Parallel Programming with Migratable Objects:
Charm++ 1n Practice

Bilge Acun, Abhishek Gupta, Nikhil Jain, Akhil Langer, Harshitha Menon, Eric Mikida,
Xiang Ni, Michael Robson, Yanhua Sun, Ehsan Totoni, Lukasz Wesolowski, Laxmikant Kale

Department of Computer Science, University of Illinois at Urbana-Champaign

Abstract—The advent of petascale computing has introduced
new challenges (e.g. heterogeneity, system failure) for program-
ming scalable parallel applications. Increased complexity and
dynamism in science and engineering applications of today have
further exacerbated the situation. Addressing these challenges
requires more emphasis on concepts that were previously of
secondary importance, including migratability, adaptivity, and
runtime system introspection. In this paper, we leverage our
experience with these concepts to demonstrate their applicability
and efficacy for real world applications. Using the CHARM++
parallel programming framework, we present details on how
these concepts can lead to development of applications that scale
irrespective of the rough landscape of supercomputing technology.
Empirical evaluation presented in this paper spans many mini-
applications and real applications executed on modern supercom-
puters including Blue Gene/Q, Cray XE6, and Stampede.

I. INTRODUCTION

Parallel computing is at a crossroads. Computational mod-
eling using supercomputers will likely produce breakthrough
results in science and engineering in the coming years, utilizing
the increasingly powerful parallel machines. Yet, there are
significant challenges that need to be overcome. A major
category of future challenges involves dealing with dynamic
variations. Such variations can occur in the application itself,
e.g. when it uses adaptive refinement to increase the resolution
in selected subregions of space. Variability can also arise
from the machine itself, due to thermal considerations, power
constraints, and failures. In the face of these challenges, how
can we program the parallel machines of the future to run
sophisticated applications productively and efficiently?

It is now widely recognized that an adaptive runtime system
(RTS) will be an essential component of the solution to these
challenges [1]-[3]. However, we believe that to truly em-
power runtime systems, the programming models must possess
some essential attributes, including over-decomposition, asyn-
chronous message-driven execution, and migratability. The
idea of over-decomposition is to divide the computation into
many more independent units than the number of processors.
Thus, there are multiple work and data units assigned to each
processing element (PE) by the RTS. Which of these units
should be allowed to execute next on a given PE? Instead of
executing them in a pre-programmed sequence, we advocate
message-driven execution: control transfers cooperatively from
one unit to the other depending on which one is ready
to execute. Over-decomposition combined with asynchronous
message-driven execution provide multiple benefits that we de-
scribe in Section |lIl Migratability is another essential attribute:
the work and data units are not confined to a fixed PE by the
program. Instead, the RTS is free to migrate these units to any

processing element in the system during execution. This also
implies that the programmer writes the code in terms of these
logical units, with little reference to the notion of physical
execution units such as processors.

As we describe in this paper, these attributes allow us to
build a powerful RTS that can dynamically balance load, tol-
erate component failures, control chip temperatures, constrain
power, or minimize energy. It can optimize communication,
and shrink or expand the sets of processors used by a job,
which is particularly useful in cloud environments.

The CHARM++ parallel programming system [4]] has been
designed with the above attributes in mind. It realizes the
above-mentioned benefits, while staying within the context of
the familiar C++ programming language. Specially designated
C++ objects, called chares, play the role of work and data units.
Chares communicate via asynchronous method invocations,
which facilitate message-driven execution. The CHARM++
system has evolved over the past years in the context of science
and engineering applications developed using it. The needs of
these applications drove the development of specific features
in CHARM++, which benefit newer applications.

This paper describes the state of practice of CHARM++,
using multiple mini-applications as well as some full-fledged
applications. We first state the motivation and utility of the
three key attributes: over-decomposition, asynchronous execu-
tion, and migratability (1), and describe how they are realized
in CHARM++. Section III presents the runtime capabilities
CHARM++ provides based on these attributes. We then de-
scribe several mini-applications spanning multiple application
domains, show how each mini-app leverages the CHARM++
features, and present performance results attained on large
scale supercomputers (§[V). In some cases, we also showcase
the performance of the full-fledged CHARM++ application
from which the mini-app was derived. We also show how these
concepts can be applied to MPI applications using the Adaptive
MPI (AMP]) framework provided by CHARM++.

These mini-apps are representative of real applications
in that they capture the communication pattern and certain
portions of the computation kernel of real applications. Some
of the chosen applications and mini-apps have dynamic char-
acteristics, such as adaptive refinement, load imbalance, ir-
regular communication, and inter-modular dependencies, that
are increasingly seen in today’s science and engineering ap-
plications. We show that the CHARM++ programming model
design is suitable for a wide range of parallel applications
and demonstrate how CHARM++ features were critical in
efficiently parallelizing them.



II. FUNDAMENTAL DESIGN ATTRIBUTES

We believe that over-decomposition, asynchronous
message-driven execution, and migratability are essential
to empower a RTS. In this section, we first describe these
attributes and their utility, and then present how CHARM++
has been designed based on these attributes.

A. Over-decomposition

Over-decomposition refers to the division of the computa-
tion in an application into a large number of work and data
units, typically much more than the number of processing
elements. Such a decomposition implicitly decouples the pro-
grammer’s partitioning of the program and data from the low
level resources they execute on, e.g. cores. The underlying RTS
then maps these work units to PEs as it sees fit (Figure [I).

This model yields many benefits. Decoupling the decompo-
sition of computation from the number of processors allows the
programmer to define his program in terms of logical entities
that are suitable to his application, independent of the number
of processors. This may enhance the programmer’s productiv-
ity, while also improving application performance by allowing
the RTS to intelligently map these units to PEs. Another benefit
that originates from such a design is support for the concurrent
composition of parallel modules. These parallel modules can
be decomposed independently into suitable number of units
and be mapped onto the same set of PEs. It provides the benefit
of modularity and allows for overlap of communication and
computation across modules. Additionally, over-decomposition
results in smaller subdomains which may yield better cache
utilization.

B. Asynchronous Message-Driven Execution

Message-driven execution is a method of driving control
flow of a program in which work units are scheduled on a PE
only when a message is received for them, instead of executing
work units in a pre-programmed sequence. On the send side,
asynchrony requires that the source unit does not block for any
immediate response from the receiver. Any intended response
is sent in the future as a new message and is handled similarly.
The RTS actively probes for incoming messages; on receiving
a message, the RTS identifies the work unit which the received
message targets and schedules it on the PE when possible. In
FigureE], we see that work units A, B, C and D have messages
and are waiting to be scheduled by their respective PEs. The
remaining work units will not be scheduled until a message is
received.

In dynamic scenarios, communication delays can result in
idle PEs, which degrades the performance of an application.
This is especially true when the communication model forces
the sender to wait for the recipient of the message. Over-
decomposition with asynchronous message-driven execution
can help overcome this common problem. First, the sending
work unit does not need to wait for any response and can
continue its computation. Second, while a work unit waits for
a message, other work units can be scheduled in order to use
the PEs efficiently. As a result, this model helps in hiding
the latency of communication. It also is useful in decreasing
pressure on the network by spreading out communication from
different work units over a span of time.

[alle e ]I
i

A
o-
Gl 7 | L]

Fig. 1: An example of message-driven over-decomposition.

C. Migratability

Migratability is the ability to move work and data units
among the PEs. In combination with over-decomposition, this
empowers the RTS to map work and data units to the PEs of its
choice for performance. Additionally, the RTS can redistribute
the work and data units dynamically during the execution.
Dynamic migration enables a number of key benefits that will
be detailed in Section

— Dynamic load balancing.

— Checkpointing the current state of the application.
— Recovery from hard and soft failures.

