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Overview 
•  Main exascale challenge is variability 

–  Static and dynamic 
–  Exacerbated by strong scaling requirements 
–  Persistence is our [only?] friend 
–  Good division of labor between “system” and app developer is essential 

•  My Mantra: Overdecomposition, migratability, asynchrony  (Oma) 
•  Explain each concept briefly (what it is) 
•  Explain how it empowers RTS: Introspection and adaptivity 
•  Potential costs and how they can be mitigated: overhead, memory, algo overhead 

–  Soln include considering node as a unit (so, have 8-16 work units per chunk) 
•  Show benefits apps:  

–  Strong scaling via overdecomposition: NAMD 200+ us step 
–  Asynchrony -> AMR 

•  What RTSs can do with this empowerment: 
–  Ldb, FT, power/energy 
–  Reconfigurability (apps/RTS) and runtime auto-tuning 

•  What can app developers do to get ready for exascale/arts 
–  Note: our solution (OMA) was needed for dynamic irregular apps even on yesterday’s 

machines 
•  Just that it needs to be applied to even regular apps  
•  How charm++ meets exascale challenges already, almost 

–  How we got so lucky: because of these irregular apps 
–  What to do:  

•  Explore overdecomposition in your apps 
•  Create control points for runtime manipulation 
•  Get used to words like “continuations”.. But we need only simpler versions of those  
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Exascale Challenges 
•  Main challenge: variability 

–  Static/dynamic 
–  Heterogeneity: processor types, process variation, .. 
–  Power/Temperature/Energy 
–  Component failure 

•  Exacerbated by strong scaling needs from apps 
–  Why? 

•  To deal with these, we must seek 
–  Not full automation  
–  Not full burden on app-developers 
–  But: a good division of labor between the system and 

app developers 
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O	
M
I call it a mantra because I will repeat it a lot in 
this talk. And its going to be my message to 
App Developers on how to get ready for 
Adaptive Runtimes 
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Oh….Maybe the 

order doesn’t matter 
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O	

My Mantra 

Ma	
verdecomposition 
synchrony 
igratability 
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Overdecomposition 
•  Decompose the work units & data units into 

many more pieces than execution units 
–  Cores/Nodes/.. 

•  Not so hard: we do decomposition anyway 
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Migratability 
•  Allow these work and data units to be 

migratable at runtime 
–  i.e. the programmer or runtime, can move them 

•  Consequences for the app-developer 
–  Communication must now be addressed to 

logical units with global names, not to physical 
processors 

–  But this is a good thing 
•  Consequences for RTS 
–  Must keep track of where each unit is 
–  Naming and location management 
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Asynchrony:  
Message-Driven Execution 

•  Now: 
–  You have multiple units on each processor 
–  They address each other via logical names 

•  Need for scheduling: 
–  What sequence should the work units execute in? 
–  One answer: let the programmer sequence them 

•  Seen in current codes, e.g. some AMR frameworks 
–  Message-driven execution:  

•  Let the work-unit that happens to have data (“message”) 
available for it execute next 

•  Let the RTS select among ready work units 
•  Programmer should not specify what executes next, but 

can influence it via priorities 
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Message-driven Execution 

Scheduler Scheduler

Processor 1 Processor 2

Message Queue Message Queue

A[..].foo(…) 
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Empowering the RTS 

•  The Adaptive RTS can: 
–  Dynamically balance loads 
–  Optimize communication: 

•  Spread over time, async collectives 
–  Automatic latency tolerance 
–  Prefetch data with almost perfect predictability 

Asynchrony Overdecomposition Migratability 

Adaptive 
Runtime System 

Introspection Adaptivity 
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Application Examples  
to 

Demonstrate the Utility of 

Overdecomposition,  
Migratability,  
Asynchrony! 
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NAMD: Biomolecular Simulations 

•  Collaboration with K. 
Schulten 

•  With over 45,000 
registered users 

•  Scaled to most top US 
supercomputers 

•  In production use on 
supercomputers and 
clusters and desktops 

•  Gordon Bell award in 
2002 

Recent success: 
Determination of the 
structure of HIV capsid 
by researchers including 
Prof Schulten  
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Time Profile of ApoA1 on Power7 PERCS 

2ms total 

92,000 atom system, on 500+ nodes (16k cores) 
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A snapshot of optimization in progress.. Not the final result 

