
An Optimal Distributed Load Balancing Algorithm for
Homogeneous Work Units

[Extended Abstract]

Akhil Langer
Department of Computer Science

University of Illinois at Urbana-Champaign, USA
alanger@illinois.edu

ABSTRACT
Many parallel applications, for example, Adaptive Mesh Re-
finement [1] simulations, need dynamic load balancing dur-
ing the course of their execution because of dynamic vari-
ation in the computational load. We propose a novel tree-
based fully distributed algorithm for load balancing homoge-
neous work units. The proposed algorithm achieves perfect
load balance while doing minimum number of migrations of
work units.

Categories and Subject Descriptors
G.1.0 [Mathematics of Computing]: Parallel algorithms

General Terms
Algorithms, Performance

Keywords
Distributed load balancing; adaptive mesh refinement; com-
plexity analysis; scaling; high performance computing

1. THE DISTRIBUTED LOAD BALANCING
ALGORITHM

The proposed algorithm is a spanning-tree based algo-
rithm that is inspired by the distributed algorithm for con-
structing balanced spanning trees of process subgroups in
parallel applications [2]. We form a spanning tree of all the
processes, where each vertex of a tree corresponds to a pro-
cess. The algorithm does two passes over the spanning-tree
- the upward pass and the downward pass.

Upward pass: Processes send the count of work units in
their subtree (of which the process itself is the root) to the
parent process. At the end of the upward pass, each process
has the count of work units in each of its child subtrees.

Downward pass: During this pass, migration decisions and
work unit migrations take place. The scheme balances the
tree while minimizing the number of migrations. The num-
ber of work units in the subtree and the size of the subtree

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). Copyright is held by the author/owner(s).
ICS’14, June 10–13 2014, Munich, Germany.
ACM 978-1-4503-2642-1/14/06.
http://dx.doi.org/10.1145/2597652.2600108 .

are used to compute the number of work units per process
in a perfectly balanced state. The root process and the child
subtrees are categorized as either work supplier or work con-
sumer. Each vertex V of the tree performs a ”matchmaking”
step, ensuring that each of work supplier is assigned one or
more of work consumer that can absorb the excess work units
of the supplier within their subtrees. If V itself needs some
work units it requests work units from suppliers for itself.
Similarly, if V itself has excess work, it tags itself as a work
supplier. A vertex V concludes its role by calling the bal-
ancing step on the work suppliers if V was a work receiver or
the work receivers if V was a work supplier. This alternation
is done in order to ensure that the list of work suppliers and
work receivers does not grow long, and in order to minimize
the number of messages received by any vertex. Addition-
ally, alternation also helps in early assignment of work units
to their final destination processes. This makes it possible
to migrate work units concurrently with the downward pass
of the algorithm.

Our implementation is based on Charm++ [3], which is
an object-based asynchronous message driven parallel pro-
gramming paradigm.

2. REFERENCES
[1] Akhil Langer, Jonathan Lifflander, Phil Miller,

Kuo-Chuan Pan, , Laxmikant V. Kale, and Paul Ricker.
Scalable Algorithms for Distributed-Memory Adaptive
Mesh Refinement. In Proceedings of the 24th
International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD 2012).
To Appear, New York, USA, October 2012.

[2] Akhil Langer, Ramprasad Venkataraman, and
Laxmikant Kale. Scalable Algorithms for Constructing
Balanced Spanning Trees on System-Ranked Process
Groups. In Jesper TrÃd’ff, Siegfried Benkner, and Jack
Dongarra, editors, Recent Advances in the Message
Passing Interface, volume 7490 of Lecture Notes in
Computer Science, pages 224–234. Springer Berlin /
Heidelberg, 2012.

[3] Laxmikant Kale, Anshu Arya, Nikhil Jain, Akhil
Langer, Jonathan Lifflander, Harshitha Menon, Xiang
Ni, Yanhua Sun, Ehsan Totoni, Ramprasad
Venkataraman, and Lukasz Wesolowski. Migratable
Objects + Active Messages + Adaptive Runtime =
Productivity + Performance A Submission to 2012
HPC Class II Challenge. Technical Report 12-47,
Parallel Programming Laboratory, November 2012.