— Temperature control and power aware redistribution.
— Malleable job scheduling with shrink and expand.

D. CHARM++

As stated in Section [I, the foundation of the CHARM++
parallel programming framework is based on the aforemen-
tioned attributes. We now briefly describe how these attributes
are embodied in CHARM++ to empower its RTS and enable
features presented in Section [II]

Over-decomposition: In CHARM++, users define their ap-
plication in terms of special C++ objects called chares and
indexed collections of chares called chare arrays. For the
most part, chares and chare arrays are defined just like
standard C++ classes and C++ arrays, allowing the program-
mer to take advantage of data encapsulation and abstraction.
Typically there are many more chares

than PEs, allowing the RTS to take

advantage of over-decomposition. Be- D D D

uog

cause CHARM++ uses an object based
paradigm, the programmer can also D <o D <>D
g ¢

easily implement different types of

work units. A brief example is shown

in Figure [2] which shows the decom-

position ofgk)ur LeanMD mini-app. The D D D
squares represent Cell objects, and the  Fig. 2: LeanMD
diamonds represent pairwise Compute Decomposition
objects. A more detailed description

of how LeanMD utilizes object based over-decomposition is
given in Section [[V-B]

Asynchronous Message-Driven Execution: This attribute is
enabled in CHARM++ via two entities — proxy and entry
methods. When the programmer creates chares, the RTS re-
turns a proxy that can be used to refer to any chare in the
global space. The programmer also marks certain methods
of the C++ objects as entry methods in a separate ci file.
A simple translator provided by CHARM++ reads ci files



and generates additional code allowing entry methods to be
invoked remotely via the proxy object. To send a message, the
programmer simply calls an entry method on a proxy object,
and the CHARM++ RTS will eventually invoke that method
on the actual chare in the global space.

Migratability: CHARM++ deploys a packing and unpacking
(PUP) framework to enable migration of chares. In order to
make a chare migratable, the programmer defines a member
function called pup. In this function, the entire object is
serialized to or deserialized from a stream of bytes provided
by the RTS. As shown in Figure 3| this process has been made
convenient by CHARM++ via overloading of the pipe operator
for common data types and classes.

class A { void A::pup(PUP::er &p) {
int foo; p | foo;
float bar[32]; PUParray (p,bar, 32) ;
void pup (PUP: :er&) ; }

}i

Fig. 3: Example PUP Function

Scalable Location Management: To support the CHARM++
programming model, the underlying RTS infrastructure, which
handles message delivery and location management, needs to
be scalable [5]]. This is particularly challenging because the
RTS needs to manage several collections of chare arrays and
find the current location of the over-decomposed objects for
message delivery in the face of migrations and faults. For
scalable location management, the RTS provides a unique
index to every chare created in the system. Depending on the
type of chare, the index can vary from being a one-dimensional
to six-dimensonal structure or be a user defined name. Every
indexed chare is mapped to its home PE, which is responsible
for managing updated information about it. Several default
schemes are provided by the RTS for assigning home PEs to
chares, from which the programmer is free to select the most
suitable. Programmers can also define their own scheme and
guide the RTS to use it.

The RTS uses location caching to ensure efficient message
delivery to chares. When a new message is sent to a chare, the
RTS first checks if it knows the current location of the chare
in its location cache. If the location is known, the message
is immediately sent to the destination PE. This scheme works
well if there is persistence in the interaction pattern of the
application, which is true for many scientific codes. In case
the current location of a chare is not known, the home PE is
queried for its current location. During migration of a chare,
the RTS makes sure that the home PE is updated with the
current location of the chare. Both the queries and the updates
to home PE are fully distributed in order to make location
management scalable.

Adaptive MPI: Many of the CHARM++ features discussed
can be realized for legacy MPI codes as well. We achieve
this through an MPI implementation called Adaptive MPI
(AMPI). 1t is built on top of the CHARM++ framework and
uses light-weight user-level threads instead of OS processes.
AMPI allows us to virtualize several MPI ranks on a single
physical core, which brings the benefits of over-decomposition
mentioned previously. In addition, the ranks can be migrated
to realize other benefits discussed earlier, such as automatic
load balancing and fault tolerance.

III. PROGRAMMING MODEL FEATURES

Building upon the fundamental attributes and their embodi-
ment in Charm++, described in Section[[I} the RTS can provide
many important features required to navigate through dynamic
variations in application behavior and machine environment. In
this section, we describe these features in detail.

A. Load balancing

Applications are increasingly becoming complex and are
relying on irregular structures and adaptive refinement tech-
niques. As a result, the computation load varies dynamically
as the execution proceeds. This is exhibited frequently in
applications such as molecular dynamics, cosmology simu-
lations, weather simulations, structural dynamics simulations,
and adaptive mesh refinement. For such applications, perform-
ing load imbalance and deciding its frequency are critical
factors that determine the scalability and performance.

As stated earlier, over-decomposition along with migrata-
bility empowers the RTS to perform adaptive load balancing.
In order to find a good mapping, load balancing strategies de-
ployed by the RTS require an estimate of the load (computation
and communication) of the work/data units. In simple cases,
this load can be based on a model. However, for many scientific
applications, the computation load and the communication
pattern change slowly, or suddenly but infrequently. Therefore
the recent past is a good predictor of the near future and can
be used to predict the load and perform load balance. Since
the RTS is orchestrating the scheduling on PEs and the com-
munication between the work/data units, it can instrument the
computation load and the communication pattern automatically
for each unit in a distributed database. The load balancing
strategies can use this information to perform mapping of
work/data units to PEs. Additionally, the RTS can observe
the application and automate the decision of when to invoke
load balancing. This relieves the programmer from making
decisions on load balancing related components.

CHARM++ provides a mature load balancing framework
with a suite of load balancing strategies comprising of various
centralized, distributed and hierarchical schemes for balanc-
ing computation load or communication [6]. Depending on
the needs of applications, the user can invoke appropriate
load balancer. The load balancing framework in CHARM++
instruments each chare as well as records the PE’s load. In
the AzSync mode of load balancing, all the chares pause their
execution and call AtSync. The load statistics are collected and
the user specified load balancing strategy is used to compute
the new mapping. Once the load balancing decision is made,
the framework handles the migration of the chares to the newly
mapped PEs and resumes them.

B. Checkpoint/Restart and Fault Tolerance

It is often difficult for modern applications that run for long
durations on large machines to get the allocations they need
at one time. Hence, checkpointing the state of the application
to disk for split execution is a common requirement. In such
scenarios, it is an annoying constraint to require the same core
count for executing a multiple phase application run every time
the execution is resumed. These difficulties are exacerbated if
faults, e.g. failure of a node, are observed during job execution.
With faults becoming more frequent as the system sizes grow,



being able to continue execution without having to restart
from a disk based checkpoint is becoming an essential feature
required of modern parallel frameworks.

Over-decomposition based migratability provides a simple
but powerful solution to these problems. Split execution is
trivially enabled by migrating the work/data units to disk. Since
the checkpoints are unit-based, restarting from them does not
depend on the core counts. Tolerance to faults can be achieved
by storing a copy of the units on a PE other than the PE they
are mapped to. If one of the PE fails, the work/data units
residing on it can be restarted on any other PE by using the
stored copy.

Checkpointing Application State: CHARM++ uses the PUP
framework (§II-D) to provide automated support for check-
pointing the application state to disk. Using this chare-based
checkpointing, the application can be restarted on any number
of PEs irrespective of the number of PEs in the original run.
To perform the checkpointing, the user only needs to call
CkStartCheckpoint(”log”,callback), where “log” is the path
to the checkpoints. callback is called when the checkpoint
(or restart) is complete. To restart from checkpoints, one
simply needs to pass a runtime argument +restart log.

