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ABSTRACT
Parallel programming has always been difficult due to the
complexity of hardware and the diversity of applications.
Although significant progress has been achieved with the
remarkable efforts of researchers in academia and industry,
attaining high parallel efficiency on large supercomputers
with millions of cores for various applications remains chal-
lenging. Therefore, performance tuning has become even
more important and challenging than ever before. In this
paper, we describe the design and implementation of PICS :
Performance-analysis-based Introspective Control System,
which is used to tune parallel programs. PICS provides
a generic set of abstractions to the applications to expose
the application-specific knowledge to the runtime system.
The abstractions are called control points, which are tunable
parameters affecting application performance. The applica-
tion behaviors are observed, measured and automatically
analyzed by the PICS. Based on the analysis results and ex-
pert knowledge rules, program characteristics are extracted
to assist the search for optimal configurations of the con-
trol points. We have implemented the PICS control system
in Charm++, an asynchronous message-driven parallel pro-
gramming model. We demonstrate the utility of PICS with
several benchmarks and a real-world application and show
its effectiveness.

1. INTRODUCTION
Modern parallel computer systems are becoming extremely

complex due to complicated network topologies, hierarchical
storage systems, heterogeneous processing units, etc. Physics
simulation models have also been expanded to match exper-
imental results, which greatly increases the complexity of
computation. Although computer scientists focus on paral-
lel models and implementation while physical scientists con-
centrate on physics models, their goal is similar in that they
both seek to maximize application performance on the avail-
able resources.
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In the past, the ideal vision for parallel programming was
to let the compiler automatically generate an efficient par-
allel program without involving effort from the developers.
Over the years, this has been proven to be impractical due
to the high complexity of compilers, the diversity of parallel
programs, and the resulting low parallel efficiency of gener-
ated code. The most popular parallel programming model
today is MPI (Message Passing Interface) [1], which auto-
mates very little. The major ongoing work tries to overcome
this drawback by providing more features in programming
models and underlying runtime systems to reduce the bur-
den on programmers. Some examples include Partitioned
Global Address Space (PGAS) (supported by the GASNET
runtime [2]), which increases productivity by giving the pro-
grammer a global view of data and automatically optimiz-
ing communication. Cilk is designed as an efficient multi-
threaded runtime system by utilizing a provably-good work
stealing scheduler with performance guarantees [3]. The new
popular languages of Chapel [4] and X10 [5] also have pow-
erful runtime systems.

Instead of full automation or completely manual tuning,
we take the approach of almost-automation with the assis-
tance of application developers. Many applications can be
re-configured in ways that affect performance. The goal of
this work is to allow the runtime system to adjust the config-
uration automatically based on application-specific knowl-
edge and runtime observations. First, developers must pro-
vide the application-specific knowledge to a runtime sys-
tem. The knowledge mainly includes what parameters can
be tuned, what structure the application has, and how the
application responds to different configurations. Second, the
runtime system observes the application behavior, analyzes
it, and orchestrates the reconfiguration. The knowledge of
both the underlying architecture and the possible configu-
rations of the application empowers the runtime system to
automate the process of tuning applications.

Some existing parallel systems such as Charm++ [6] al-
ready observe characteristics of a parallel program’s execu-
tion in order to perform dynamic load balancing [7, 8], but
very few general mechanisms exist for the runtime system
to control other behaviors of the application. In this pa-
per, we have proposed the control-point centric mechanism
to optimize application performance. In order to distinguish
this mechanism from the previous adaptive load balancing
scheme, we call it the control system. The application in-
teracts with the control system by defining control points,
first proposed in Dooley’s PhD thesis [9]. Control points are



tunable parameters in an application that are made avail-
able to the control system along with information about the
expected effects of changing the parameter. The supple-
mental information about the effects of adjusting a control
point enables the control system to quickly determine which
control points have the potential to fix an observed perfor-
mance problem. The control system monitors the applica-
tion events, collects them and performs automatic analysis
to detect performance bottlenecks. Based on the perfor-
mance results and a set of expert knowledge rules, the con-
trol system makes decisions about what control points to
steer and how to steer them to improve the overall perfor-
mance. The new configuration for each control point is then
fed back into the application or the runtime system itself
based on the decision made.

