diagonal block.
Figure 4 shows an example with a dense region in the lower left corner. If we
divide that region among two additional processors (P4 and P5), they can work
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on their data as soon as they receive the required solution components. In this
approach, P1 broadcasts the vector x(1..3) to P4 and P5 after it is calculated.
P4 and P5 then complete their computations and send the results for rows 8
and 9 to P3. For good efficiency, there should be sufficiently many entries in
the region to justify the communication and other overheads.

l11
l21 l22

l33
l43

l81 l82 l83
l91 l92 l93

l44
l54 l55

l66
l76 l77

l88
l99


Figure 4: Sparse matrix example 3.

These three strategies — sending data earlier to achieve greater overlap,
identifying independent rows, and parallel processing of dense off-diagonal re-
gions — form the basis for our algorithm.

3. Parallel Algorithm

In this section we describe in greater detail our algorithm for solving sparse
triangular systems.

Data decomposition and format. We assume that the basic units of parallelism
are blocks of columns, which are distributed in round-robin fashion among pro-
cessors for better load balance. We also assume that each block is stored in a
format that allows easy access to the rows, such as compressed sparse row (CSR)
format. This mixture of column and row views of the matrix results in man-
ageable pieces of data on each processor (a local row in this case), enabling the
algorithm to keep track of inter-block dependencies with low overhead. Alter-
natively, one could use parallel decomposition by rows with Compressed Sparse
Column (CSC) format. Furthermore, our algorithm can be adapted for other
decomposition schemes and storage formats that allow low overhead tracking of
inter-block dependencies. Investigation and evaluation of other decompositions
and formats for our algorithm is left for future work.

Global matrix information. The global information (e.g. parallel communica-
tion data structures) about the matrix needed for our algorithm on each unit of
parallelism (holding a block of columns) is comparatively small. For each local
row, the algorithm needs to know whether it depends on any block to the left of
this block. In addition, for each off-diagonal local row, it needs to know which
blocks to the right depend on it. This information is usually known or can be
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obtained from the previous stages of the application, such as symbolic factoriza-
tion phase of an incomplete factorization algorithm. Even if this information is
not present in the parallel data structures, it can be obtained easily before the
analysis phase, as outlined in Algorithm 1. This algorithm is mostly distributed
and does not take significant time compared to our triangular solve algorithm
(either analysis or solve phases), which we confirmed experimentally in our im-
plementation. The most important optimization required for this algorithm is
message agglomeration (discussed later).

Algorithm: propagateDependencies

Input: Row myRows[]
initialize dependency message d
for r in myRows do

if r is not diagonal then
store r ’s index in d

end

end
store this block’s index as original sender in d
send d to next block (on right)
for each dependency message m received do

for each row s in m do
if s has any nonzero in this block then

mark s as dependent
send an acknowledgement message for s

else
forward dependency info of s to next block on right

end

end

end
for each acknowledgement message a received do

// store information to know destinations of partial sums

of off-diagonal rows

store sender’s index for row (or rows) acknowledged in a

end
// terminate when all blocks have reached here and there is

no message left in system

terminate on quiescence
Result: Dependency information for each row in myRows is known

Algorithm 1: Propagate Row Dependency Information

Summary of algorithm. Algorithm 2 gives a high-level view of our method.
In summary, the diagonal rows of each column-block are first reordered for
better parallelism by identifying independent rows, as described in Algorithm 3.
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Next, the nonzeros below the diagonal block are inspected for various structural
properties. If there are “many” nonzeros below the diagonal region, then the off-
diagonal rows are divided and packed into new blocks. These off-diagonal blocks
are essentially tiles of the matrix and act as independent units of parallelism
similar to the regular column-blocks. However, they depend on their “master”
block to send them the required solution subvector before they can process any
of their elements, even if the potential data dependencies from the blocks to
their left are resolved. These new blocks are sent to processors in round-robin
fashion to create more parallelism.

Algorithm: ParallelSolve

// Blocks of matrix columns distributed to processors

Input: Row myRows[], Value myRhs[]
Output: x [], solution of sparse triangular system
// We know which rows depend on other blocks

reorderDiagonalBlock(myRows)
inspectOffDiagonalRows(myRows)
if many nonzeros in off-diagonal rows then

create new blocks and send them to other processors
end
while more iterations needed do

triangularSolve(myRows, myRhs)
end

Algorithm 2: Parallel Solution of Triangular Systems

Here, “many” means that the communication and other overheads are justi-
fied by the computation in the block, and this presents a parameter to tune. In
our implementation, if the nonzeros are more than some constant times the size
of the solution subvector, we send the block to another processor. After this
precomputation is done, we can start solving the system (described in Algorithm
5), possibly multiple times, as may be needed. More detailed explanations of
these steps follow.