Tolerating Process Failures: CHARM++ offers a double in-
memory fault tolerance mechanism for applications running
on unreliable systems [7[]. In this scheme, periodically, two
copies of checkpoints are stored: one in the local memory
of the PE and the other in the memory of a remote PE. On
failure, a new PE replaces the crashed PE, and the most recent
checkpoints of chares running on the old PEs are copied to
it. Thereafter, every PE rolls back to the last checkpoint, and
the application continues to make progress. The fault tolerance
mechanism provided by CHARM++ can be used by calling Ck-
StartMemCheckpoint(callback), where callback is called
when the checkpoint(or restart) is complete. The in-memory
based checkpointing algorithm helps reducing the checkpoint
overhead in comparison to the file system based checkpointing
scheme by storing the checkpoint in memory.

C. Power Awareness

The power and energy budget is becoming more important
for future exascale machines and studies have shown that
cooling energy comprises of 40%-50% of the energy con-
sumed by a data center [8]. To reduce this, the computer
room air conditioning (CRAC) temperature can be set to a
higher degree. However, higher room temperature can cause
overheating of cores which reduces hardware reliability [9].
Dynamic Voltage Frequency Scaling (DVFS) is commonly
used to prevent overheating by modulating chip frequency
and voltage. However, changing the frequency of the chips
can result in load imbalance and increase the execution time.
Therefore, it becomes critical to perform load balancing along
with DVFS.

The CHARM++ scheme leaves it to the RTS to adaptively
control the chip temperature using DVFS. Over-decomposition
and migratability are critical features required to ensure sav-
ings in cooling energy using this technique. The RTS monitors
individual chip temperatures periodically and uses DVFS to
constrain the chip temperature to a specified threshold. It
decreases the frequency of hot cores and increases the ones
that are well below the threshold. This can introduce significant

600 80
Execution time 23
Max temp 0 _ 75
500 -
= - 70 )
o
g -6 3
hs £
5 M _ _ _ o
S 300 60 £
§ 8
= ] N [ 2 i - 55 E
5 200 %
-5 =
100
- 45
0 40

Base  Naive_DVFS LB_I0s LB_5s
Fig. 4: The adaptive RTS successfully reduces the timing
penalty while restraining the core temperatures.

MetaTemp

amount of load imbalance in a tightly coupled application. To
mitigate the load imbalance, the RTS monitors the application
characteristics and whenever it detects load imbalance, it
triggers a call to the load balancer [10].

When assigning tasks to a core, the load balancer scales
the load according to the frequency of the core to ensure good
load balance even in heterogeneous conditions. We have shown
that this scheme can reduce the cooling energy considerably
in comparison to naive DVES [11]. The benefits can be seen
in Figure [] where the RTS is able to reduce the timing
penalty and restrain core temperatures. Here, CRAC is set to
74°F and the threshold temperature is 50°C. Base case shows
the application run without any modifications. Naive_DVFS
applies DVFS periodically, while LB_10s and LB_5s perform
load balancing along with DVES every 10 and 5 seconds
respectively. MetaTemp does load balancing whenever the
benefit outweighs the cost.

D. Malleability

Malleability is the ability of parallel jobs to shrink or
expand the number of processors on which they are executing
at run-time in response to an external command. A parallel
RTS which can render applications malleable, when used in
conjunction with intelligent adaptive job scheduling algorithms
can significantly improve a) cluster utilization, e.g, by ex-
panding the running jobs when cluster demand is low, and
b) average job response time, e.g. by shrinking the running
jobs when cluster demand is high [12]]-[16].

A processor-centric programming model makes shrinking
or expanding extremely challenging since that necessitates too
much application-specific programming effort for data redis-
tribution after a shrink or expand event. In contrast, an object-
centric over-decomposed system provides an elegant solution:
automatic RTS-managed remapping of migratable objects to
continuing/new processes after a shrink/expand event.

Using the capabilities mentioned above, CHARM++ jobs
have the ability to shrink or expand by invoking a customized
load balancer. The main idea is to evacuate chares from nodes
which would be removed in case of shrink, and provide them
to the new processes in case of expand [16]. However, chare
redistribution by itself is insufficient since that leaves residual
processes in case of shrink. These processes acts as processor-
level agents which can interfere with other user’s processes.
The CHARM++ team recently enhanced the shrink/expand
capabilities eliminating the need of these residual processors.



0.65 -
06 - T Shrink 256->128
0.55 -
0.5 B

045 - 3 Expand 128->256

04
035 B /
03+

025

02 g

0.15

ol I I I I I I I )
0 50 100 150 200 250 300 350 400

measured from (re)start (s)

Average Time per iteration

Iteration Number

Fig. 5: Adapting load distribution on shrink and expand

Figure [5] demonstrates the shrink/expand capability using
LeanMD. Initially the application is running on 256 cores
of Stampede supercomputer at TACC. On a shrink request
(sent through CHARM++ CCS [17] mechanism), the RTS
reconfigures itself and application continues running on 128
cores. The iteration time doubles as expected. Later on, the
number of cores is expanded back to 256, and the iteration time
reduces accordingly. The peaks at shrink and expand denote
the load balancing time. The total time for shrinking from 256
to 128 is 2.7s and the time for expanding from 128 to 256
is 7.2s. The time is dominated by the time taken to restart
the application processes and reconnect them using a start-up
protocol.

E. Introspective Control System

With the increasing complexity of applications and hard-
ware, many researchers are actively working on runtime sys-
tems to support their programming models efficiently. For ex-
ample, communication optimization in Partitioned Global Ad-
dress Space (PGAS) is supported by the GASNET RTS [18].
Cilk is designed as an efficient multithread RTS by incorporat-
ing the work stealing scheduler [19], [20]. The new languages,
Chapel [21] and X10 [22], both have their own powerful
runtime systems.

CHARM++ provides an introspective adaptive RTS which
automates task mapping, message scheduling, memory man-
agement and low level communication. Due to these capabili-
ties, the RTS has the full knowledge of application behaviors,
and can possibly reconfigure them for performance. In addition
to configurable load balancing, we have also developed a
more generic scheme based on an introspective control sys-
tem to reconfigure both the RTS and the applications. This
framework provides an easy-to-use interface for applications
to interact with the control system by control points [23], [24].
Control points are tunable parameters with information about
the expected effects of changing the parameters. The control
system monitors the application events, collects performance
data and performs automatic analysis to detect performance
bottlenecks. Based on the performance results and a set of
expert knowledge rules, the control system makes decisions
about what control points to adjust and how to adjust them.
The new configuration is then fed back to the application and
RTS.

After studying various benchmarks, mini-apps and real
world applications, we have identified various common control
points for applications and runtime systems. Some of the more
commonly used ones are the block size in stencil code, parallel

16 16

tuning the number of pipeline @

12
10

12
10

Time per step(ms)
©
T
[ ]
°
|
©
Number of pipeline messages

o N A~ O
T
[
|
(=T S A

5 10 I5 20 25 30 35 40

Step
Fig. 6: Tuning the number of pipelines in a ping benchmark

threshold for state space search problems, stages in pipeline
communication, topology aware mapping scheme, fault toler-
ance frequency, load balancing strategy and frequency, etc. The
programmer can also register their own control points to tune
their applications. Figure [6]illustrates the process of changing
the number of pipeline stages in a ping benchmark and how
it affects the performance. Our control system is able to find
the optimal value and stabilize the performance.

F. Communication Optimization for Fine-grained Messages

It is often convenient to use fine-grained messages to
implement the interactions between objects in a CHARM++
program. Fine-grained communication can arise as a result
of object-based decomposition, as small work and data units
tend to produce small message payloads. For constant-sized
problems, decomposition into fine-grained units may even
be necessary in order to create sufficiently many objects to
utilize the large number of processing elements on modern
supercomputing systems. Messages used for synchronization,
data requests, and orchestration, both at the application and
RTS level, are also frequently characterized by small payload.