We have made the following contributions in this paper:

1. We propose control points as an interface for the ap-
plications to interact with the runtime system.

2. We describe how automatic performance analysis based
on decision trees can be used efficiently to determine
which control points should be tuned.

3. We demonstrate how PICS can be applied into both
the runtime system and applications to optimize the
application performance. Our results show its effec-
tiveness for ChaNGa, a full-fledged cosmology appli-
cation, on 16, 384 cores.

In the rest of this paper, we first describe the performance-
analysis-based introspective control system, explain the no-
tion of control points, and discuss the analysis process used
to speed up the performance tuning. The design and im-
plementation is also discussed, followed by the experimental
results to show the utility and effectiveness of PICS on both
synthetic benchmarks and real applications.

2. OVERVIEW OF PICS CONTROL SYSTEM
Figure 1 shows the infrastructure of PICS, a performance-

analysis-based introspective control system. The control
system steers both applications shown on the top of the
figure and the runtime system at the bottom of the fig-
ure. Both applications and runtime can expose tunable pa-
rameters to the control system using the same mechanics.
The tunable parameters are encapsulated by control points,
which will be described later in detail. Once the configu-
ration of control points are adjusted, the applications and
runtime system need to adapt to the new configuration. The
difference between control points in an application and the
runtime system is that control points in the runtime system
are registered by the system developers while the application
control points are registered by the application developers.
Moreover, the runtime system control points affect all the
applications running on it without application modification.
The application control points only affect the specific appli-
cation.

The core components of PICS are shown in the middle of
the figure. PICS records configurations of the application
and the runtime system, monitors application behaviors,
and collects the application performance data. Meanwhile,
the control system has a set of expert knowledge rules, which
define various application characteristics and corresponding
solutions to solve a particular performance bottleneck. Uti-
lizing both the performance data and expert knowledge rules
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Figure 1: Research diagram

in our system, the system performs online automatic anal-
ysis to detect performance problems to determine the con-
trol points that need tuning and the mechanism to adjust
them. New configurations are fed back to the application
or runtime system to adapt to the new values. Next, we
will explain the control points and describe performance-
analysis-based steering.

2.1 Control points
Control points are tunable parameters that are used by

the control system to interact with the application and the
runtime system. Control points are registered by the appli-
cations or the runtime system with special properties. First,
the values of a control point should be adjustable. The ap-
plication or runtime system should be written in a way that
adapts to their different values. Secondly and most impor-
tantly, the control points have some effects on the perfor-
mance. Effects are the intermediate ramification of a con-
trol point that impacts the overall performance. Each con-
trol point is also associated with the direction of the effect,
which means changing the control point will have impact on
the effect either in a negative or a positive way. For exam-
ple, increasing the sub-problem size in Jacobi will increase
the grainsize of each task. We have found that the following
categories cover most of the effects of control points.

Degree of Parallelism This is anything that affects the
number of parallel tasks. For example, given a fixed
problem size of a Jacobi program, the number of sub-
problems affects the degree of parallelism. In molec-
ular dynamics, the number of spatially decomposed
chunks of particles affects the parallelism.

Grainsize This is the amount of computation for a parallel
task. This effect is inversely proportional to the degree
of parallelism.

Priority To maximize the performance, tasks will often be
scheduled with different priorities. Ideally, tasks that
are on the critical path should be scheduled earlier.
This is achieved by setting their priority higher. Pri-
ority can be associated with message sending, message
receiving, and task execution.
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Figure 2: Performance Analysis Decision Tree

Memory Consumption Scheduling tasks in different or-
ders can often impact the memory usage of the ap-
plication and/or system, which can have performance
ramifications.

Cache Miss Rate Often adjusting a knob will have some
impact in the cache miss rate. For example, making
the grainsize larger might increase cache misses and
thereby decrease performance.

Overhead This is anything related to the cost of running
the program, which is not a part of the computation
in the application.

Number of Messages and Message Size Proper message
size can both better utilize network bandwidth and
also overlap computation with communication. For
example, message aggregation by the runtime can be
important effects.

2.2 Performance-Analysis-Guided Steering with
Control Points

The goal of the control system is to find the optimal con-
figuration of all the control points. Due to the complexity of
the runtime system and application, many control points will
be registered with PICS. This leads to a huge search space of
configurations. As a result, performing direct optimization
(such as hill climbing) can be time consuming. When we
examine control points closely, we notice that some control
points may have more impact than others. If we can de-
termine which control points have the most impact on the
overall performance, the process may be accelerated.