Overlapped steps, as a result of asynchrony 



Timeline of ApoA1 on Power7 PERCS 
230us 
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NAMD: Strong Scaling 

•  HIV Capsid was a 64 
million atom 
simulation, including 
explicit water atoms 

•  Most biophysics 
systems of interests 
are 10M atoms or 
less… maybe 100M 

•  Strong scaling 
desired to billions of 
steps 
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Structured AMR 
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Structured AMR miniApp 



  

P0 P1 P2 P3 P4 P5 

Typical MPI Approach Charm++ Approach 

  
00 

Process based 
Contiguous blocks  

assigned to a process 

Object based 
•  Each block is an independent object 

•  is the basic execution unit 
•  can be mapped to any physical 

process 
•  is uniquely addressable 
•  is migratable 
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Fig. 2: Propagation of refinement decision messages, based on local error criteria and near-neighbor communication. Shaded
blocks have concluded that they must refine, and send messages (solid arrows) accordingly (a-c). The path and effects of this
rippling message chain are shown by dashed lines and arrows (b-d). Eventually, all the blocks reach a consensus state (e).

Each block is addressed by its location in the refinement
tree. The underlying runtime system provides direct communi-
cation between arbitrary blocks. We describe a mapping from
block addresses to processors that provides reasonable load
balance and locality under the dynamic workload evolution
that AMR presents (§ ??). This avoids the need for explicitly
redistributing the load during the computation.

A. Distributed Parallel Objects

To obtain high performance, AMR implementations typ-
ically partition work into k blocks for p processor cores,
where k > p. Existing algorithms and implementations treat
processors as fundamental first-class entities that explicitly
manage k

p blocks. However, the computation is local to each
block or between neighboring blocks, so processor-centricity
obscures the fundamental character. Our design treats each
block as the basic element of a medium-grained parallel
execution. Each block is expressed as an uniquely addressable
object within a parallel collection that encapsulates data and
methods. By taking a dynamic collection of blocks as our
fundamental entity, we enable straightforward expression of
the new algorithms described later in this section.

Each block in our design is a virtual endpoint of commu-
nication. Instead of addressing messages to a system rank,
each message is addressed to an object that is managed by the
runtime. The runtime ensures that each message is delivered to
the appropriate processor where the object currently resides.
Directly addressing blocks requires that they have distinct,
processor-independent names that can be efficiently mapped
(and possibly remapped) to a host processor. This requirement
turns out to lead to other algorithmic improvements relative
to existing implementations (§ ??) and it takes only O(N/P )

memory per process where N is the total number of blocks
and P is the total number of processes.

The block-centric formulation of our design offers several
algorithmic advantages: firstly, the updates on a block’s zones
can begin as soon as it receives the necessary halo data from
that block’s neighbors. Secondly, the computation of each
block’s update steps can overlap with communication for all
the other blocks on the same processor. Finally, a great deal of
implementation complexity is spared in the application code.

Our novel algorithm relies on efficient, asynchronous mes-
sages between block objects. Each block can send a message
to another block by remotely invoking a method on it with
some associated data. The data is sent as a message to the
appropriate processor by the runtime and executed in turn
on the targeted block. Messages can be sent to currently
nonexistent objects: because the block-to-processor mapping is
deterministic given the block’s unique address, messages can
be simply buffered by the runtime on the processor where the
block will be dynamically constructed. This behavior allows
us to limit the amount of synchronization that is required in
our algorithm.

B. Mesh Restructuring Decision Algorithm

During the course of execution, the simulated domain is
expected to evolve such that some zones require finer resolu-
tion to obtain accurate results, while other zones can be safely
simulated more coarsely. Like other AMR implementations,
we currently make these adjustments periodically between
steps of the simulation. The defining features of our algorithm
are that it uses only point-to-point messages between spatially-
neighboring blocks to communicate remeshing decisions, and
that it synchronizes through a lightweight termination detec-
tion mechanism (§ ??) only to determine when all blocks have
reached consensus on their remeshing decisions.