The utility of fine-grained communication in directly rep-
resenting many communication scenarios is in contrast to its
generally poor performance characteristics. Much of the per-
message overhead at the application, RTS, and network level
is independent of message size. In applications with high fine-
grained message volume, this overhead can dominate run time.

The CHARM++ Topological Routing and Aggregation
Module (TRAM) is a library that improves fine-grained com-
munication performance by coalescing fine-grained commu-
nication units, or data items, into larger messages. TRAM
constructs a virtual topology comprising the processes in the
parallel run, and defines peers within this topology as any
processes that can be reached by traveling an arbitrary number
of hops along a single dimension. Separately aggregating data
items for each destination requires substantial memory and
limits the potential for aggregating concurrent data items with
different destinations but common sub-paths. To address this
issue, TRAM aggregates data items at the level of peers.
Items whose destinations are not in the set of peers at the
source process will be routed through one or more intermediate
destinations along a minimal route. As a result, the memory
footprint of the buffer space will normally fit in lower level
cache.



100
® PS —e
10 &
_ F A
©« Useful Computation —@— -
g £ MPI Multiway-Merge Sort - -A--
i r Charm++ HistSort =@
| & e
F B A’ p— 1
F O
0.1 1 -;--_---_-.;.._..,,,..............:...*- I |
8 64 512 4096
Number of PEs

Fig. 7: CHARM: Interoperation removes scaling bottleneck.

G. Interoperation

Many modern applications consist of multiple modules (or
phases) that are more suitable to different parallel program-
ming paradigms. For optimal performance and productivity,
it is critical that the programmer is allowed to implement a
module in the language that suits it the most. For example,
collision detection is required in many applications that may be
implemented in MPI. However, given the asynchronous com-
munication and load balancing required for scalable collision
detections, CHARM++ is suitable for implementing it [25].

Effortless execution of the modules developed in different
language is enabled by interoperation, which we believe is
an important feature for parallel languages. To this end,
CHARM++ provides a simple interface that makes its modules
invocable from other languages as external libraries. This
interface is currently used to enable interoperation with MPIL.
Any CHARM++ module can be made invocable from another
language by adding an interface function to it. In a manner sim-
ilar to a regular library invocation, the interface function is used
to exchange data and transfer control to CHARM++. A typical
interface function activates the RTS and begins execution of
the module. On completion, the RTS returns control back to
the interface function, which in turns returns it to its calling
program. An MPI program that invokes a CHARM++ module
is required to initialize CHARM++ by calling CharmLiblnit
before any CHARM++ module invocation.

We use CHARM [26], a production cosmological and
astrophysical code implemented in MPI, to demonstrate the
practical utility of interoperation between MPI and CHARM++.
In order to remove the load imbalance caused by non-uniform
particle distribution, CHARM performs a global sorting oper-
ation that redistributes the particles in every step before the
computation is performed. As shown in Figure |7} the global
sorting operation implemented in MPI becomes a performance
bottleneck on large core counts (23% of the total time is spent
in sorting at 4096 cores). While one can possibly implement
a scalable sorting library in MPI, the features required by
sorting operation — asynchronous and unexpected messages
— suits CHARM++ more. As a result, a highly scalable sorting
library exists in CHARM++ [27]]. Enabled by interoperation,
we offloaded the global sorting operation in CHARM to
CHARM++’s sorting library, which removed the scalability
bottleneck — 2% of the total time is spent in sorting at 4096
cores (Figure [7).

IV. PERFORMANCE BENCHMARKS

Next, we demonstrate the practical applicability of the RTS
features (Section[IV)) in mini-applications and real applications.
We also present how the RTS can be useful for HPC in cloud.

A. Adaptive Mesh Refinement

Adaptive Mesh Refinement [28] is used widely for ob-
taining numerical solution of partial differential equations. Its
applications span a diverse set of fields such as computational
fluid dynamics, astrophysics, etc. In numerical simulations
using AMR, only those regions of the mesh that need higher
resolution are refined to a higher depth, while others are kept
at a coarser refinement level. As the simulation progresses,
refinement level of the mesh regions is dynamically updated
every few iterations.

AMR3D is a mini-app written in CHARM++ for tree-based
structured adaptive mesh refinement (SAMR) simulations. It
performs a 3D finite-difference simulation of advection, which
is a first-order upwind method. AMR3D is a very rich appli-
cation that benefits from several CHARM++ features:

1) Object Based Decomposition: CHARM++’s object ori-
ented approach significantly simplifies the expression of the
program logic as a block, which is the basic unit of compu-
tation in the mesh. Unlike the process-centric programming
languages such as MPI, the programmer has to write code
to explicitly manage multiple blocks (possibly at different
refinement levels) in a process. Block-based expression makes
it very productive for the programmer to implement AMR
codes [29], which are known to be very tedious to manage,
maintain, and debug. Additionally, object based decomposition
helps to overlap communication of one block with computation
of another block on the same process.

In our implementation, we represent blocks as a chare
array with custom array index. During mesh restructuring, new
blocks can be dynamically inserted to or deleted from the chare
array. We use bit vector indices that correspond to location of
the block in the oct-tree. With bit vector indexing, a chare
can find the index of its parent and neighbors by simple local
operations on its own index. The RTS can redistribute the
blocks without any change to the logic.

2) Dynamic Distributed Load Balancing: AMR requires
dynamic load balancing because frequent refining and coars-
ening of the mesh grid creates load imbalance across pro-
cesses. Figure |8 (left) shows the strong-scaling performance
of AMR3D on 8K to 128K processes (4 processes/core) of
BG/Q achieving 46% parallel efficiency with load balancing.
We use a distributed load balancing strategy [30] to achieve
significant performance benefit of 40% at 128 K processes over
the run without any load balancing.

3) In-memory Checkpoint/Restart (with simulated failure):
Figure [8] (right) shows checkpoint and restart time of AMR3D
with dynamic depth range from 2 to 9 on BG/Q. As the
number of processes increase from 2K to 32K, checkpoint
size per core decreases. Therefore, checkpoint time decreases
from 394ms on 2K processes to 29ms on 32K processes.
The restart time also decreases from 2.24s at 2K processes to
470ms at 32K processes.



4 NoLB ——
4 DistributedLB —+—
Ideal —&—

Time per Step (s)
- N

0.5 \\'\F

0.25 1 1 1 1
8192 16384 32768 65536 131072

Number of PEs

Checkpoint —+—
Restart —+—

Time(s)

0.5 \\

0 1 1
2048 4096 8192

Number of PEs

16384 32768

Fig. 8: AMR3D with dynamic depth range from 2 to 9, on Vesta (IBM BG/Q)

4) Overcoming Typical Bottlenecks in AMR codes: Typical
AMR implementations such as Enzo [31f], Chombo [32],
Flash [33]], etc. require the tree structure of the mesh (or
all the patch information in patch-based simulations) to be
replicated on each process to facilitate mesh restructuring,
requiring O(#blocks) memory per process. This acts as a
memory bottleneck. The distributed object location manager
and bit vector indexing in CHARM++ eliminates this memory
bottleneck, requiring only O(#blocks/P) memory per pro-
cess. The scalable quiescence detection feature in RTS is used
during mesh restructuring to determine when all refinement
decisions are done. Therefore, mesh restructuring requires just
O(1) global collective call. On the contrary, typical AMR
implementations take O(d) global collective calls for mesh
restructuring (where d is the depth of the tree). This approach
makes AMR3D highly scalable. Details of the algorithms can
be found in [34].