Algorithm 3 describes the reordering step, in which independent rows are
identified so that they can be processed without any data required from other
blocks. Independent row in the diagonal block means that it has no nonzero
to the left of the block, and it does not depend on any dependent row. For
instance, row 6 of Figure 1 is independent because it has no nonzero to the
left. On the other hand, row 5 is dependent; it has no nonzero to the left of
the block, but it depends on the fourth row through l54. The first loop finds
and marks any dependent rows. The second loop copies the independent rows
to a new buffer in backward order. We reverse the order of independent rows
in the hope of computing the dependencies of subsequent blocks sooner. This
heuristic has enhanced performance significantly in our test results. Note that
since the rows are copied in backward order, in many cases we need to copy
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some previous rows to satisfy each row’s dependencies in a recursive routine, as
described below.

Algorithm: reorderDiagonalBlock

Input: Row myRows[]
for r in myRows (forward order) do

r.depend ← false
// nonzeros in left blocks

if r depends on other blocks then
r.depend ← true

end
for each nonzero e in r do

// (row number of s = column number of e)

if row s corresponding to e is dependent then
r.depend ← true

end

end

end
for r in myRows (backward order) do

// recursion needed in backward order to maintain

dependencies

if r.depend = false and r not already copied then
copyRowRecursive(r)

end

end
for r in myRows (forward order) do

// no recursion required in forward order

if r.depend = true then
copy r to new buffer

end

end
Result: myRows reordered for more parallelism

Algorithm 3: Reorder Diagonal Block

The copyRowRecusive routine described in Algorithm 4 inspects all the
nonzeros of a given row to make sure that the needed rows are already copied
and it then copies the row. If a needed row is not copied, the routine calls itself
recursively to copy it. It also marks the row as copied, so that it will not be
copied again. The final loop copies the dependent rows in forward order, with-
out regard for their inter-dependencies, since forward order copy satisfies them
automatically. For simplicity, we assume that there is another buffer to contain
the rows, but if memory is constrained, then the rows can be interchanged to
reorder them without actual copies.

Algorithm 5 performs the local solve for each block. Initially, the messages
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Algorithm: copyRowRecursive

Input: Row r
for e in nonzeros of r (reverse order) do

// (row number of s = column number of e)

row s ← row containing x value for e
if s not already copied then

copyRowRecursive(s)
end

end
copy r to new buffer
Result: r is copied in first possible position of new buffer

Algorithm 4: Copy Row to New Buffer

received are processed (as described in Algorithm 7) before starting the com-
putation, in the hope of performing work on the critical path and sending the
results sooner. Receiving messages before starting the computation of each block
is possible when there are multiple blocks per physical processor (described in
Section 4). The routine then processes the independent rows (described in Al-
gorithm 6) and waits for messages until all the rows have been completed.

Algorithm: triangularSolve

Input: Row myRows[], Value myRhs[]
Output: Values x[]
while any DataMessage msg arrived do

receiveDataMessage(msg)
end
for each Row r in independent rows do

processRow(r, 0, myRhs)
end
while there are pending rows do

wait for DataMessage msg
receiveDataMessage(msg)

end

Algorithm 5: Local Triangular Solve

Algorithm 6 describes the computation for each row. The input value (“val”)
is the partial sum from the left of the block and is updated using the nonzeros
of the row and the needed solution (x) values. For the diagonal rows (i.e.,
rows that have a diagonal element), xi, which is the x entry corresponding to
“r”, is computed. If xi is the last variable needed for the off-diagonal rows
that are needed for the next block, and those rows are local to this block,
they are processed. This accelerates the dependencies of the next block and
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probably the critical path. If xi is the last variable needed for all the off-diagonal
rows and they are local, they are processed. If the off-diagonal rows are not
local, the x sub-vector is multicast to the off-diagonal blocks that depend on it.
These dependent off-diagonal blocks are the ones sent to the other processors
by this block in the analysis phase according to our dense off-diagonal regions
parallelism strategy (Algorithm 2). For the local off-diagonal rows, the updated
partial sum value is sent to the block waiting for it. The destination is known
as a result of the preprocessing step described in Algorithm 1.