When a block reaches the point in simulation time at which
mesh resolution is to be reconsidered, it must decide whether it
will refine, stay at its current resolution, or coarsen before sub-
sequent time steps. Each block can assume as a precondition
that all of its neighbors and siblings (i.e. its communication
partners) start off at a refinement depth that differs from its
own by at most one. To minimize the overall computational
load, every block should be coarsened as much as possible.
The requirement for accuracy means that any block’s decision
to refine or maintain its resolution will constrain its neighbors
and siblings to maintain or increase their own resolution.

Figure ?? illustrates an example of how this process might
proceed. Part (a) shows that a single block decides to refine
(shown as shaded) based on its local error estimate and all the
other blocks locally decide to maintain their current resolution.
The shaded block sends messages (drawn as solid arrows)
to its communication partners indicating that it intends to
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Fig. 2: Propagation of refinement decision messages, based on local error criteria and near-neighbor communication. Shaded
blocks have concluded that they must refine, and send messages (solid arrows) accordingly (a-c). The path and effects of this
rippling message chain are shown by dashed lines and arrows (b-d). Eventually, all the blocks reach a consensus state (e).

Each block is addressed by its location in the refinement
tree. The underlying runtime system provides direct communi-
cation between arbitrary blocks. We describe a mapping from
block addresses to processors that provides reasonable load
balance and locality under the dynamic workload evolution
that AMR presents (§ ??). This avoids the need for explicitly
redistributing the load during the computation.

A. Distributed Parallel Objects

To obtain high performance, AMR implementations typ-
ically partition work into k blocks for p processor cores,
where k > p. Existing algorithms and implementations treat
processors as fundamental first-class entities that explicitly
manage k

p blocks. However, the computation is local to each
block or between neighboring blocks, so processor-centricity
obscures the fundamental character. Our design treats each
block as the basic element of a medium-grained parallel
execution. Each block is expressed as an uniquely addressable
object within a parallel collection that encapsulates data and
methods. By taking a dynamic collection of blocks as our
fundamental entity, we enable straightforward expression of
the new algorithms described later in this section.

Each block in our design is a virtual endpoint of commu-
nication. Instead of addressing messages to a system rank,
each message is addressed to an object that is managed by the
runtime. The runtime ensures that each message is delivered to
the appropriate processor where the object currently resides.
Directly addressing blocks requires that they have distinct,
processor-independent names that can be efficiently mapped
(and possibly remapped) to a host processor. This requirement
turns out to lead to other algorithmic improvements relative
to existing implementations (§ ??) and it takes only O(N/P )

memory per process where N is the total number of blocks
and P is the total number of processes.

The block-centric formulation of our design offers several
algorithmic advantages: firstly, the updates on a block’s zones
can begin as soon as it receives the necessary halo data from
that block’s neighbors. Secondly, the computation of each
block’s update steps can overlap with communication for all
the other blocks on the same processor. Finally, a great deal of
implementation complexity is spared in the application code.

Our novel algorithm relies on efficient, asynchronous mes-
sages between block objects. Each block can send a message
to another block by remotely invoking a method on it with
some associated data. The data is sent as a message to the
appropriate processor by the runtime and executed in turn
on the targeted block. Messages can be sent to currently
nonexistent objects: because the block-to-processor mapping is
deterministic given the block’s unique address, messages can
be simply buffered by the runtime on the processor where the
block will be dynamically constructed. This behavior allows
us to limit the amount of synchronization that is required in
our algorithm.

B. Mesh Restructuring Decision Algorithm

During the course of execution, the simulated domain is
expected to evolve such that some zones require finer resolu-
tion to obtain accurate results, while other zones can be safely
simulated more coarsely. Like other AMR implementations,
we currently make these adjustments periodically between
steps of the simulation. The defining features of our algorithm
are that it uses only point-to-point messages between spatially-
neighboring blocks to communicate remeshing decisions, and
that it synchronizes through a lightweight termination detec-
tion mechanism (§ ??) only to determine when all blocks have
reached consensus on their remeshing decisions.

When a block reaches the point in simulation time at which
mesh resolution is to be reconsidered, it must decide whether it
will refine, stay at its current resolution, or coarsen before sub-
sequent time steps. Each block can assume as a precondition
that all of its neighbors and siblings (i.e. its communication
partners) start off at a refinement depth that differs from its
own by at most one. To minimize the overall computational
load, every block should be coarsened as much as possible.
The requirement for accuracy means that any block’s decision
to refine or maintain its resolution will constrain its neighbors
and siblings to maintain or increase their own resolution.