B. Molecular Dynamics

LeanMD is a molecular dynamics simulation mini-app
written in Charm++. It simulates the behavior of atoms based
on Lennard-Jones potential, where the force calculations on
atoms are performed within a cut-off distance. The computa-
tion of this mini-app is representative of the non-bonded force
calculations in NAMD, which take a large fraction of the wall
clock time. NAMD is an application written in Charm++ that
won the 2002 Gordon Bell award. We present some of the
Charm++ features that are leveraged to improve performance.

1) Over-Decomposition: The 3D simulation space consist-
ing of atoms is decomposed into cells, to form a dense 3D
chare array called Cells. In one iteration of the simulation,
force calculations are performed for all pairs of atoms in
a sparse 6D chare array called Computes, which consumes
most of the simulation time. Processor based decomposition of
Computes would have resulted in smaller number of Computes
with imbalanced distribution of load. Over-decomposition of
Computes, which enables overlap of communication and com-
putation as well as load balancing, is critical to achieve scalable
performance for LeanMD (and NAMD).

2) Adaptive Load Balancing: For LeanMD , load balancing
is critical to obtain good performance. The load of a Compute
element is proportional to the number of atoms in the cells
for which it is computing the forces. The RTS monitors the
application continuously and invokes the load balancer when
an imbalance is detected and if the cost of load balancing
is not more than the benefit. Figure [0 shows the scaling
of LeanMD for a 2.8 million atoms system on 1K cores

32768 :
Ideal
16384 | With LB —3¢—
No LB —4—
8192 :
[~
=] H
T 409 :
& :
2048 /
1024 ;
o ; ; ; ; ;
1024 2048 4096 8192 16384 32768

Number of PEs
Fig. 9: LeanMD performance on Vesta (IBM BG/Q)

200
2.8 million Checkpoint —+—
1.6 million Checkpoint —+—
150 [~ 2.8 million Restart

1.6 million Restart —&—

100 /
.

S0 Al

~—

Time(ms)

+ 4+

0 1 1 1 ]
2048 4096 8192 16384 32768

Number of PEs
Fig. 10: LeanMD Checkpoint and restart on Vesta (IBM BG/Q)

to 32K cores of Vesta, an IBM Blue Gene/Q. We obtain
good scaling performance: at 32K cores, the time per step
is 44 ms/step. Note that the use of scalable hierarchical load
balancer, HybridLB, improves the performance by at least 40%.

3) In-memory Checkpoint/Restart (with simulated failure):
Figure [I0] shows the checkpoint and the restart time of
LeanMD for a 2.8 million atoms system and a 1.6 million
atoms system on a BlueGene/Q. Compared to AMR, the
checkpoint size of LeanMD is much smaller. Thus the check-
point and restart times for LeanMD are both in few tens of
milliseconds range. When the number of processors increases
from 2K to 32K, the checkpoint time for the 2.8 million atom
system decreases from 43ms to 33ms. During restart, several
barriers are used to ensure consistency until the crashed node
is recovered. The restart time for the 2.8 million atom system
increases slightly from 66 ms on 4K processors to 139 ms on
32K processors due to the effect of barriers.

As a full-fledged molecular dynamics application, we show



3 2)\ Titan XK7 (CPU only) ——
256 N Jaguar XT5 —4—
g \
§|28 \\
S 64
Q
£ 32 \
= \’Q'_
16 -

4096 8192 16384 32768 65536 131072 262144

Number of cores

Fig. 11: NAMD strong scaling for 100 million atom benchmark

the results for NAMD running on various major supercomput-
ers. Figure [T1] shows its strong scaling for the 100 million
atom benchmarks, where is scaled up to the full Titan XK7
and Jaguar XTS5 systems. This demonstrates the capability of
CHARM++ programming model to scale real applications.

C. Barnes Hut

Barnes-Hut is an N-body simulation algorithm which simu-
lates N moving particles (masses) under the influence of grav-
itational forces [35]]. At each discrete time step, the net forces
are calculated on each particle, then the positions and velocities
of the particles are updated. Barnes-Hut implementation and
performance relies on the following CHARM++ features:

1) Object Based Decomposition: The 3D space is over-
decomposed into a chare array called T'ree Pieces using an oct
decomposition. Over-decomposition enables the RTS to map
multiple TreePiece elements to a PE enabling load balancing
and overlap of communication and computation. Figure
shows the performance benefits — 40% (500m) compared to
the case with one object per process (500m_NO).

2) Prioritized Messages: CHARM++ allows associating
priorities with messages (method invocations). Prioritization is
used in Barnes-Hut to give precedence to remote data requests.
Since the remote requests might take longer than the local
computation, they are given a higher priority.

3) Adaptive Load Balancing: Uneven distribution of the
particles creates load imbalance. We use a load balancing strat-
egy which performs Orthogonal Recursive Bisection (ORB)
to balance the load among PEs. Figure [I2] shows the scaling
of this Barnes-Hut mini-app for 500 million particles. We
obtain good performance due to over-decomposition and load
balancing with a time per step of 5 seconds at 8192 cores.

Figure shows the scaling of ChaNGa, a cosmology
application in CHARM++, from 8K to 128K cores on Blue
Waters evolving 2 billion particles. It also shows the break
down of the total execution time in terms of other phases such
as Gravity, DD (Domain Decomposition), TB (Tree Build) and
LB (Load Balancing). We obtain good performance scaling and
at 128 K cores the Total Step Time takes a total of 2.7 seconds
with a parallel efficiency of 80% with respect to 8K cores.

D. AMPI Example with Lulesh

Livermore Unstructured Lagrangian Explicit Shock Hydro-
dynamics (LULESH) is a widely used mini-app written in
MPI [36], [37]. It mimics the behavior of a large class of

500m —4—
500m_LB —¥—
500m_NO —5—
Ideal —4—

Time per Step (s)
o

| 1 1 1 1 1 1
256 512 1024 2048 4096 8192 16384
Number of PEs

Fig. 12: Barnes-Hut Performance on Blue Waters (Cray XE6)

o4 Gravity —+— LB —¥—
DD —4—  Total Step Time - 4 -

TB —¢— Ideal - 4 -

Time per Step (s)

0.25F e WSRO

0.0625

8192 16384 32768 65536 131072
Number of PEs
Fig. 13: Performance of ChaNGa cosmo25 dataset evolving 2
billion particles on Blue Waters (Cray XE6)

science and engineering applications that use hydrodynamics
models. LULESH solves the hydrodynamics equations of state
on an unstructured, hexahedral mesh. The length of each time
step is calculated dynamically, and the communication pattern
includes both nearest neighbor and global communication.
Typical hydrodynamics applications exhibit load imbalance
due to the varying amounts of computation for different
materials. LULESH models this imbalance by having disjoint
regions in the simulation domain. However, the load imbalance
in LULESH is designed to be small.

1) Porting to AMPI: Porting LULESH to AMPI requires
minimal effort since it is a modular C++ program, with very
few global and static variables. It can run using AMPI by
merely adding the appropriate compiler and linker flags. To use
other features of the CHARM++ framework, MPI_Migrate()
calls need to be added to the main iteration loop. Although
packing the user’s data for migration can be automated using
iso-malloc, we wrote a pup routine for better portability. This
is straightforward for LULESH since the application’s data is
encapsulated in the Domain class.

2) Improving Cache Utilization using AMPI: Cache opti-
mization is very important for the performance of LULESH
since it runs multiple kernels on the simulated domain in
each iteration. However, applying cache optimizations such as
blocking (tiling) manually can be challenging for legacy MPI
codes. In particular, the memory access pattern of LULESH is
complex because it uses an unstructured mesh (with non-unit
stride accesses) and multiple domain regions.