Algorithm: processRow

Input: Row r, Value val, Value myRhs[]
update partial sum val using nonzeros of r and computed x[] values
if r is diagonal then

compute x i = (myRhsi−val)/lii
if off-diagonal rows for next block are local in this block and xi is last
needed unknown for them then

call processRow() on all off-diagonal rows needed for next block
that have their left dependencies satisfied

end
if xi is last needed variable for all off-diagonal rows of this
column-block then

if off-diagonals are local then
call processRow() on off-diagonal rows that have their left
dependencies satisfied (partial sums arrived)

else
multicast the solution sub-vector (x values) computed to
off-diagonal blocks dependent on this block

end

end

else
// If r is off-diagonal, send the partial sum value to the

right. Destination is known from the preprocessing

phase.

send val to depending block

end
Result: if diagonal row: x value computed, if off-diagonal row: data

value sent to next block

Algorithm 6: Process Local Row

Algorithm 7 describes the processing of data messages. For each value in
the message, the local row that is waiting for it is determined. This may require
a mapping of global row number to local row number (such as a hash table),
or this information can be communicated once during the analysis stage. If
the row is diagonal and it is the current row (the first incomplete row), it is
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processed. In this case, all the following rows that are not still depending on
outside data are processed as well until a depending one is discovered. Those
rows can be processed since all of their dependencies are satisfied by processing
them in order. If the row is off-diagonal and the needed solution sub-vector is
ready (x values are computed), it can be processed as well. However, if it is
diagonal but not the current row, or off-diagonal but x is not ready, then val is
stored for later use.

Algorithm: receiveDataMessage

Input: DataMessage msg
for each partial sum (Value val) in msg do

Row r ← row corresponding to val
if r is diagonal and is current pending row then

processRow(r,val)
while next row (Row s) is not outside dependent do

processRow(s,0)
end

else if r is off-diagonal and x values ready (locally or received) then
processRow(r,val)

else
store value for later

end

end
Result: message used for computation or stored

Algorithm 7: Receive Data Message

4. Implementation in Charm++ and MPI

To test its effectiveness in practice, we have implemented our triangular
solver algorithm using Charm++ [13].1 Other distributed-memory parallel
paradigms, such as MPI can be used as well (discussed later). The resulting
code consists of 692 Source Lines Of Code (SLOCs), which compares favorably
in complexity with SuperLU DIST’s 879 SLOCs triangular solver. Note that
by using the interoperability feature of Charm++, our code can be integrated
into MPI packages, such as the PETSc toolkit for scientific computation [15].

In our implementation, blocks of columns are stored in compressed sparse
row (CSR) format and assigned to Chare parallel objects (of a Chare array),
which are the basic units of parallelism in Charm++. There can be many
more Chares than the number of physical processors, and the runtime system

1Our benchmark code can be downloaded from https://charm.cs.illinois.edu/benchmarks/triangularsolver.git
repository.

12



1 // if this chare has some diagonal part of matrix
2 if (onDiagonalChare) {
3 // schedule the independent computation with lower priority
4 serial {thisProxy[thisIndex].indepCompute(...)}
5 // ”while” and ”when” can happen in any order
6 overlap {
7 // while there are incomplete rows, receive data
8 while (!finished) {
9 when recvData(int len, double data[len], int rows[len])

10 serial {if(len>0) diagReceiveData(len, data, rows);}
11 }
12 // do serial independent computations scheduled above
13 when indepCompute(int a) serial {myIndepCompute();}
14 }
15 // if chare doesn’t have diagonal part of matrix
16 } else {
17 // wait for x values
18 when getXvals(xValMsg∗ msg) serial {nondiag compute();}
19 // while there are incomplete rows, receive data
20 while (!finished) {
21 when recvData(int len, double data[len], int rows[len])
22 serial {nondiagReceiveData(len, data, rows);}
23 }
24 }

Figure 5: Parallel flow of our triangular solver in Structured Dagger

places them according a specified mapping. We specify the built-in round-robin
mapping in Charm++ for better load balance.

Each Chare analyzes its block, receives the required data, processes its rows
and sends the results to the dependent Chares. Figure 5 shows the parallel flow
of the algorithm using Structured Dagger language [16] (a coordination sublan-
guage of Charm++), and roughly corresponds to Algorithm 5. This code is
most of the parallel part of the actual implementation. In short, serial marks
the serial pieces of code (written in C/C++). When waits for the required
incoming message before executing its statement. Overlap contains multiple
Structured Dagger statements that can execute in any order. Overall, this lan-
guage simplifies the implementation of the parallel control flow of our algorithm
significantly.

The analysis phase needs to know only which of its rows are dependent on
the left Chare, which can be determined by a parallel communication step or
prior knowledge (e.g., symbolic factorization phase) as mentioned before. In
our implementation, the analysis phase determines whether there is a dense off-
diagonal region that can be broken into blocks for more parallelism, in which
case new Chares are created and assigned to processors by the runtime system
according to the specified mapping.
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Creating new parallelism units, independent of the fixed number of physical
processors, is an abstraction that is useful for simplicity of the implementation
of our structure-adaptive algorithm. However, the number of Chares (column
blocks) can be determined in advance based on knowledge of the matrix struc-
ture. For example, it can be determined in the symbolic factorization phase of
LU or Cholesky factorization.