Figure ?? illustrates an example of how this process might
proceed. Part (a) shows that a single block decides to refine
(shown as shaded) based on its local error estimate and all the
other blocks locally decide to maintain their current resolution.
The shaded block sends messages (drawn as solid arrows)
to its communication partners indicating that it intends to
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Each block is addressed by its location in the refinement
tree. The underlying runtime system provides direct communi-
cation between arbitrary blocks. We describe a mapping from
block addresses to processors that provides reasonable load
balance and locality under the dynamic workload evolution
that AMR presents (§ ??). This avoids the need for explicitly
redistributing the load during the computation.
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Each block is addressed by its location in the refinement
tree. The underlying runtime system provides direct communi-
cation between arbitrary blocks. We describe a mapping from
block addresses to processors that provides reasonable load
balance and locality under the dynamic workload evolution
that AMR presents (§ ??). This avoids the need for explicitly
redistributing the load during the computation.
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block or between neighboring blocks, so processor-centricity
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block as the basic element of a medium-grained parallel
execution. Each block is expressed as an uniquely addressable
object within a parallel collection that encapsulates data and
methods. By taking a dynamic collection of blocks as our
fundamental entity, we enable straightforward expression of
the new algorithms described later in this section.

Each block in our design is a virtual endpoint of commu-
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be simply buffered by the runtime on the processor where the
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us to limit the amount of synchronization that is required in
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are that it uses only point-to-point messages between spatially-
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load, every block should be coarsened as much as possible.
The requirement for accuracy means that any block’s decision
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Each block is addressed by its location in the refinement
tree. The underlying runtime system provides direct communi-
cation between arbitrary blocks. We describe a mapping from
block addresses to processors that provides reasonable load
balance and locality under the dynamic workload evolution
that AMR presents (§ ??). This avoids the need for explicitly
redistributing the load during the computation.
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execution. Each block is expressed as an uniquely addressable
object within a parallel collection that encapsulates data and
methods. By taking a dynamic collection of blocks as our
fundamental entity, we enable straightforward expression of
the new algorithms described later in this section.

Each block in our design is a virtual endpoint of commu-
nication. Instead of addressing messages to a system rank,
each message is addressed to an object that is managed by the
runtime. The runtime ensures that each message is delivered to
the appropriate processor where the object currently resides.
Directly addressing blocks requires that they have distinct,
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(and possibly remapped) to a host processor. This requirement
turns out to lead to other algorithmic improvements relative
to existing implementations (§ ??) and it takes only O(N/P )
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can begin as soon as it receives the necessary halo data from
that block’s neighbors. Secondly, the computation of each
block’s update steps can overlap with communication for all
the other blocks on the same processor. Finally, a great deal of
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Our novel algorithm relies on efficient, asynchronous mes-
sages between block objects. Each block can send a message
to another block by remotely invoking a method on it with
some associated data. The data is sent as a message to the
appropriate processor by the runtime and executed in turn
on the targeted block. Messages can be sent to currently
nonexistent objects: because the block-to-processor mapping is
deterministic given the block’s unique address, messages can
be simply buffered by the runtime on the processor where the
block will be dynamically constructed. This behavior allows
us to limit the amount of synchronization that is required in
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tion to obtain accurate results, while other zones can be safely
simulated more coarsely. Like other AMR implementations,
we currently make these adjustments periodically between
steps of the simulation. The defining features of our algorithm
are that it uses only point-to-point messages between spatially-
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tion mechanism (§ ??) only to determine when all blocks have
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When a block reaches the point in simulation time at which
mesh resolution is to be reconsidered, it must decide whether it
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sequent time steps. Each block can assume as a precondition
that all of its neighbors and siblings (i.e. its communication
partners) start off at a refinement depth that differs from its
own by at most one. To minimize the overall computational
load, every block should be coarsened as much as possible.
The requirement for accuracy means that any block’s decision
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and siblings to maintain or increase their own resolution.