The approach we take is to perform automatic and com-
prehensive analysis to detect a performance deficiency. Since
the runtime system takes control of the application with
regard to scheduling and communication, it is easy to in-
strument, record, and track application behaviors. Based
on the instrumentation data, performance analysis can be
performed. When possible performance deficiencies are de-
tected, we can tune the control points whose effects are re-
lated to these performance deficiencies instead of searching
all possible configurations. This significantly reduces the
search space. The other advantage is that based on the ef-
fect of control points and performance problems, the direc-

tion of performance steering is guided instead of proceeding
blindly.

2.3 Categories of Performance Problems
In order to determine application performance deficiencies

and then possible solutions, we need to identify the charac-
teristics of the program. We categorize the program charac-
teristics and problems into three main types: decomposition,
task mapping, and scheduling.

Problem decomposition is how a problem is decomposed
into smaller problems, which can be solved in parallel with
the appropriate dependencies. Problem decomposition di-
rectly determines the grain size of the computation and com-
munication and the degree of parallelism. Effective problem
decomposition is essential to achieve high performance. The
specific characteristics related to the problem of decomposi-
tion are shown in the Figure 2. When these characteristics
are identified, it signals a potential grain size problem.

Task mapping is how tasks are mapped to physical proces-
sors. Task mapping affects the communication cost. There
is significant related work on how task mapping impacts
overall performance, including topology-aware mapping [10].
Task mapping also affects the load balance. In addition, it
may also affect memory usage and I/O usage. The char-
acteristics related to task mapping are illustrated the Fig-
ure 2. The corresponding solutions range from performing
topology-aware mapping, communication-aware load balanc-
ing, or compressing messages.

Scheduling is about the order in which the runtime exe-
cutes available tasks on processors. The main ramification
of deficient scheduling is that critical tasks may be delayed,
causing processors that depend on the critical tasks to be-
come idle. The other potential problem caused by scheduling
is running out of memory. If only the tasks that consume
memory are scheduled while the tasks that free the memory
are not scheduled, the program may cause an out of memory
error.

We represent the program characteristics and correspond-
ing solutions in the complete decision tree shown in Figure 2.
In this figure, starting from the performance summary data,
the decisions are made based on the performance charac-
teristics and the specific performance data collected from an
execution. The three diamonds represent the course-grained



performance metrics. Under each diamond, we check if any
corresponding performance characteristic exists. The per-
formance characteristic is shown in boxes. When a charac-
teristic is matched, the corresponding performance solution
is proposed at the leaves of the tree, shown by oval shapes.
The corresponding performance solution has two implica-
tions. The first is the aspect of the applications that re-
quires steering. The other is the direction of the steering
required to fix the deficiency. For example, if the solution
is to decrease the grain size, we must adjust control points
whose effect is related to the grain size.

Therefore, the process of performance analysis is performed
by traversing a decision tree. Whenever a leaf node is found,
it is saved for tuning. As a result, we have a list of perfor-
mance solutions after a full traversal. We feed these effects
into the control points database to determine what control
points to tune and in which direction. Based on current val-
ues, the tuning directions and movement unit to adjust, the
new values for control points are determined.

3. CONTROL SYSTEM IMPLEMENTATION
IN CHARM++

To investigate the appropriate mechanisms required to
add control points to parallel applications, an initial control
system framework has been created within the Charm++
runtime system. The framework is capable of observing
performance characteristics across the parallel machine and
storing that information along with the past history of con-
trol point configurations for a running program. Once the
framework decides how to adapt the behavior of a parallel
program, it can enact the changes through a callback to the
program.

