
Maximizing Throughput on a Dragonfly Network

Nikhil Jain∗, Abhinav Bhatele†, Xiang Ni∗, Nicholas J. Wright‡, Laxmikant V. Kale∗

∗Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
†Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California 94551 USA

‡NERSC, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
E-mail: nikhil@illinois.edu, bhatele@llnl.gov, xiangni2@illinois.edu, njwright@lbl.gov, kale@illinois.edu

Abstract—Interconnection networks are a critical resource for
large supercomputers. The dragonfly topology, which provides a
low network diameter and large bisection bandwidth, is being
explored as a promising option for building multi-Petaflop/s and
Exaflop/s systems. Unlike the extensively studied torus networks,
the best choices of message routing and job placement strategies
for the dragonfly topology are not well understood. This paper
aims at analyzing the behavior of an interconnect based on the
dragonfly topology for various routing strategies, job placement
policies, and application communication patterns. Our study is
based on a novel model that predicts traffic on individual links
for direct, indirect, and adaptive routing strategies. We analyze
results for individual communication patterns and some common
parallel job workloads. The predictions presented in this paper
are for a 100+ Petaflop/s prototype machine with 92,160 high-
radix routers and 8.8 million cores.

I. INTRODUCTION

HPC systems are typically associated with low latency
and high bandwidth networks which lead to fast messaging
between communicating processes. However, as systems be-
come larger and computation continues to become cheaper
due to many-core nodes with accelerators, the network is
increasingly becoming a scarce resource. This has pushed the
HPC community towards designing low-diameter fast networks
with large bisection bandwidth. The dragonfly topology [1]
and its variants [2], [3], [4] are actively being explored as the
interconnects that satisfy all these requirements.

In the dragonfly topology, high-radix routers are used to
organize the network into a two-level all-to-all or closely con-
nected system. The presence of these multi-level hierarchies
connected through network links opens up the possibilities
for different routing strategies and job placement policies.
However, unlike the extensively studied torus network, the best
choices of message routing and job placement policies are not
well understood for the dragonfly topology.

This paper compares various techniques to maximize the
network throughput on a 100+ Petaflop/s prototype machine
with a dragonfly interconnect comprised of 92,160 routers and
8.8 million cores. We evaluate the proposed system using
a congestion aware model for network link utilization. A
wide variety of routing strategies for the dragonfly topology
are compared – static direct, static indirect, adaptive direct,
adaptive indirect, and adaptive hybrid routing. To the best of
our knowledge, this is the first work that predicts network
utilization for adaptive routings on the dragonfly interconnect.
The predictions are performed for various combinations of

routing strategies with different job placement policies –
random or round-robin allocation of nodes, routers, chassis
or groups to each job.

The unusually long time spent in PDES-based network
simulations in our previous work [5] prompted us to use
analytical modeling in this paper. We have developed a
message-level, congestion-aware iterative model of the dragon-
fly topology that predicts network link throughput. A parallel
MPI implementation of the model has been used to perform
the experiments. The model is used to determine the link
throughput for various routing strategy and job placement
combinations and answer questions such as:
• What is the best combination for single jobs with com-

munication patterns such as unstructured mesh, 4D
stencil, many-to-many, and random neighbors? These
patterns represent production scientific applications
routinely run on NERSC machines [6], [7].

• What is the best combination for parallel job work-
loads in which several applications are using the
network simultaneously?

• Is it beneficial for jobs in a workload to use different
routing strategies that are more suitable for them in
isolation? What is the best placement policy in this
situation?

To the best of our knowledge, such studies have not been
reported so far for a dragonfly network. We believe that the
analysis presented in this paper will be useful to application
end-users in identifying good configurations for executing their
applications on a dragonfly interconnect. At the same time,
these results can be used by machine architects and system
administrators to decide the best default job placement policies
and routing strategies.

II. THE DRAGONFLY INTERCONNECT

Multi-level direct networks have been proposed recently
by several researchers as a scalable topology for connecting
a large number of nodes together [1], [2], [3], [4]. The
basic idea behind these networks is to have a topology that
resembles an all-to-all at each level of the hierarchy which
gives the impression of a highly connected network. Further
analysis would show that the network is built using high-radix
routers that only exist at the lowest level. The connections
between these routers create an appearance of several all-to-all
connected direct networks at multiple levels of the hierarchy.