Virtualization ratio. The ratio of the number of Chares to the number of physi-
cal processors (virtualization ratio) is an important parameter since it presents a
tradeoff between communication overlap and concurrency. If the virtualization
ratio is large, then while some blocks are waiting for data to be received, others
can still make progress in computation. On the other hand, if the matrix is
divided too finely into small blocks, many nonzeros of diagonal blocks may fall
in other blocks and create many dependent rows. Thus, the concurrency might
be compromised because each block has fewer independent rows to process. In
our implementation, we use a constant virtualization ratio of four, which seemed
to provide a good balance between communication overlap and concurrency for
many matrices.

Message priority. We use message and computation priorities of Charm++
to make more rapid progress on the critical path of the computation. Poten-
tially, there may be a chain of dependencies along the diagonal of the matrix.
Therefore, we give higher priority to data messages than the computation of
other Chares. This means that when the computation of a Chare is completed,
the runtime system tries to choose data messages over computation of other
Chares. This may provide data for some critical computation that will send
enabling data messages to other Chares. More sophisticated message priority
approaches that use more information from the structure of the matrix are the
subject of future work, but may be subject to diminishing returns.

Sequential kernels. Efficient sequential kernels are highly important for this
problem, since the computation is very small relative to the amount of data.
Therefore, most overheads, especially cache inefficiencies, are intolerable. Fur-
thermore, using high-performance sequential and shared-memory node kernels
inside the distributed-memory code can improve its performance significantly.
For these reasons, in our implementation we process the rows in large chunks
without interruptions. For example, we keep track of the number of rows that
are required before sending the next block’s data in the analysis phase. In the
computation, we process all of those rows as a chunk and then send the data
afterwards. In this way no checking (“if” statement) is required after each row,
though it was presented that way in the algorithm statement in the previous sec-
tion for simplicity. The only change required in the sequential kernel is adding
the result sum from the left of the row, which is easy to include. Thus, efficient
sequential and shared-memory kernels can be used readily.
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Aggregating data messages. Depending on the nonzero pattern of the matrix, an
off-diagonal row may need to send its partial sum results to any block to its right.
However, due to message startup and receive overheads, it is inefficient to send
one data element at a time (one floating-point value in this case). Therefore,
these data elements are aggregated into larger messages before sending over
the network. This is possible since the neighboring rows have “locality” and
are likely to send to the same blocks. Thus, we allocate buffers for different
destinations and gather the data in them. We flush a buffer and send data
when it is full, or when all buffers are allocated and we need to allocate a
new one. However, gathering the data into buffers presents a tradeoff since
delaying a message might delay progress on the critical path. Thus, we flush
the buffers and send the data out at various stages of the algorithm to ensure
faster progress. Other message aggregation approaches that minimize both the
message overhead and the delay can also be used [17].

Implementation in MPI. In principle, any Charm++ program can be imple-
mented in MPI, since Charm++ itself can be built on top of MPI, although
more programming effort might be needed. We believe that our algorithm can
be implemented in MPI directly, perhaps with somewhat greater effort than for
the Charm++ version. The major difficulty is mapping and managing mul-
tiple blocks of columns per processor and creating the effect of virtualization.
Allocating blocks dynamically also seems harder.

In addition, the priority of data messages over computation can be imple-
mented using MPI Iprobe(). When the computation of a block is completed,
MPI Iprobe() could be used to determine whether any data message is avail-
able. If a message is available, then it is processed before moving to the next
computation. Wildcards may also be needed for specifying the source.

Other parts of the implementation (e.g., message aggregation) are straight-
forward, and there would be little difference. If minimizing programming effort
is the goal, these two major changes can be ignored and the algorithm can be
implemented without multiple blocks per processor, in which case some per-
formance enhancements resulting from overlapping of computation and data
dependencies would not be available. However, the major benefit of the algo-
rithm, extracting parallelism by analysis and reordering, can still be realized.

Tuning parameters. As mentioned earlier, there are various parameters to choose
in our algorithm, such as virtualization ratio, message priorities, and buffer size
for message aggregation. We have not experimented with them extensively,
but tuning these parameters carefully might result in performance improve-
ments. Tuning methods specific to this algorithm and choosing values based
on the structure of a particular matrix and machine is a subject for future re-
search. In addition, automatic tuning approaches such as Control Points [18]
in Charm++ framework could be used. However, in our experience perfor-
mance does not seem to be very sensitive to these parameters, so we set values
manually for all the experiments discussed below.
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5. Test Results

In this section, we evaluate our implementation for up to 512 cores on Blue-
Gene/P. We benchmark the time for one solution iteration with one right-hand
side, without the cost of benchmarking barriers. In some cases, barriers might
be necessary for the application, but their cost is insignificant if the matrix is
sufficiently large. Furthermore, the application might be able to overlap dif-
ferent iterations and fill processor idle times with useful work to attain higher
performance.