3.1 PICS Framework in CHARM++
The idea of our work can be applied to most parallel run-

time systems. In this paper, our design and techniques are
based on the Charm++ runtime system. Charm++ is a
message-driven parallel programming paradigm. Charm++
programs are written mostly in C++, with portions in For-
tran, C, or other languages if necessary. A Charm++ pro-
gram consists of collections of worker objects called chares
that are mapped onto processors by the runtime system.
The chares communicate with each other predominantly by
invoking entry methods asynchronously and remotely on each
other. The runtime system can instrument the computation
and communication loads and can remap chares to proces-
sors in order to perform dynamic load balancing. The stan-
dard practice in writing Charm++ programs is to over-
decompose the problem so that there exist many chares on
each processor. A scheduler on each processor executes the
available entry method invocations once at a time. We have
implemented PICS system in Charm++ parallel program-
ming system. The PICS framework is implemented as a set
of chare objects, one instantiated on each processor. This al-
lows the communication and computation performed by the
framework to be automatically interleaved with the execu-
tion of the program, leveraging the message-driven schedul-
ing.

Measurement Gathering. Charm++ contains mech-
anisms to measure certain performance characteristics of a
running program. To gather measurements that are use-
ful for automatic performance analysis and tuning, we have

developed a new custom tracing module. The new tracing
module records the amount of time spent in each type of
entry method, time spent idle, time spent in overhead (the
remaining unaccounted for time) on each processor, num-
ber of messages, and communication volume. The overhead
time represents time spent in the runtime system for han-
dling communication and scheduling. The measurements
produced by the tracing module are used by the control sys-
tem when it tries to make automatic performance analysis.
Thus it is important to gather measurements that will likely
inform the decision making process. These measurements
are general and abstracted away from the behavioral effects
produced by varying a control point.

3.2 Control Point API
In our framework, a control point has the structure as

shown in Listing 1. It includes its name, value type, value
range, the unit of change, and the approach to change its
value. Besides these, the important fields are the effect and
direction of effect as described in Section 2. The effects
of control points are the bridge between automatic perfor-
mance analysis and performance tuning. The result of per-
formance analysis is correlated to the effect of some control
points. The strategy field is used to select the search al-
gorithms for the control points, which have no obvious ef-
fect. For example, when the possible configurations of con-
trol points are quite few, exhaustive search can be used for
accuracy. The arrayID field is used to locate what tasks are
affected by this control point. This is useful for real appli-
cations, which contain various types of tasks. After control
points are defined, they are registered to the control sys-
tem by calling registerTunableParameter(ControlPoint

*tp). This interface is uniform for registering both runtime
system and application control points.

typedef struct __controlpoint

{

char name [30];

enum TP_DATATYPE datatype;

double defaultValue;

double currentValue;

double minValue;

double maxValue;

double bestValue;

double moveUnit;

int moveOP;

int effect;

int effectDirection;

int strategy;

double effectScale;

int arrayID;

} ControlPoint;

void registerControlPoint(ControlPoint *tp

);

Listing 1: Struct of Control Point

Besides registering control points, application users also
need to tell the control system about the pattern of the appli-
cation. In this work, we have focused on scientific simulation
applications. These applications are generally composed of
a sequence of steps. At the end of a step, corresponding per-
formance data is collected, analysis is performed, and any



required tuning is done. The API for this purpose is start-
Step and endStep. For applications that contain multiple
phases for one step, startPhase and endPhase are provided
to mark these phases. The API is shown in Listing 2.

void startStep ();

void endStep ();

void startPhase(int phaseId);

void endPhase ();

Listing 2: APIs for steps and phases

Applications also need to provide a callback to tell the con-
trol system how to continue when the performance steering
is done. The callback is a standard Charm++ callback pro-
vided at startup by the application through a registration
call such as:

void registerAutoPerfDone(CkCallback cb);

The application acquires a new configuration for the con-
trol points by calling a simple function named getTunedPa-

rameter. This function takes the name of the control point
and a bool pointer. When it returns, if the value of the bool
is true, it returns the tuned value. Otherwise it means the
control point does not exist yet. The API is as follows.

double getTunedParameter(const char *name ,

bool *valid);

4. RESULTS OF CONTROL POINTS IN AP-
PLICATIONS

To illustrate the utility of PICS and how PICS can be used
to intelligently optimize parallel applications, this section
presents the results of two synthetic benchmarks, a stencil
kernel code and a real application, ChaNGa. We have ab-
stracted and added multiple control points. Some are added
in the applications while others are in the runtime system.
Applications with their specific control points are affected
by both the runtime control points and their own applica-
tion control points. Applications without their own control
points are only affected by the runtime control points. In
this paper, we only present a few control points, but our
full-fledged control system framework will have much more
control points.