Virtualization presents the illusion of more PEs to the
application, which results in less data per virtual PE for a
fixed input size. This improves cache efficiency if the smaller
data of each virtual PE fits in the cache. For LULESH, we



256

MPI —k—
AMPI (v=1) —dh—
AMPI (v=8) —>¢—
AMP| (v=8)+load-balancing ——f—
128 K
'
£
£
o<
64
f
T ]
3 L 1 1 1 1 1 1
512 1000 2197 3000 4096 6000 8000

Number of PEs
Fig. 14: LULESH performance comparison: MPI vs. AMPI for
automatic cache optimization and load balancing on Hopper

observe that each Hopper node is working on about 283MB
of data. The total size of L2 and L3 caches on each node
of Hopper is about 36MB. With eight-way virtualization, we
decrease the active working set size to about 35MB, which is
below the total cache size. Effectively, each iteration’s work is
performed in eight portions, each with smaller working sets.
Figure [I4] presents the weak scaling of LULESH on native MPI
and AMPI. The domain size is the default (27000 elements per
PE). The AMPI run with a virtualization ratio of eight provides
a 2.4x speedup with the same source code, simply by reducing
the size of the working set in the cache.

3) Automatic Load Balancing using AMPI: Figure [14] also
demonstrates that AMPI can alleviate the small load imbalance
of LULESH automatically. This is done by migrating the
virtual PEs from overloaded processors.

4) Running on Various Number of Cores: Normally
LULESH requires a cubic number of cores, which is a major
limitation for users. Virtualization allows the user to run on
any number of cores by providing a cubic number of virtual
processors. To illustrate this, Figure [T4] presents data for non-
cubic core counts (3000 and 6000). It can also be seen that
there is no major performance overhead associated with this
feature.

E. PDES

In parallel discrete event simulation (PDES), logical pro-
cesses (LPs) execute discrete events in order to simulate a
scenario or physical phenomenon written by a simulation
designer. Events are timestamped with a virtual time and
to run correctly, events must be executed in non-decreasing
timestamp order. This ordering imposed on events is what
makes PDES applications difficult to scale.

We have written a PDES mini-app in CHARM++ using
the YAWNS protocol, which is an example of a windowed
conservative protocol [38[]. A program using the YAWNS
protocol is in one of two phases: window calculation or event
execution. During the window calculation phase, each LP
determines the earliest possible time it can create a new event.
Then, the minimum of these times is found using a reduction.
This determines a window in which events can be executed
without being preempted by a new event. The execution phase
executes all events in the current window.

We benchmarked our mini-app using the PHOLD simula-
tion benchmark. In the PHOLD benchmark, each LP generates
an initial load of events, each with a random duration and

destination. To process an event, an LP computes a new
random duration for the event, and forwards it to a new,
randomly determined LP.

The PDES mini-app relies on the following CHARM++
features in order to operate efficiently:

1) Over-decomposition: During the execution phase of the
YAWNS protocol, only LPs which have events in the current
window have useful work to do. Because CHARM++ utilizes
over-decomposition, when one LP doesn’t have work in the
current execution window, the PE can choose another LP
that does have work in the current window, thus minimizing
idle time on the PE. Figure [I5a] shows the effects of over-
decomposition by comparing event rates as we increase the
number of LPs per PE from 64 to 256, with a fixed initial
event load of 32 events per LP.

2) Asynchronous Message-Driven Execution: In many
PDES applications, the communication patterns between LPs
cannot be determined a priori. Recipients have no way of
knowing when and from where they will receive new events,
and senders have no way of knowing what other events
will need to be executed by the recipient. In a synchronous
communication model this would be complex to code and
prone to deadlocks. The message driven, asynchronous nature
of CHARM++ eliminates much of this complexity. Recipient
LPs are executed by the RTS when messages arrive for them,
removing the need for them to explicitly receive events, and
senders can immediately continue execution after a send rather
than waiting on the recipient.

3) TRAM: A common characteristic of PDES applications
is a very high number of fine grained events. This holds true in
our benchmark, allowing us to leverage the benefits of TRAM.
In Figure, we show the impact of TRAM in runs with 256
LPs per PE, and initial event loads of 64 and 1024 events per
LP. At low communication volumes, aggregation of messages
increases average message latency, making the direct send
approach faster. We see this for the case of 64 messages per
LP on 1024 PEs. For higher communication volumes, using
TRAM generally led to better performance than direct sending,
reaching a peak of over 50 million events per second with 1024
events per LP on 4096 PEs.

F. Beyond Supercomputers: HPC in Cloud

Cloud computing with Infrastructure-as-a-Service offerings
(such as Amazon EC2 [39]) has recently emerged as a
promising addition to traditional supercomputers. Clouds are
especially attractive to small and medium scale organizations,
especially those with emerging or sporadic HPC demands,
since they can benefit from the pay-as-you-go model (renting
vs. buying) and elasticity — on-demand provisioning in clouds.

However, despite this potential to spread the outreach of
HPC, there is a mismatch between current cloud environments
and typical HPC requirements. Poor interconnect and I/O
performance, HPC-agnostic cloud schedulers, and the inherent
heterogeneity and multi-tenancy are some of the bottlenecks
for HPC in the cloud [40]-[45].

Our research in the HPC-cloud domain has shown that the
following features of over-decomposed adaptive HPC runtimes
can be pivotal in meeting these challenges [46]]. We present
our findings on a private cloud comprising 8 Intel Xeon



64 LPs/PE ——
25M | 128 LPS/PE — oo
256 LPs/PE —¥—

Events/second
@
K4

10M
oM 1 ]
1024 2048 4096
Number of PEs

(a) Varying LPs per PE with 32 events per LP

50M | No TRAM 64 Events/LP ——— ..
64 Events/LP —>¢— ...
1024 Events/LP —¥— __  _~" .

1024 2048 4096
Number of PEs
(b) Varying events per LP with 256 LPs per PE

Fig. 15: Weak scaling runs of the PHOLD benchmark on Stampede. In (a) we increase the number of LPs per PE with a fixed
initial event load of 32 events per LP. In (b) we show the benefits of TRAM at high event counts with 256 LPs per PE.

Iteration time (s)

0 50 100 150 200 250 300 350 400 450 500
Iteration number

Fig. 16: Stencil2D’s performance with load balancing in cloud

HeteroNolLB ——— HomolB —¢—

|_\ HeterolLB —+—  Ideal (wrt Homo-32) —&—
05 —

0.25 -

0.125 Q
0.0625 " !

32 64 128 256
Number of PEs

Fig. 17: Performance and scalability of LeanMD in heteroge-
neous cloud environments

Time per Step (s)

X5650 @2.67GHz nodes connected using 1Gig Ethernet, and
virtualized using kvm [47].

1) Over-decomposition: Latency and bandwidth mi-
crobenchmarks showed that the underlying network in most
clouds (typically commodity Ethernet) performs an order of
magnitude worse compared to typical HPC interconnects [44],
[45]. Automatic overlap of computation and communication,
enabled by over-decomposition, minimizes the effect of slow
network on application performance. In our experiments, the
iteration time for Stencil2D (grid size 4k by 4k) on 32 VMs
improved by 2.4X — from 77ms with 1 chare/process to 32ms
with 8 chares/process.

2) Dynamic Load Balancing: In clouds there is a) static
heterogeneity, i.e., underlying physical nodes may be different,

and b) dynamic heterogeneity which is an artifact of the
interference arising from multi-tenancy, i.e. multiple VMs
from multiple users may be sharing/entering/exiting the same
physical machine. The rich CHARM++ RTS facilitates the
development of novel load balancing techniques to achieve
good performance in dynamic and heterogeneous cloud en-
vironments. The main idea is to (1) infer whether the load
imbalance is application intrinsic or caused by extraneous
factors such as interference and (2) dynamically redistribute
chares from overloaded to underloaded VMs [46]].