Our sequential algorithm is just the standard nested loops, without any sig-
nificant overhead. Note again that on only one processor core our algorithm boils
down to this efficient sequential algorithm. Thus, our speedups are measured
against the best sequential case. Note also that BlueGene/P’s processors are
low power by design, so they are somewhat slower than some other mainstream
processors.

Test Problems. We first describe our test problems, which are drawn from sev-
eral real application sparse matrices from the University of Florida Sparse Ma-
trix Collection [14]. Table 1 lists these matrices and their properties. Those
prefixed with “slu ” are obtained from a complete LU factorization using Su-
perLU. Note that the matrices used are fairly small relative to the number of
processors used. Some of the matrices are even smaller than those in a re-
cent study of shared-memory codes [9]. Thus, our results provide a reasonable
indication of the strong scaling ability of our triangular solution algorithm.

There are two measures that can help in understanding the parallelism avail-
able in each matrix: (1) after the reordering and analysis phases of our algo-
rithm, the total number of rows (across all processors) that can be processed
independently in parallel, and (2) the number of nonzeros that are in nondiago-
nal blocks. The first metric is a direct measure of parallelism, while the second
may or may not indicate better parallelism. If the nonzeros are close to the di-
agonal blocks and they are spread apart, it is more difficult to have parallelism.
However, if they are in dense regions and far from the diagonal, they probably
can be processed in parallel.

Figure 6 shows the nonzero structure of some of the matrices we use. We
will use this figure, along with Table 1, to help understand the performance
behavior for these matrices.
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Table 1: Benchmark Matrices (sorted by the number of nonzeros)

Name Dimension Indep. rows Nonzeros In nondiag. blocks Application domain

slu c-big 345,241 345,141 499,807 17,038 optimization

slu helm2d03 392,257 373,796 648,305 23,380 2D/3D problem

slu nlpkkt80 1,062,400 1,062,400 1,062,400 0 optimization

slu hood 220,542 192,353 2,143,007 540,982 structural analysis

largebasis 440,020 200,010 3,000,060 2,560,040 optimization

Hamrle3 1,447,360 746,720 3,032,733 1,582,170 circuit simulation

slu kkt power 2,063,494 2,043,810 3,298,181 287,311 optimization

slu webbase-1M 1,000,005 986,863 3,345,311 512,433 weighted graph

slu largebasis 440,020 280,483 5,095,186 1,991,169 optimization

slu circuit5M dc 3,523,317 3,429,272 8,027,174 332,376 circuit simulation

kkt power 2,063,494 811,213 8,545,814 5,549,454 optimization

fem hifreq circuit 491,100 8,744 10,365,173 7,321,726 electromagnetics

circuit5M dc 3,523,317 674,311 10,631,719 4,110,848 circuit simulation

StocF-1465 1,465,137 34,822 11,235,263 5,609,744 fluid dynamics

Freescale1 3,428,755 2,153,121 11,901,587 5,963,982 circuit simulation

slu gsm 106857 589,446 312,454 12,107,540 3,654,630 electromagnetics

slu Freescale1 3,428,755 3,329,165 12,624,349 1,079,503 circuit simulation

dielFilterV2clx 607,232 4,965 12,958,252 7,824,540 electromagnetics

FullChip 2,987,012 12,982 14,804,570 8,126,422 circuit simulation

slu bbmat 38,744 6,735 17,819,183 15,762,657 fluid dynamics

Geo 1438 1,437,960 5,617 32,297,325 17,912,293 structural analysis

circuit5M 5,558,326 333,841 32,542,244 26,616,437 circuit simulation

nlpkkt120 3,542,400 1,814,400 50,194,096 46,651,696 optimization
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(a) nlpkkt120 (b) Geo 1438

(c) Freescale1 (d) circuit5M

Figure 6: Nonzero structure of various test matrices
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Figure 7: Scaling for ILU(0) matrices (higher is better).

Scaling for ILU(0) matrices. Figure 7 shows the scaling of our implementation
for up to 512 cores of BlueGene/P using triangular matrices from incomplete
LU factorization with no fill. Since the matrices are small relative to the number
of cores used, the results represent strong scaling of this approach. Matrix nlp-
kkt120 shows the best scaling and achieves speedup of 166 on 512 cores. This is
because its structure allows parallel and pipelined execution and it is larger than
the other matrices (about 50 million nonzeros). Matrix largebasis also scales to
512 cores with a speedup of more than 78. Some matrices, such as Hamrle3 and
kkt power, show good parallelism initially, but the speedup declines for larger
numbers of cores. The reason is that the parallelism and matrix size are insuf-
ficient to exploit the processing power, so parallel overhead become relatively
more costly. Some other matrices, such as FullChip and circuit5M dc, show lim-
ited parallelism and need much larger matrix sizes to show good speedup. A few
matrices, such as Geo 1438 and StocF-1465, do not show any parallelism, and
the execution time increases with more cores. However, their execution time is
worse than sequential by only a small constant (roughly two), which shows the
low overhead of the algorithm in the worst case. For these matrices and their
application domains, new methods are needed.