All the experiments were performed on two systems: IBM
Blue Gene/Q ‘Vesta’ at Argonne National Laboratory and
the Cray XE6 ‘JYC’ at National Center for Supercomput-
ing Applications. Vesta has 2048 nodes, each of which con-
sists of one 1.6 GHz PowerPC A2 processor with 16 cores
supporting 4-way simultaneous multithreading and 16 GB
DDR3 memory. JYC has 64 nodes of thirty-two 2.2GHz
AMD ‘Bulldozer’ processor and 64GB DDR3 memory. The
PAMI (Parallel Active Messaging Interface) machine layer in
Charm++ [11] was used on Vesta and uGNI (user Generic
Network Interface) [12, 13] was used on JYC.

4.1 Message Pipeline
In this benchmark, processor A sends a 2MB message to

processor B. Before sending the message, processor A per-
forms some amount of computation. After B receives the
message, it performs computation too. The 2MB message
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to optimize performance

can be broken into multiple pieces to be pipelined. When-
ever a portion of computation is finished, one piece of the
message can be sent out. Whenever process B receives the
message, it performs the corresponding portion of computa-
tion. In this case, the runtime must determine how many
pieces the 2MB data should be broken into. Depending on
the amount of work and the platform, the optimal value
varies. Therefore, the control point in this benchmark is
the number of pipeline messages. It affects the overlap of
the computation and communication. Increasing its value
improves the overlap, while it also increases the overhead.
Every time the value is changed, the basic adjustment unit
is 1. This means that the number of pipeline messages can
be increased or decreased by 1.

Figure 3 illustrates the process of using PICS to find the
optimal number of pipeline messages for two cases with dif-
ferent amount of computation. When the number of pipeline
messages is small, the program characteristic PICS observes
is the high idle time, the computation is not overlapping
communication enough. The corresponding solution is to
increase the number of pipeline messages. Figure 4 com-
pares how pipelining improves the overlap of computation
and communication causing a decrease in time per step.
In the figure, white represents the idle time. Blue repre-
sents work on the sender side and yellow stands for work
on the receiver side. However, when the number is large,
high overhead is observed which suggests that the number
of pipeline messages should be decreased. During this pro-
cess, PICS saves the configurations and their performance
results for each tuning step. When configurations are repeat-
edly searched three times, the best configurations among the
previous runs will be chosen. For the case with little com-
putation, the optimal performance is achieved when using
4 pipeline messages. Meanwhile, for the case with more
computation, the optimal performance is obtained using 9
pipeline messages. In both cases, the optimal values are
found within 20 steps and the configurations are used for
the rest of the run.

4.2 Message Compression
Compressing communication data reduces the network load

and accelerates the communication, possibly improving the
performance. However, whether it really benefits the per-
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formance depends on multiple factors, compression/decom-
pression speed, compression/decompression ratio, and net-
work bandwidth. In order to demonstrate how PICS can
be applied to tune message compression, we have developed
a synthetic all-to-all benchmark. Each processor sends two
messages to all the other processors. These two messages
have different patterns and potentially have different com-
pression ratio based on their content. In our runtime system,
we have 5 compression algorithms. Some of them have high
compression ratio but slow speed, like zlib. Others have fast
speed but low compression ratio. No compression is also
considered as a possibility. The goal of applying PICS is to
determine whether to use compression and what compres-
sion algorithm to use for each type of messages. These are
control points in the runtime system. In this benchmark, we
have two control points associated with these two types of
messages.

Figure 5 shows the process of steering the benchmark
and finding the optimal performance for 128KB all-to-all
running on 128 cores of Vesta. Different curves represent
cases of messages with different compression ratio, which is
controlled by r parameter. The lower the r is, the higher
compression ratio the messages have. The program charac-
teristic PICS identified in this benchmark is that byte per
message is high so as to suggest using compression to re-
duce communication. However, it is unclear how well each
compression algorithm performs on each type of messages.
Therefore, PICS tries exhaustive search for possible config-
urations. PICS tunes the first control point for one message
type, and determines the best value for it. After this best
configuration for one control point is fixed, PICS steers an-
other control point for the best value. In all three cases
shown in the figure, the final performance is stable and im-
proved. However, the best configurations for using compres-
sion in three cases vary.