Two prominent implementations of multi-level direct net-
works are the PERCS interconnect by IBM [3] and the CascadeSC14, November 16-21, 2014, New Orleans

978-1-4799-5500-8/14/$31.00 c©2014 IEEE

All-to-all network
in columns: Level 1

Network Ports

Processor
Ports

Level-1 network

Level-2 network

A GROUP WITH 96 ROUTERS

Compute Nodes

A DRAGONFLY ROUTER

Chassis (All-to-all network
in rows: Level 1)

Level-2 all-to-all network
(not all groups or links are

shown)

THE DRAGONFLY TOPOLOGY

Fig. 1: The structure of a dragonfly network

system by Cray [4]. We focus on the Cascade system which
is based on the dragonfly topology designed by Kim et al. [1].
The Cascade (Cray XC30) system uses the Aries router as
its building block and has been used in supercomputers such
as Edison at NERSC, Lawrence Berkeley National Laboratory
and Piz Daint at the Swiss National Supercomputing Centre.

In this paper, we use the dragonfly topology to build a
prospective 100+ Petaflop/s system. The parameters for this
prototype machine are inspired by the Cray Cascade system.
We have, however, simplified the router and link bandwidths
for ease of modeling. The building block is a network router
with 30 network ports and 4 processor ports (Figure 1). Each
network router is connected to four compute nodes (of 24 cores
each) through the processor ports. Sixteen such routers form
a chassis and six chassis are combined together to form a
group (16 × 6 = 96 routers in total). Each network router is
connected to all other routers in its chassis (15 ports) and to
the corresponding routers in five other chassis (5 ports). These
links along rows and columns in the group are called level 1
(L1) links in this paper. The remaining 10 ports are used to
connect to network routers in other groups. These inter-group
links form the second level (L2) of the network. L1 and L2
links together form a two-level direct network.

We take 960 such groups comprised of 96 routers (384
nodes) each to build a very large dragonfly system. This
machine has 8,847,360 cores (8.8 million) and extrapolating
the Edison system — a peak performance of 164.5 Petaflop/s.
Two major differences between the prototype machine used in
the paper and the Cray Cascade system are: 1. There is only
one L1 link between each pair of routers along the column
whereas the Cascade machine has three such links leading
to three times the bandwidth in that dimension, 2. Cray only
allows for 240 groups which leads to 4 links connecting each
pair of groups and hence much higher bandwidth.

Related Work: Formal models such as LogP [8] and
LogGP [9] have been used to analyze the communication in
parallel applications for a long time. Subsequently, based on
the LogP model, models such as LoPC [10], LoGPC [11],
LoGPG [12], LogGPO [13], and LoOgGP [14] were developed
to account for network congestion. Unlike the model in this
paper, these models do not consider routing protocols to model
congestion and do not model the traffic on individual links.
Simulators based on these models, e.g. LogGOPSim [15],
simulate application traces and are closer to our work.

Hoefler et al. [16] developed models for the traffic on
individual links in the presence of congestion for three different
network topologies – 3D torus, PERCS and Infiniband. Bhatele

et al. used BigSim [17], a discrete-event simulator to study
application performance under different task mappings and
routings on an IBM PERCS machine [5]. The unusually long
time spent in each BigSim simulation prompted the authors to
use analytical modeling in this paper. Chakaravarthy et al. [18]
present a formal analysis of the mappings proposed in our
previous publication [5] and some new mappings.

Three things distinguish this work from the previous com-
munication and congestion modeling work. First, we consider
different alternative routings with adaptivity and study their
impact on network throughput. Second, we consider repre-
sentative job workloads at supercomputing sites and simulate
different routings and job placement strategies for these work-
loads. Third, this paper presents analysis for the dragonfly
network at an unprecedented scale (8.8 million cores).

III. PREDICTION METHODOLOGY FOR LINK UTILIZATION

Modeling is a powerful tool to explore design choices for
future systems; it is also useful for analyzing scenarios that
are challenging or expensive to deploy on existing systems.
We present a model and its implementation to predict network
throughput for dragonfly networks.