Scaling for complete LU matrices. Figure 8 shows the scaling of our method
for up to 512 cores of BlueGene/P using triangular matrices from complete
LU factorization. There are cases with superlinear speedup because of cache
effects. For example, matrix slu nlpkkt80 achieves speedup of 87 on 64 cores.
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Many matrices scale well up to 32 or 64 cores, but performance decreases be-
yond that point. This is mostly because the matrices are small relative to the
number of cores. For instance, matrix slu c-big has only 500k nonzeros that
occupy only about 5MB of memory in total. However, it achieves speedup of
more than 40 on 64 cores. By reordering, this matrix is mostly parallel, with
few dependencies. Thus, the parallel overheads are relatively high in this case
and should be alleviated in production implementations. This includes better
implementation of broadcast and reduction (synchronization) using the collec-
tive network of BlueGene/P, if synchronization is required for the application
(for example, iterative refinement of the solution with error estimation). If syn-
chronization is not required (for example, a fixed number of refinements), much
better performance can be obtained with small changes to the implementation.
In addition, communication latency is critical for solution of sparse triangular
systems, because of structural dependencies and limited computation.

The figure also shows that matrices resulting from complete LU have a dif-
ferent (better on average) structure for parallelism than ILU(0) matrices. For
example, slu circuit5M dc is much more parallel than circuit5M dc. The rea-
son is that SuperLU reorders the rows and elements for better factorization, so
the resulting lower triangular and upper triangular matrices will have different
structures. This strategy improves the triangular solution using our method as
well. This characteristic needs to be investigated further in future work.
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Figure 8: Scaling for complete LU matrices (higher is better).
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Scaling for various matrix structures. Performance and scaling of our algorithm
can vary with the matrix structure because the effectiveness of each parallelism
strategy and optimization highly depends on the matrix structure. Table 1 and
Figure 6 help in understanding the parallelism available in various matrices.
For example, matrix nlpkkt120 (Figure 6(a)) enjoys the best performance on
512 cores. The reason is that its upper left portion consists mainly of inde-
pendent rows. They begin computing in parallel, then they send their solution
values to the nonzeros on the bottom (which form a slanted line) to work in par-
allel. Those blocks send their values to the right diagonal blocks to complete the
computation. Essentially, finding independent rows strategy and parallelization
of off-diagonal regions strategies work together in this case. Thus, there are
three stages, and each stage has many parallel portions. Matrix Freescale1 also
has similar off-diagonal parallelism opportunities, but with a different structure
(Figure 6(c)). For this matrix, since there are not as many independent rows,
early send strategy is more important for critical path acceleration. Matrix cir-
cuit5M (Figure6(d)) shows another structure with good off-diagonal parallelism
despite having relatively few independent rows. The top left diagonal blocks
enable the computation of many off-diagonal blocks on the left, utilizing the
off-diagonal parallelization strategy. Those will be processed in parallel and
cause the other diagonals to complete in parallel. From these examples, one can
conclude that if the nonzeros in the diagonal blocks have a favorable structure,
with many independent rows, finding independent rows strategy helps the most.
Otherwise, early send strategy becomes very important to accelerate the criti-
cal path. In addition, if there are regions in off-diagonal blocks that are dense
enough to amortize the communication overheads, the off-diagonal parallelism
strategy can be very effective. Note that often times multiple strategies are
effective for a matrix structure simultaneously (e.g., in matrix nlpkkt120 case
explained above).

On the other hand, matrix Geo 1438 shows poor scaling because it has lit-
tle parallelism available. Most of its nonzeros are near the diagonal, and the
rows are dependent on each other (Figure 6(b)). Most of the matrices with
poor scaling have similar structures. Creating parallelism by numerical meth-
ods (such as dropping some nonzeros) is the subject of future study. Note that
having the nonzeros near the diagonal does not necessarily result in limited
parallelism. For instance, matrix slu c-big has similar structure but shows good
scaling, since many of its rows are independent after reordering.