4.3 Jacobi3D Stencil Code
This experiment is to steer the grain size of a Jacobi3D

relaxation kernel code. Traditionally, the number of tasks
equals the number of processor-cores. However, this might
not provide the best performance in some cases.

In this experiment, three changes are made to the Ja-
cobi3D code to use PICS. The first is to register the control
points. The three control points are the sub-problem size
in X, Y, and Z dimensions. The effect associated with the
control points are the granularity. When the values of the
control points increase, the granularity of tasks increases
too. In this problem, every time when the value is changed,
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it either multiplies by 2 or 0.5 to make the sub-block size a
power of 2. The second change is to call the autoPerfGlobal-
NextStep() API function to perform the steering at a global
synchronization point. Third, the application needs to im-
plement the redistribute() function to re-distribute data into
the new decomposition. In this example, either the original
data block is split into small blocks or multiple small blocks
are merged into one bigger block. The data distribution is
relatively regular and simple. So far we ask the developers
to implement this function because only developers have the
knowledge of their data decomposition and layout and know
how to redistribute the data. Figure 6 illustrates how PICS
steers Jacobi3D in determining the best sub-block sizes. The
test is running on 64 cores on JYC. Three major factors
are taken into account for the performance steering: cache
misses, idle time and the runtime overhead associated with
parallel objects. When the grain size decreases, data may fit
in the cache, which improves performance. However, as the
grain size decreases and the number of tasks increases, the
runtime overhead may dominate leading to degraded perfor-
mance. In the figure, when there is not enough tasks for the
64 cores, the idle time is high. When the sub block size de-
creases, the idle time decreases due to better load balancing.
Also due to small sub-block problem, cache miss decreases so
that the CPU time decreases. However, when there are too
many tasks, the overhead overcomes the benefit of locality
and over-decomposition. Therefore, the overall performance
decreases. At the end, the optimal value is 64 tasks per core,
which gives best cache locality, least idle time, and relatively
low overhead.

4.4 Communication Bottleneck in ChaNGa
In some applications, due to the science requirement or

due to task mapping, some processors get much more com-
munication requests than the others. We call this a commu-
nication bottleneck. In order to solve it, one solution is to
forward the requests to other processors to evenly distribute
the communication. In our system, we generalized a “mir-
ror” idea to solve this problem. Besides the original tasks
and data, we keep several copies of tasks and data, which are
called a “mirror”. Data requests can go to either the original
copy or the mirrors. These mirrors are distributed on other
processors to avoid the heavy communication on the proces-
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sor where the original data resides. By carefully selecting the
task processor mapping and the number of mirrors each task
has, we can minimize the communication deviation on var-
ious processors. Depending on the specific application, the
number of mirrors each original task should have is the con-
trol point we added in the runtime system. One particular
real application that shows this communication bottleneck
problem is ChaNGa [14], which is a parallel N-Body cosmol-
ogy simulation application implemented in Charm++. The
problem is found in calculating gravity phases and solved by
replicating objects. In this experiment, we show how tuning
the number of mirrors improves the performance. Figure 7
compares the time cost of calculating gravity without using
mirror and with using various number of mirrors. The red
curve on the top is the time cost without using mirror while
the bottom green curve shows the cost of using mirrors. The
optimal value we found here is to use 2 mirrors. Here, we
have generalized the idea and make the number of mirrors
a runtime control point.

5. RELATED WORK
Autonomic computing and adaptive systems have been

proposed as one method to deal with the rising complexity
of computer systems [15, ?, ?]. Adaptive techniques have
been built to provide performance in web servers [16]. In
the high performance computing areas, the three most im-
portant projects are Autopilot [17], Active Harmony [18]
and MATE [19]. Autopilot is a system that gathers perfor-
mance data for grid applications through sensors, either ac-
cessing program variables directly or calling functions that
have been added to a program. Information provided by
these sensors can be analyzed by a set of fuzzy logic rules
to trigger actuators that adapt the behavior of a program.
In Autopilot, the sensors and actuators used by Autopilot
are written specifically for each application. However, in
our control point system, the concept and APIs are general
purpose for both applications and the runtime system.