A. Prediction Model

In order to compare the relative benefits of different job
placement policies and routing strategies, we have developed
a model that generates the traffic distribution for all network
links given a parallel communication trace. Our hypothesis
is that the traffic distribution is indicative of the network
throughput we can expect for a given scenario [5], [19], [20].
The inputs to this model are:
— A network graph among dragonfly routers, N = (V,E).
— An application communication graph for one time step or
phase in terms of MPI ranks, AC = (V C , EC).
— A job placement/mapping of MPI ranks to physical cores.
— A routing strategy, <.

The model accounts for contention on network links and
outputs the expected traffic on all network links for each phase
of the application. All communication in one time step or phase
is assumed to be occurring simultaneously on the network
and all messages for the phase are considered to be in flight.
For each phase, an iterative solve is performed to get the
probabilistic traffic distribution on the links. Only one iteration
may be needed for simple cases, such as the direct routing. The
iterative solve in the model is described below.

Initialization: The input network graph N gives us the peak
bandwidths on all network links. We define two other copies

of this graph – NA = (V A, EA), which stores the bandwidths
that have already been allocated to different messages; and
NR = (V R, ER), which stores the remaining link bandwidths
that can still be allocated in subsequent iterations. For edge l
in these graphs, this relationship holds: El = EA

l + ER
l . At

initialization, EA
l = 0 and ER

l = El for all edges.

Iteration: The do loop below describes the iterative solve
which is central to our traffic prediction model:

do until no message is allocated any additional bandwidth
1) For each edge (message), m in EC , obtain a list of paths,

P (m) that it can send its packets on from the source to
the destination router for a given routing <.

2) Derive the “request” count for each link using the P (m)
sets for all messages. The request count is the total
number of messages that want to use a link; store the
request counts for all links in another copy of the network
graph, NRC = (V RC , ERC).

3) For each path, p in P (m) for each message m in EC ,
calculate the “availability” of each link in p. Availability
of a link l is its remaining bandwidth divided by its
request count, ER

l /ERC
l . Each link on path p allocates

additional bandwidth to message m which equals the
minimum of the availabilities of all links on that path.

4) Decrement remaining bandwidth values in NR and in-
crement values in NA based on the freshly allocated
bandwidths on the links in the previous step.

end do

Post Processing: For each message, the model assumes that
its packets will be divided among the paths on which it was
allocated bandwidth during the iterative solve. Depending on
the routing protocol <, the fraction of a message that is sent
on different paths is computed differently. Thus, we obtain the
traffic on a link l as,

traffic(l) =
∑

∀m∈EC

fp if l ∈ p,∀ p ∈ P (m)

where fp is the fraction of the message assigned to path p in
the set P (m).

This iterative model is generic and can be used for any
routing by selecting appropriate schemes for finding P (m) in
Step 1, deciding the request counts NRC in Step 2, finding
the link availability in Step 3, and deciding the fp in post
processing. The specific schemes used for different routings
are described in detail in the next section.

B. Parallel Network Routing Prediction

The model described in the previous section has been im-
plemented as a scalable MPI-based parallel program. For most
parts, the parallelism is obtained by dividing the processing of
the messages among the MPI processes. The implementations
for different routing schemes build upon the generic model
and customize it to improve the prediction capability and
computation time. In the following description of the routing
schemes that are based on schemes proposed by Kim et al. [1],
it is assumed that a message is sent from the source router s
to the destination router d.

Static Direct (SD): In this scheme, a message from s to d is
sent using the shortest path(s) between s and d. If multiple

shortest paths are present, the message is evenly divided
among the paths. For the dragonfly interconnect described in
Section II, the maximum number of hops for SD routing is 5
— two L1 hops in the source group, one L2 hop, and two L1
hops in the destination group.

For the evaluation of SD, only one iteration is needed
to find all shortest paths that a message can take. Once
those paths are determined, the message is divided equally
among those paths during the post processing. Note that since
this routing does not make use of the request count and
availability computed in Step 2 and Step 3 respectively, our
implementation skips those steps of the iteration.

Static Indirect (SI): In this scheme, for each packet created
from a message, a random intermediate router i is selected. The
packet is first sent to i using a shortest path between s and i.
It is thereafter forwarded to d using a shortest path between i
and d. For the given interconnect, use of an intermediate router
results in the maximum number of hops for SI to be 10.