Figure ?? illustrates an example of how this process might
proceed. Part (a) shows that a single block decides to refine
(shown as shaded) based on its local error estimate and all the
other blocks locally decide to maintain their current resolution.
The shaded block sends messages (drawn as solid arrows)
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•  Ripple Propagation Algorithm 
•  Level-by-level 
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O(d*logP)  

•  Tree-replication on each process 
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Synchronization overhead 
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•  Exchange messages with neighboring blocks 
•  Update state using a state machine 
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Fig. 3: The finite state machine describing each block’s decision process during the mesh restructuring algorithm. A block’s
decision can change as a result of receiving messages from neighbors or siblings and as a result of evaluating its local error
condition. When termination is detected all decisions are finalized.

increase its refinement depth, and they must adjust accordingly
to keep the invariant of at most one level of difference between
neighbors. Parts (b) and (c) depict how this decision’s effect
ripple out to nearby blocks, with affected blocks downstream
(those whose resolution changes) shaded, and the path of
affected blocks shown by dashed lines and arrows.

The overall algorithm that each block executes can be
described by the finite state machine illustrated in Figure ??.
Each d state represents a possible refinement depth for the
block relative to its current depth. All of the blocks move
from a d state to a decision state when termination detection
indicates that they have reached consensus. The primary tran-
sitions from one state to another are driven by the receipt of
messages from neighbors and siblings indicating their intended
depth. Each time a block moves from one d state to another,
it sends messages to each of its communication partners
indicating the state that it has entered, possibly causing them
to transition and communicate as well. Although blocks will
try to coarsen themselves by default, any stimulus (message or
local error condition) indicating a need for higher resolution
will take precedence. This can be seen in the state machine’s
monotonic flow from coarser states toward more refined states.

Each block’s machine is initialized to a state that would
have it coarsen (indicated by the large triangle) as soon as
its execution passes the previous cycle of remeshing decision-
making. Because the blocks do not execute in lock step with
one another, a block may receive messages that advance its
state machine to d+1 and thereby constrain its decision even
before it has finished timestepping to the remeshing point.
This allows for a small optimization in which a block need
not evaluate its local error condition if its neighbors’ decisions
dictate that it must refine. If a block does finish timestepping
while in a state other than d + 1, it evaluates its local error
condition and follows the appropriate transition as indicated
by the dotted arrows.

Note that there are no transitions that move into the d� 1

state from another state. As a result, no block will ever send a
message indicating its own intention to coarsen, and no block

will receive a message indicating that a less-refined neighbor
wishes to change to level d � 2. Thus, there are no d � 2

transitions in the state machine.
After all the decisions are finalized, blocks are created or

destroyed as a result. A block that has decided to coarsen (in
concert with its siblings) sends its downsampled data to its
parent block and then destroys itself. A block that has decided
to refine constructs four new child blocks and send a quarter
of its data to each of them.

C. Termination Detection

Because refinement decisions are determined and further
propagated based on distributed mesh data, detecting the
global property of consensus requires termination detection.
Termination is the state when no messages are in flight and all
processes are idle. Many different varieties of algorithms for
detecting termination are well-established in the literature [?].

For this application, we use a wave-based four-counter
termination detection algorithm that propagates waves of total
send and receive message counts up and down a spanning tree
that includes all the processors. When the send and receive
message counts for two consecutive waves are identical, ter-
mination is detected [?]. Because waves are only propagated
when a processor is otherwise idle, two identical consecutive
counts indicate that no messages are in flight that could
spawn more work. Only propagating waves when a processor
is otherwise idle heavily reduces the number of waves that
are ever started, because any busy processor will block the
progression up the spanning tree. For AMR, the delay time
between the last block reaching its decision and termination
detection is low (empirical results are in § ??).

D. Block-to-processor Mapping and Load Balancing

In AMR, the collection of objects expands and contracts
unpredictably over time, causing dynamic load imbalances
to arise. Synchronized redistribution of blocks is expensive
because of the high frequency of growth and shrinkage. Hence,

Structured AMR: State Machine 
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Number of Cores 
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Cray XK/6 Titan 
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First order method in 

3d-space 

Structured AMR: Performance 

24 



Where are Exascale Issues? 
•  I didn’t bring up exascale at all so far.. 
–  Overdecomposition, migratability, asynchrony 

were needed on yesterday’s machines too 
–  And the app community has been using them 
–  But:  

•  On *some* of the applications, and maybe without a 
common general-purpose RTS 

•  The same concepts help at exascale 
–  Not just help, they are necessary, and adequate 
–  As long as the RTS capabilities are improved 