Active Harmony allows parallel programs to expose a list
of integer tunable parameters. The parameters can be tuned
across multiple runs [18] or in an online manner [20]. The
tuning algorithms used in Active Harmony include various
direct search methods such as Nelder-Mead Simplex and a
new algorithm called Parallel Rank Ordering [20]. Our PICS
focuses on steering by analysis and the effects of control
points while Active Harmony focuses on the optimization
methods. MATE tunes the parallel/distributed applications
by monitoring, analysis, and tuning the environments. It
does either automatic tuning for the libraries or dynamic
performance tuning for applications. For application tuning,
it explicitly asks users to define the performance models,
which can be hard for real applications. Our PICS does not
require this so as to reduce the burden of programmers.

6. CONCLUSION AND FUTURE WORK
This paper has proposed a novel control system method-

ology in which programs express control points by providing
tunable parameters along with information about their ef-
fects. Instead of focusing on the optimization techniques,
one novelty of this work is that it is built on automatic
performance analysis, which detects the performance prob-
lem and correlate the problems with corresponding control
points. This dramatically reduces the search space of the
configurations. A set of rules of program characteristics and
their solutions are summarized in this paper. We also de-
scribed that our control system is not only able to steer the
applications for reconfiguration but also the runtime system
itself. A set of control points are abstracted to guide the
users to optimize their applications.

We have implemented the system within the Charm++
runtime system. Different control points have been added
to three parallel programs. The relationships between these
control point values, the resulting program performance and
measurable effects were discussed. For all the control points,
it was shown that it is often possible to determine the cor-
rect direction to turn each knob to improve performance by
examining various types of measurements.

There still remain more categories of control points to
be examined. It is still an open problem to determine the
most effective and general purpose tuning scheme for large
applications with many control points. To fully address all of
these issues, we will continue adding control points to more
applications. We will fully analyze the various costs and
benefits of various tuning schemes as we implement them.

As computers are moving towards more complex, larger
parallel systems, and with exascale computing ahead, we be-



lieve that automatic tuning of parallel programs will become
necessary. Our work on control points investigates one such
avenue for dynamically reconfiguring applications and the
runtime system. Many open questions exist about the gen-
erality, costs, and benefits of automatic tuning, and whether
automatic tuning will eliminate some of the need for human
experts in developing complex applications. The answers
to these questions will likely influence the designs of future
parallel programming languages, runtime systems, and even
the architectures of machines.

Acknowledgment
This work was supported in part by NIH Grant 9P41GM104601,
Center for Macromolecular Modeling and Bioinformatics. It
was also supported in part by DOE DE-AC02-06CH11357.
This research used resources of the Argonne Leadership Com-
puting Facility at Argonne National Laboratory.

7. REFERENCES
[1] W. Gropp, E. Lusk, and A. Skjellum. Using MPI:

Portable Parallel Programming with the
Message-Passing Interface. MIT Press, 1994.

[2] Gasnet: A portable high-performance communication
layer for global address-space languages, 2002.

[3] Robert D. Blumofe, Christopher F. Joerg, Bradley C.
Kuszmaul, Charles E. Leiserson, Keith H. Randall,
and Yuli Zhou. Cilk: An Efficient Multithreaded
Runtime System. In Proc. 5th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, PPoPP’95, pages 207–216, Santa
Barbara, California, July 1995. MIT.

[4] B.L. Chamberlain, D. Callahan, and H.P. Zima.
Parallel programmability and the chapel language.
Int. J. High Perform. Comput. Appl., 21:291–312,
August 2007.

[5] Philippe Charles, Christian Grothoff, Vijay Saraswat,
Christopher Donawa, Allan Kielstra, Kemal Ebcioglu,
Christoph von Praun, and Vivek Sarkar. X10: an
object-oriented approach to non-uniform cluster
computing. In OOPSLA, pages 519–538, New York,
NY, USA, 2005. ACM.

[6] Laxmikant Kale, Anshu Arya, Nikhil Jain, Akhil
Langer, Jonathan Lifflander, Harshitha Menon, Xiang
Ni, Yanhua Sun, Ehsan Totoni, Ramprasad
Venkataraman, and Lukasz Wesolowski. Migratable
objects + active messages + adaptive runtime =
productivity + performance a submission to 2012
HPC class II challenge. Technical Report 12-47,
Parallel Programming Laboratory, November 2012.
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