Figure [T6] shows iteration time for Stencil2D on 32 VMs (8
nodes). Here, an interfering VM was started on one node after
100 iterations. The difference between the two curves after
100 iterations illustrates the benefits of heterogeneity-aware
load balancing. Load balancing happens every 20 steps, which
also manifests itself as a spike in the iteration time.

Another challenge in clouds is that the interference is
unpredictable, and varies from run to run — making it im-
possible to a priori determine optimal load balancing period.
Hence, instead of application-triggered periodic load balanc-
ing, we switch to an RTS-triggered approach [48]]. To evaluate
this approach on a larger scale, we used a cloud setup on
Grid’5000 [[49] testbed — Graphene cluster at Nancy site, with
Linux containers [50] for virtualization and Distem [51]] for
creation of artificial heterogeneity in homogeneous clusters.
We introduced heterogeneity by making one node’s effective
CPU frequency as 0.7X. Figure [I7] shows LeanMD’s perfor-
mance and scalability on this setup. Performance attained with
heterogeneous-awareness is close to the homogeneous case.

V. CONCLUSION

In this paper, we describe key concepts that are essential
for parallel applications to take advantage of today’s modern
supercomputers. We show the benefits of over-decomposition,
message-driven execution, and migration both by describing
the powerful features they enable and showing empirical
results from a breadth of benchmark mini-apps and full-scale
applications written in CHARM++. CHARM++ handles the
features described in this paper in a way that is transparent
to the programmer, allowing users of CHARM++ to focus on
the details of their application while the adaptive RTS handles
the details of efficient parallel execution. As machines continue
to grow in size, these parallel framework features will become
even more important for achieving scalable performance.



[2]

[3]

[4]

[5]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

D. Brown et al., “Scientific Grand Challenges: Crosscutting Technolo-
gies for Computing at the Exascale.” U.S. DOE PNNL 20168, Report
from Workshop on Feb. 2-4, 2010, Washington, DC, Tech. Rep., 2011.

“Top Ten Exascale Research Challenges.” U.S. DOE, Report from DOE
ASCAC Subcommittee, Tech. Rep., 2014, http://science.energy.gov/~/
media/ascr/ascac/pdf/meetings/20140210/Top 1 OreportFEB 14.pdf.

“Open Community
open-community-runtime.

L. Kale, A. Arya, A. Bhatele, A. Gupta, N. Jain, P. Jetley, J. Lifflander,
P. Miller, Y. Sun, R. Venkataraman, L. Wesolowski, and G. Zheng,
“Charm++ for productivity and performance: A submission to the 2011
HPC class II challenge,” Parallel Programming Laboratory, Tech. Rep.
11-49, November 2011.

O. S. Lawlor and L. V. Kalé, “Supporting dynamic parallel object ar-
rays,” Concurrency and Computation: Practice and Experience, vol. 15,
pp. 371-393, 2003.

G. Zheng, “Achieving high performance on extremely large parallel
machines: performance prediction and load balancing,” Ph.D. disserta-
tion, Department of Computer Science, University of Illinois at Urbana-
Champaign, 2005.

G. Zheng, L. Shi, and L. V. Kalé, “FTC-Charm++: An In-Memory
Checkpoint-Based Fault Tolerant Runtime for Charm++ and MPL” in
2004 IEEE Cluster, San Diego, CA, September 2004, pp. 93-103.

R. Sawyer, “Calculating total power requirements for data centers,”
White Paper, American Power Conversion, 2004.

Runtime,” http://01.org/projects/

O. Sarood, E. Meneses, and L. Kalé, “A ‘cool’ way of improving
the reliability of hpc machines,” in Proceedings of The International
Conference for High Performance Computing, Networking, Storage and
Analysis, Denver, CO, USA, November 2013.

H. Menon, B. Acun, S. G. De Gonzalo, O. Sarood, and L. Kalé,
“Thermal aware automated load balancing for hpc applications,” in
Cluster Computing (CLUSTER), 2013 IEEE International Conference
on. IEEE, 2013, pp. 1-8.

O. Sarood and L. V. Kalé, “A ‘cool’ load balancer for parallel
applications,” in Proceedings of the 2011 ACM/IEEE conference on
Supercomputing, Seattle, WA, November 2011.

D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik,
and P. Wong, “Theory and practice in parallel job scheduling,” in
Proceedings of the Job Scheduling Strategies for Parallel Processing,
ser. IPPS °97. London, UK, UK: Springer-Verlag, 1997, pp. 1-34.
[Online]. Available: http://dl.acm.org/citation.cfm?id=646378.689517

K. El Maghraoui, T. Desell, B. Szymanski, and C. Varela, “Dynamic
malleability in iterative mpi applications,” in Cluster Computing and the
Grid, 2007. CCGRID 2007. Seventh IEEE International Symposium on,
2007, pp. 591-598.

M. C. Cera, Y. Georgiou, O. Richard, N. Maillard, and P. O. A. Navaux,
“Supporting malleability in parallel architectures with dynamic cpusets
mapping and dynamic mpi,” in Proceedings of the 11th international
conference on Distributed computing and networking, ser. ICDCN’10.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 242-257. [Online].
Available: http://dl.acm.org/citation.cfm?id=2018057.2018090

G. Utrera, J. Corbaln, J. Labarta, and D. D. D. C. (dac, “Implementing
malleability on mpi jobs,” in Proc. 13 th Intl Conf. on Parallel
Architecture and Compilation Techniques (PACT04. IEEE Computer
Society, 2004, pp. 215-224.

L. V. Kalé, S. Kumar, and J. DeSouza, “A malleable-job system
for timeshared parallel machines,” in 2nd IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGrid 2002), May
2002.

The CONVERSE programming language manual, Department of Com-
puter Science,University of Illinois at Urbana-Champaign, Urbana, IL,
2006.

“Gasnet: A portable high-performance communication layer for
global address-space languages,” 2002. [Online]. Available: hittp:
//gasnet.cs.berkeley.edu/

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Ran-
dall, and Y. Zhou, “Cilk: An Efficient Multithreaded Runtime System,”
in Proc. 5th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP’95, Santa Barbara, California, Jul. 1995,
pp. 207-216, mIT.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

, “Cilk: An efficient multithreaded runtime system,” Journal of
Parallel and Distributed Computing, vol. 37, no. 1, pp. 55-69, 1996.

B. Chamberlain, D. Callahan, and H. Zima, “Parallel programmability
and the chapel language,” Int. J. High Perform. Comput. Appl.,
vol. 21, pp. 291-312, August 2007. [Online]. Available: http:
//dl.acm.org/citation.cfm?1d=1286120.1286123

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: an object-oriented
approach to non-uniform cluster computing,” in OOPSLA. New York,
NY, USA: ACM, 2005, pp. 519-538.

1. Dooley and L. V. Kale, “Control points for adaptive parallel perfor-
mance tuning,” November 2008.

I. Dooley, “Intelligent runtime tuning of parallel appli-
cations  with  control  points,” Ph.D. dissertation, Dept.
of Computer Science, University of Illinois, 2010,

http://charm.cs.uiuc.edu/papers/DooleyPhDThesis10.shtml.

O. S. Lawlor and L. V. Kalé, “A voxel-based parallel collision de-
tection algorithm,” in Proceedings of the International Conference in
Supercomputing. ACM Press, June 2002, pp. 285-293.

F. Miniati and P. Colella, “Block structured adaptive mesh and time
refinement for hybrid, hyperbolic+n-body systems,” J. Comput. Phys.,
vol. 227, no. 1, pp. 400-430, Nov. 2007.