•  We have to apply overdecomposition to all 
(most) apps 

25 



Exascale-like capabilities  
based on 

Overdecomposition,  
Migratability,  
Asynchrony! 
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Fault Tolerance in Charm++/AMPI 
•  Four approaches available: 
–  Disk-based checkpoint/restart 
–  In-memory double checkpoint w auto. restart 
–  Proactive object migration 
–  Message-logging: scalable fault tolerance 

•  Common Features: 
–  Easy checkpoint: migrate-to-disk 
–  Based on dynamic runtime capabilities 
–  Use of object-migration 
–  Can be used in concert with load-balancing 

schemes 
27 



In-local-storage Checkpoint/restart 

•  Is practical for many apps 
–  Relatively small footprint at checkpoint time 

•  Very fast times… 
•  Demonstration challenge:  
–  Works fine for clusters in production version of 

Charm++ 
–  For MPI-based implementations running at  centers:  

•  Scheduler does not allow jobs to continue on failure 
•  Communication layers are not fault tolerant 

–  Fault  injection: dieNow(),  
–  Spare processors 

28 
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Extensions to fault recovery 
•  Based on the same over-decomposition 

ideas 
–  Use NVRAM instead of DRAM for checkpoints 

•  Non-blocking variants 
•  [Cluster 2012] Xiang Ni et al. 

–  Replica-based soft-and-hard-error handling 
•  As a “gold-standard” to optimize against 
•  [SC 13] Xiang Ni, E. Meneses, N. Jain, et al. 
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Saving Cooling Energy 
•  Easy: increase A/C setting 

–  But: some cores may get too hot 
•  So, reduce frequency if temperature is high (DVFS) 

–  Independently for each chip 
•  But, this creates a load imbalance! 
•  No problem, we can handle that: 

–  Migrate objects away from the slowed-down processors 
–  Balance load using an existing strategy 
–  Strategies take speed of processors into account 

•  Implemented in experimental version 
–  SC 2011 paper, IEEE TC paper 

•  Several new power/energy-related strategies 
–  PASA ‘12: Exploiting differential sensitivities of  code segments 

to frequency change  
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PARM:Power Aware Resource Manager 

•  Charm++ RTS facilitates malleable jobs 
•  PARM can improve throughput under a fixed 

power budget using: 
–  overprovisioning (adding more nodes than 

conventional data center) 
–  RAPL (capping power consumption of nodes) 
–  Job malleability and moldability 

`"Job"Arrives" Job"Ends/
Terminates"

Schedule"
Jobs"(LP)"

Update"
Queue"

Scheduler"

Launch"Jobs/"
ShrinkAExpand"

Ensure"Power"
Cap"

ExecuEon"
framework"

Triggers"

Profiler"

Strong"Scaling"
Power"Aware"Model"

Job"CharacterisEcs"
Database"

Power"Aware"Resource"Manager"
(PARM)"



What Do RTSs Look Like: Charm++ 
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Argo	  

An Exascale Operating System and Runtime	  

The Crew of the Argo:	  
	  Argonne	  National	  Laboratory;	  
	  	  	  Principle	  Investigator	  and	  Chief	  Architect:	  Pete	  Beckman	  
	  	  	  Chief	  Scientist:	  Marc	  Snir	  
	  P.	  Balaji,	  R.	  Gupta,	  K.	  Iskra,	  R.	  Thakur,	  K.	  Yoshii,	  F.	  Cappello	  
Boston	  University:	  	  	  	  	  J.	  Appavoo,	  O.	  Krieger	  
Lawrence	  Livermore	  National	  Laboratory:	  	  
	  	  	  M.	  Gokhale,	  E.	  Leon,	  B.	  Rountree,	  M.	  Schulz,	  B.	  Van	  Essen	  
Paci:ic	  Northwest	  National	  Laboratory:	  	  S.	  Krishnamoorthy,	  R.	  Gioiosa	  
University	  of	  Chicago:	  	  H.	  Hoffmann	  
University	  of	  Illinois	  at	  UC:	  	  	  L.	  Kale,	  E.	  Bohm,	  R.	  Venkataraman	  
University	  of	  Oregon:	  	  	  A.	  Malony,	  S.	  Shende,	  K.	  Huck	  
University	  of	  Tennesee	  Knoxville:	  	  	  J.	  Dongarra,	  G.	  Bosilca	  

Exascale(System!