Comparison with HYPRE. Figure 9 compares the performance of our method
with that of HYPRE, which is a commonly used linear algebra package [12].
Table 2 also presents some of the solution times. As shown, our method can
exploit parallelism on many matrices, whereas HYPRE’s performance is nearly
sequential in all cases. Although the triangular solver in HYPRE includes some
minor optimizations, it works essentially sequentially among the processors.
Each processor performs its computations and sends the results to the next one,
so the processors form a chain. The choice of this method for the such a widely
used package illustrates the ineffectiveness of previous parallel approaches for
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this problem. The performance of HYPRE is worse than sequential in many
cases because of parallel overhead, although there is some improvement for
large numbers of processors, probably due to cache effects. Overall, our method
is a significant improvement over this existing code and will reduce the solution
time for many problems.

Table 2: Solution times of triangular solver from HYPRE compared to our structure adaptive
triangular solver (SA). Times are in milliseconds.

1 Core 64 Cores 512 Cores

Name HYPRE SA HYPRE SA HYPRE SA

largebasis 100 66 220 3.3 30 0.8

slu Freescale1 390 418 430 25 470 52
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Figure 9: Comparison with triangular solver from HYPRE (lower is better). HYPRE is in
blue, and our solver is in black.

Comparison with SuperLU DIST. Figure 10 compares the performance of our
triangular solver to the triangular solver from the SuperLU DIST package [4].
Table 3 also presents some of the solution times. This solver is called after
factorization of the matrix, sometimes several times to refine the result or for
other purposes. As shown, however, it does not exploit sufficient parallelism
and the scaling is not very good, even though it has some very limited scaling
with respect to its own sequential performance (e.g., 6.4 times self-speedup
on 512 cores for matrix helm2d03). In fact, it is worse than the best serial
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performance for most cases. For example, SuperLU DIST is about 18.5 times
slower than best serial performance on 64 cores for matrix slu helm2d03, whereas
our solver achieves a speedup of more than 48. SuperLU DIST uses a simple
2D decomposition approach for parallelism, which is inefficient. Our method
significantly improves triangular solution and refinement after complete LU.
Because subsequent refinement will be much faster, less accurate but faster
factorizations may also become possible.

Table 3: Solution times of triangular solver from SuperLU DIST (SLU D) compared to our
structure adaptive triangular solver (SA). Times are in milliseconds.

1 Core 64 Cores 512 Cores

Name SLU D SA SLU D SA SLU D SA

slu helm2d03 1540 31 570 0.6 240 3.3

slu largebasis 1260 93 640 50 280 84
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Figure 10: Comparison with triangular solver from SuperLU DIST (lower is better). Su-
perLU DIST is in blue, and our solver is in black.

Comparison with DAG-based approaches. There are other algorithms for trian-
gular solution, mostly for shared memory machines. However, it does not seem
to be practical to adapt them for distributed memory machines. For example,
the DAG approaches have limited concurrency [9], so they cannot scale to many
cores of a distributed-memory machine. In addition, there can be thousands of
barriers for some small matrices [9], so the barriers are a bottleneck even for
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shared-memory machines.
To understand why our algorithm is much more scalable than DAG-based

ones (e.g., Level-Set algorithm), we analyze the critical path lengths of the two
approaches for a sample of matrices. By critical path length, we mean the
longest chain of communication dependencies occurring in each algorithm for a
given matrix and number of processors. We choose the longest chain of depen-
dent communication steps as our performance metric in this analysis, because
communication overheads (e.g., communication initiation) are very significant in
modern large-scale systems. This is especially important for triangular solution
since the computation per data element is very small.

The Level-Set algorithm analyzes the rows of the entire matrix, while our
algorithm divides the matrix in blocks of columns, then analyzes the local rows
and finds the dependencies among processors. Therefore, level-set algorithm
follows a dependency DAG of rows, while our algorithm follows a dependency
DAG of processors. The critical path length is the diameter of the DAG.

Note that our DAG diameter comparison is not perfect since the algorithms
that block the unknowns such as ours often times have a shorter DAG diam-
eter compared to the more fine-grained algorithms. On the other hand, more
fine-grained algorithms, such as Level-Set, can potentially expose more paral-
lelism. However, we argue that the DAG diameter factor is dominant in this
case and our analysis below explains this bottleneck. Note that we have already
established the relatively high degree of parallelism of our algorithm in previous
discussions and results.