E. Solomonik and L. V. Kale, “Highly Scalable Parallel Sorting,” in
Proceedings of the 24th IEEE International Parallel and Distributed
Processing Symposium (IPDPS), April 2010.

M. J. Berger and J. Oliger, “Adaptive Mesh Refinement for Hyper-
bolic Partial Differential Equations,” Journal of computational Physics,
vol. 53, no. 3, pp. 484-512, 1984.

L. Kale, A. Arya, N. Jain, A. Langer, J. Lifflander, H. Menon, X. Ni,
Y. Sun, E. Totoni, R. Venkataraman, and L. Wesolowski, “Migrat-
able objects + active messages + adaptive runtime = productivity +
performance a submission to 2012 HPC class II challenge,” Parallel
Programming Laboratory, Tech. Rep. 12-47, November 2012.

H. Menon and L. Kalé, “A distributed dynamic load balancer for iter-
ative applications,” in Proceedings of SC13: International Conference

for High Performance Computing, Networking, Storage and Analysis.

ACM, 2013, p. 15.

B. Oshea, G. Bryan, J. Bordner, M. Norman, T. Abel, R. Harkness,
and A. Kritsuk, “Introducing enzo, an amr cosmology application,”
in Adaptive Mesh Refinement - Theory and Applications, ser. Lecture
Notes in Computational Science and Engineering.  Springer Berlin
Heidelberg, 2005, vol. 41, pp. 341-349.

“Chombo Software Package for
http://seesar.lbl.gov/anag/chombo.

G. Weirs, V. Dwarkadas, T. Plewa, C. Tomkins, and M. Marr-Lyon,
“Validating the Flash code: vortex-dominated flows,” in Astrophysics
and Space Science. Springer, 2005, vol. 298, pp. 341-346.

A. Langer, J. Lifflander, P. Miller, K.-C. Pan, , L. V. Kale, and
P. Ricker, “Scalable Algorithms for Distributed-Memory Adaptive Mesh
Refinement,” in Proceedings of the 24th International Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD
2012). To Appear, New York, USA, October 2012.

J. Barnes and P. Hut, “A hierarchical O(N log N) force-calculation
algorithm,” Nature, vol. 324, pp. 446—449, December 1986.

I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. De-
Vito, R. Haque, D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz,
and C. Still, “Exploring traditional and emerging parallel programming
models using a proxy application,” in 27th IEEE International Parallel
& Distributed Processing Symposium (IEEE IPDPS 2013), Boston,
USA, May 2013.

I. Karlin, J. Keasler, and R. Neely, “Lulesh 2.0 updates and changes,”
Tech. Rep. LLNL-TR-641973, August 2013.

P. M. Dickens, D. M. Nicol, P. F. Reynolds, Jr., and J. M. Duva,
“Analysis of bounded time warp and comparison with yawns,” ACM
Transactions on Modeling and Computer Simulation, vol. 6, no. 4, pp.
297-320, Oct. 1996.

“Amazon Elastic Compute Cloud (Amazon EC2),” http://aws.amazon.
com/ec2.

E. Walker, “Benchmarking Amazon EC2 for high-performance scien-
tific computing,” LOGIN, pp. 18-23, 2008.

AMR Applications,”


http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://01.org/projects/open-community-runtime.
http://01.org/projects/open-community-runtime.
http://dl.acm.org/citation.cfm?id=646378.689517
http://dl.acm.org/citation.cfm?id=2018057.2018090
http://gasnet.cs.berkeley.edu/
http://gasnet.cs.berkeley.edu/
http://dl.acm.org/citation.cfm?id=1286120.1286123
http://dl.acm.org/citation.cfm?id=1286120.1286123
http://aws.amazon.com/ec2
http://aws.amazon.com/ec2

[41]

[42]

[43]
[44]

[45]

[46]

(471
[48]

[49]

[50]

[51]

C. Evangelinos and C. N. Hill, “Cloud Computing for parallel Scientific
HPC Applications: Feasibility of Running Coupled Atmosphere-Ocean
Climate Models on Amazon’s EC2.” Cloud Computing and Its
Applications, Oct. 2008.

P. Mehrotra, J. Djomehri, S. Heistand, R. Hood, H. Jin, A. Lazanoff,
S. Saini, and R. Biswas, “Performance Evaluation of Amazon EC2
for NASA HPC applications,” in Proceedings of the 3rd workshop on
Scientific Cloud Computing. New York, NY, USA: ACM, 2012.

“Magellan Final Report,” U.S. Department of Energy (DOE), Tech.
Rep., 2011.

A. Gupta and D. Milojicic, “Evaluation of hpc applications on cloud,”
in Open Cirrus Summit (OCS), 2011 Sixth, 2011, pp. 22-26.

A. Gupta, L. V. Kalé, D. S. Milojicic, P. Faraboschi, R. Kaufmann,
V. March, F. Gioachin, C. H. Suen, and B.-S. Lee, “The who, what,
why and how of high performance computing applications in the cloud,”
in Proceedings of the 5th IEEE International Conference on Cloud
Computing Technology and Science, ser. CloudCom ’13, 2013.

A. Gupta, O. Sarood, L. Kale, and D. Milojicic, “Improving hpc
application performance in cloud through dynamic load balancing,” in
Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM
International Symposium on, 2013, pp. 402-409.

“KVM - Kernel-based Virtual Machine,” Redhat, Tech. Rep., 2009.

H. Menon, N. Jain, G. Zheng, and L. V. Kalé, “Automated load
balancing invocation based on application characteristics,” in IEEE
Cluster 12, Beijing, China, September 2012.

F. Cappello, E. Caron, M. Dayde, F. Desprez, Y. Jegou, P. Primet,
E. Jeannot, S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst,
B. Quetier, and O. Richard, “Grid’5000: A large scale and highly
reconfigurable grid experimental testbed,” in Proceedings of the 6th
IEEE/ACM International Workshop on Grid Computing, ser. GRID °05.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 99-106.
[Online]. Available: http://dx.doi.org/10.1109/GRID.2005.1542730

D. Schauer et al.,, “Linux containers version 0.7.0,” June 2010,
http://Ixc.sourceforge.net/.

L. Sarzyniec, T. Buchert, E. Jeanvoine, and L. Nussbaum, “Design and
evaluation of a virtual experimental environment for distributed sys-
tems,” in Parallel, Distributed and Network-Based Processing (PDP),
2013 21st Euromicro International Conference on, Feb 2013, pp. 172—
179.


http://dx.doi.org/10.1109/GRID.2005.1542730

	Introduction
	Fundamental Design Attributes
	Over-decomposition
	Asynchronous Message-Driven Execution
	Migratability
	Charm++

	Programming model features
	Load balancing
	Checkpoint/Restart and Fault Tolerance
	Power Awareness
	Malleability
	Introspective Control System
	Communication Optimization for Fine-grained Messages
	Interoperation

	Performance Benchmarks
	Adaptive Mesh Refinement
	Object Based Decomposition
	Dynamic Distributed Load Balancing
	In-memory Checkpoint/Restart (with simulated failure)
	Overcoming Typical Bottlenecks in AMR codes

	Molecular Dynamics
	Over-Decomposition
	Adaptive Load Balancing
	In-memory Checkpoint/Restart (with simulated failure)

	Barnes Hut
	Object Based Decomposition
	Prioritized Messages
	Adaptive Load Balancing

	AMPI Example with Lulesh
	Porting to AMPI
	Improving Cache Utilization using AMPI
	Automatic Load Balancing using AMPI
	Running on Various Number of Cores

	PDES
	Over-decomposition
	Asynchronous Message-Driven Execution
	TRAM

	Beyond Supercomputers: HPC in Cloud
	Over-decomposition
	Dynamic Load Balancing


	Conclusion
	References