Enclave(1! Enclave(2!

System(Management(
Components!

Ba
ck
pl
an

es
:((
(B
EA

CO
N
(a
nd

(E
XP

O
SÉ
(

Enclave(Management(
Components!

Enclave(Management(
Components!

Ba
ck
pl
an

es
:((
(B
EA

CO
N
(a
nd

(E
XP

O
SÉ
(

Nodes! Nodes!

Concurrency(RTS(
(

MulDEkernels(

Concurrency(RTS(
(

MulDEkernels(

$9.7M	  ASCR	  DOE	  
3	  year	  project,	  launched	  Aug	  2013 

Key Areas of Innovation: 
§  NodeOS/R 

–  Core-specialization permits multiple, 
concurrent kernels 

§  Lightweight Concurrency 
–  Embed fine-grained tasks and 

lightweight threads into OS for massive 
parallelism 

§  Backplane 
–  Event, Control, and Performance 

backplanes to support global 
optimizations 

§  Global View 
–  “Enclave” abstraction to allow global 

optimization of power, resilience, perf. 
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Allowing RTS to Reconfigure Apps 

•  We can push adaptivity further 
–  With a collaboration between RTS and programmer 

•  The programmer: 
–  Exposes some knobs (control-points) to the RTS 
–  Describes their effects in a standard “language” 

•  The RTS: 
–  Observes the runtime behavior,  
–  Optimizes what it can without reconfiguration 
–  When needed, asks app to reconfigure by 

choosing the right knob and direction 
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ChaNGa: Cosmology Simulation 

•  Tree: Represents 
particle 
distribution 

•  TreePiece: object/
chares containing 
particles 

Collaboration with 
Tom Quinn UW 
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ploits the cache. Before computing forces, each
TreePiece registers its data with the software cache.
Thus, a larger tree, corresponding to the union of
all local TreePieces, is assembled in the local cache.
When any piece of that tree is needed during force
computation, it is immediately retrieved.

Selectable Computation Granularity:
ChaNGa accepts an input parameter that defines
how much computation is performed before the
processor is allowed to handle requests from remote
processors. This enables a good tradeo↵ between
responsiveness to communication requests and
processor utilization.

4 Scalability Experiments

To evaluate ChaNGa’s e↵ectiveness as a produc-
tion simulator, we conducted a series of tests with
real cosmological datasets. These tests intended
both to assess the code’s portability across di↵erent
systems and to measure its performance scalability
in each particular type of system. We used the
three systems described in Table 1, and ran tests
with the following datasets:

lambs: Final state of a simulation of a 71Mpc3

volume of the Universe with 30% dark matter and
70% dark energy. Nearly three million particles
are used. This dataset is highly clustered on scales
less than 5 Mpc, but becomes uniform on scales
approaching the total volume. Three subsets of this
dataset are obtained by taking random subsamples
of size thirty thousand, three hundred thousand,
and one million particles, respectively.
dwarf: Snapshot at z = .3 of a multi-resolution
simulation of a dwarf galaxy forming in a 28.5Mpc3

volume of the Universe with 30% dark matter and
70% dark energy. Although the mass distribution
in this dataset is uniform on scales approaching the
volume size, the particle distribution is very cen-
trally concentrated and therefore highly clustered
on all scales above the resolution limit. The total
dataset size is nearly five million particles, but
the central regions have a resolution equivalent to
20483 particles in the entire volume.
hrwh lcdms: Final state of a 90Mpc3 volume
of the Universe with 31% dark matter and 69%
dark energy realized with 16 million particles. This
dataset is used in [7], and is slightly more uniform
than lambs.
dwarf-50M: Same physical model as dwarf except

(a) lambs dataset

(b) dwarf dataset

Figure 2. Pictorial view of datasets

that it is realized with 50 million particles. The
central regions have a resolution equivalent to
61443 particles in the entire volume.
lambb: Same physical model as lambs except that
it is realized with 80 million particles.
drgas: Similar to lambs and lambb except that it is
the high redshift (z = 99) state of the simulation,
and it is realized with 730 million particles. The
particle distribution is very uniform.

To illustrate some of the features in these
datasets, Figure 2(a) presents a pictorial view of
lambs, which has a reasonably uniform particle dis-
tribution, whereas Figure 2(b) presents dwarf, con-
taining a much more clustered distribution. In these
pictures the color scale indicates the log of the mass
density and covers six orders of magnitude.