Figure 11(a) shows the sets of rows (Level-Sets) made by Level-set algorithm
and their communication dependencies for example matrix of Figure 1. For
comparison, Figure 11(b) shows the communication dependencies of processors
for the same matrix in our algorithm (arrow labels indicate which nonzero caused
the dependency). As can be seen, the communications can happen concurrently
in our case and the diameter of the DAG is shorter. Note also that in some cases,
the number of levels (hence, diameter of the DAG) for Level-set algorithm can
be extremely high compared to our algorithm. As an extreme example, the
bidiagonal matrix of Figure 3 will have critical path length of 8 in Level-set
algorithm, while its critical path length will be only 2 in our algorithm.
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Figure 11: Communication dependencies for example of Figure 1

Table 4 compares the critical path length for our algorithm (when running
on 512 processors) to the level-set algorithm. As can be seen, our algorithm’s
critical path is much shorter in all the cases (and this is consistent for other
matrices we examined not shown in the table). In addition, each dependency
in our case is between two processors (O(1) communication time), while each
dependency implies a full barrier (O(log(p)) communication time) in the level-set
algorithm. Note again that the critical path length for each matrix, presented in
Figure 7, is highly correlated with the scalability of the corresponding algorithm.
Thus, our algorithm is more scalable than DAG-based ones due to a much
shorter critical path.

Table 4: Critical path length comparison of our algorithm (SA) with Level-Set algorithm

Matrix Level-Set SA

circuit5M 18 2

kkt power 17 3

Freescale1 216 18

Hamrle3 31083 25

Geo 1438 5823 87

Memory scaling. Memory scaling is important for many numerical algorithms.
For our algorithm, there are only few additional scalable data structures per
processor, other than the matrix itself. The largest is a data structure that
has only a few entries for each local row, which contains information such as
whether the row is dependent. Importantly, there is no overhead per matrix
element. Thus, the memory consumption is scalable and very large problem
sizes are possible to solve.
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Data redistribution. Since triangular solution is usually used in the context of
other algorithms such as factorization, data redistribution is required when the
data layouts do not match. However, it is negligible in most cases and this can
be seen by some simple back-of-the-envelope calculations. For instance, matrix
circuit5M requires less than 300MB memory. On 512 BGP processors, each
solve iteration takes about 28ms. If each processor has to send 1MB of data,
data redistribution will take less than 15ms (in parallel). Data redistribution
happens only once, and this cost is amortized over many (often hundreds or
even thousands [9]) of iterations.
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Figure 12: Comparison of analysis and reordering time to solution time (lower is better).
Analysis time is in blue, and solution time is in black.

Analysis cost. Analysis time is an overhead that must be paid for many ap-
proaches to sparse triangular solution. It is negligible if it is performed only
once, followed by sufficiently many iterations. In our algorithm, analysis is
performed fully in parallel and independently on different processors, assuming
that some parallel information is available as described in Section 3. Thus, the
analysis also scales with the number of processors. In addition, analysis reorders
only the rows, based on a simple scan of rows and nonzeros, which is relatively
inexpensive. Figure 12 compares the analysis time with the solution time for
a sample of matrices using various numbers of processors. As can be seen, the
analysis time is comparable to the solution time, and it is less than that in
most instances. Thus, analysis time is negligible for applications with multiple
solution iterations. Even for applications with only one solution iteration, our
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algorithm (with the analysis time added) performs much better than the pack-
ages we compared with here. In this case, the overall solver can be thought
of as a constant times slower, with the constant usually less than two. Thus,
analysis time is not a problem for the performance of our algorithm, so we did
not attempt to accelerate it further in this study.

6. Conclusions and Future Work

Solving sparse triangular linear systems is an important kernel for many
numerical methods used in applications. For example, it is often used repeatedly
in preconditioners for iterative methods. It is not easy to implement efficiently in
parallel, however, especially on modern distributed-memory computers, because
of its dependencies and small amount of work per data.

We presented a novel algorithm based on heuristics that strive to extract
most of the parallelism available in the matrix. It uses low-cost analysis and row
reordering to prepare for efficient execution. As opposed to previous methods,
our algorithm does not rely on repeated data redistributions and many global
synchronizations, so it is suitable for large-scale distributed-memory machines.
We implemented our algorithm in Charm++ and discussed its potential im-
plementation using MPI. We saw that Charm++ provides some features that
simplify the implementation.

We presented promising performance results on up to 512 cores of Blue-
Gene/P for numerous sparse matrices from real applications. The performance
depends on the parallelism available in the structure of the matrix, and we
analyzed the parallelism using a variety of metrics.

For future studies, more sophisticated methods for mapping blocks to pro-
cessors and for determining priorities for processing blocks seem most impor-
tant. In addition, novel techniques to determine the best virtualization ratio
depending on the characteristics of the matrix and the machine may improve
performance. Furthermore, techniques for aggregating messages that minimize
communication overheads but do not cause delays for computation should be
developed. Moreover, adaptation and evaluation of our algorithm with other de-
composition and storage methods need to be investigated. For matrices that do
not allow significant parallelism using our algorithm, novel numerical methods
that eliminate some of the nonzeros for more parallelism seem to be potentially
promising to develop and study.
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