We conducted serial executions of ChaNGa and
PKDGRAV on NCSA’s Tungsten to compare scala-

Clustered Dataset - Dwarf 

•  Idle time due to 
message delay 

Local$ Ewald$ Remote$Idle$0me$
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Solution: Replication 

•  Replicate tree nodes to distribute requests 
•  Requester randomly selects a replica 

PE 1 PE 2 PE 3 PE 4 
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Replication Impact 
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Control Point for Replication? 
•  This optimization can be turned into a 

control point via an abstraction 
–  For data  

•  That doesn’t change during a phase, and  
•  Is requested based on a key 

–  The RTS can then observe and decide / tune 
•  If replication is needed,  
•  Which objects to replicate 
•  Degree of replication 

•  It turns out to be of general use: 
–  A cloth simulation, with collision detection, also 

can use it 
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Costs of Overdecomposition? 
•  We examined the “Pro”s so far 
•  Cons and remedies: 
•  Scheduling overhead?  

–  Not much at all 
–  In fact get benefits due to blocking  

•  Memory in ghost layer increases 
–  Fuse local regions with compiler support 
–  Fetch one ghost layer at a time  
–  Hybridize (pthreads/openMP inside objects/DEBs) 

•  Less control over scheduling? 
–  i.e. too much asynchrony? 
–  But can be controlled in various ways by an observant RTS/programmer 

•  For domain-decomposition based solvers, may increase number 
of iterations 
–  You can lift it to node-level overdecomposition (use openMP inside) 
–  Also, other ideas:  

•  Too radical and new? 
–  Well, its working well for the past 10-15 years in multiple applications, 

via Charm++ and AMPI 
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How can  
Application Developers  

get ready for  
Adaptive RTSs? 
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Its not that weird or new 
•  First, note: 
–  The techniques I advocated were needed for 

dynamic irregular apps even on yesterday’s 
machines 
•  Just that they need to be applied to even regular apps  
•  How Charm++ meets exascale challenges already, 

almost 
– How we got so lucky: because of these irregular 

apps 

The adaptivity that was created via overdecomposition, 
migratability, & asynchrony, for dynamic applications, is 
also useful for handling machine variability at exascale 
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So, What are the Action Items 
•  Explore overdecomposition in your application 

–  Without using any RTS 
•  Increase the asynchrony in your app 
•  Add migratability in small measures  

–  But you will need to do some location management 
yourself 

•  Try coding a small module using an existing 
adaptive RTS 
–  E.g. Charm++ modules work with MPI modules 

•  Create control points for runtime manipulation 
•  Get used to words like “continuations”..  

–  But we need only simpler versions of those  
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Experiment with Languages/Libraries that 
support these concepts 

•  Programming models that exhibit some features 
–  Charm++ 
–  Adaptive MPI 
–  KAAPI 
–  ProActive 
–  FG-MPI (if it adds migration) 
–  mpC 
–  HPX (once it embraces migratability) 
–  StarPU 
–  ParSEC 
–  CnC 
–  MSA (multi-phase Shared arrays) 
–  Charisma 
–  Charj 
–  Chapel: may be a higher level model 
–  X10: has asynchrony, but not migratable units 

•  So, pick some of them to start experimenting w miniApps 
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message-driven 
execution 

Migratability 

Introspective and 
adaptive runtime system 

Scalable Tools 
Automatic overlap of 

Communication and Computation  

Emulation for 
Performance 
Prediction 

Fault Tolerance 

Dynamic load balancing 
(topology-aware, scalable) 

Temperature/Power/Energy 
Optimizations 

Benefits in Charm++ 

Perfect prefetch 

compositionality 

Over-decomposition 
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Summary 
•  Adaptive Runtime Systems are coming 
•  Advice to Application developers 
–  Get familiar with:  
–  Do I need to repeat? 
–  Overdecomposition, Migratability, Asynchrony 
–  Experiment with new models that support these 

and are interoperable 
•  E.g. Charm++ J 

49 

Charm++ workshop live webcast 
http://charm.cs.illinois.edu/charmWorkshop 
April 29-30 2014 

More info on Charm++:  
http://charm.cs.illinois.edu 

Overdecomposition Asynchrony Migratability 