Ideally, for packet-level SI routing, only one iteration is
needed to find all the indirect paths (like direct routing). How-
ever, storing all indirect routes requires very large amount of
memory. To address the memory concern, our implementation
goes over the packets in the message one by one, and assigns
them to a randomly generated indirect path. Processing each
packet individually leads to extremely high workload making
this routing the most time consuming to evaluate.

Adaptive Direct (AD): The AD routing adds adaptivity to SD
— if multiple shortest paths are present between s and d, the
message is divided among the paths based on the contention on
those paths. The iterative solve is suitable for adaptive routing
given that it allows a message to request more bandwidth on
resources that have leftover bandwidth iteratively. It also allows
messages that can use multiple paths to get more bandwidth.
In a typical run, we ran the iterative solve till convergence is
reached, i.e. no message is able to obtain any more bandwidth
for any of its paths.

Customization: In Step 2, instead of assigning equal weights to
all requests of a message to the links of the paths it can use,
the requests are weighted based on the minimum remaining
bandwidth on any link of the paths. For example, if a message
could be sent on two paths with 50 and 100 units of minimum
remaining bandwidth on the links of those paths respectively,
the requests to the links on those paths are given weights 0.33
and 0.66 respectively. Such weighted requests are helpful in
adaptively selecting links that are less congested. Also, the size
of a message is considered while deciding the weights of the
requests. This allows for favoring larger messages which may
increase the overall throughput of the network as described
next. In Step 3, on receiving several requests for a link from
various messages, instead of equally dividing the remaining
bandwidth to all requests, the division is weighted based on the
weights of the requests. During post processing, the messages
are divided among the paths in proportion to the bandwidth
allocated on those paths so that the effective traffic on all links
is equalized (as opposed to the static division done by SD).

Adaptive Indirect (AI): The AI routing is related to SI routing
in a manner similar to the relation between SD and AD. For
each packet sent using AI routing, the intermediate router, i ,

is selected from a randomly generated set of routers, based on
the contention on the corresponding paths.

Customization: The implementation for this routing also uses
the schemes described for adaptive direct routing. However,
while adaptive direct routing uses the same set of paths in every
iteration for a message, it is impractical to use thousands of
paths in every iteration as required by the indirect routing. As a
result, we used a set of 4 indirect paths selected afresh in every
iteration. However, this may overload the links of the paths
used in initial iterations since more bandwidth is typically
available during the start. In order to overcome this bias, we
added the concept of incremental bandwidth. In this method, at
the very beginning, only a fraction of the maximum bandwidth
of the links is available for allocation to the messages. In
each iteration, more bandwidth is made available incrementally
for allocation. This kind of increment of available bandwidth
is continued until we have exposed all of the maximum
bandwidth of the links. In our experiments, we exposed an
additional fraction (1f) of bandwidth in each of the first f
iterations. Prediction results with varying f suggested that
beyond f = 50, incremental exposure of bandwidth has no
effect on the predictions.

Adaptive Hybrid (AH): A hybrid of AI and AD leads to the
AH routing. In this scheme, for sending each packet, the least
contended path is selected from a fixed size set of shortest
paths and indirect paths. The indirect paths in the set are
generated randomly for every packet of the message. AH is
implemented using the same schemes as described for AI. To
allow for use of direct paths in each iteration, the set of paths
consists of 4 paths — up to two direct paths and the remaining
indirect paths, instead of 4 indirect paths used for AI. This
helps in biasing the routing towards direct paths if congestion
on them is not high. In the current implementation of the
model, we have assumed global knowledge of congestion (e.g.
a router can estimate queue lengths on other routers). Hence,
in terms of the original terminology used by Kim et al. [1], the
model predicts link utilization for UGAL-G routing, which is
an ideal implementation of Universal Globally-Adaptive Load-
balanced (UGAL) routing.

IV. EVALUATION SETUP

A suitable routing and an intelligent job placement can be
used to efficiently utilize the links of a dragonfly interconnect.
For the routings described in Section III-B, we study the
dragonfly interconnect using the presented prediction frame-
work for many job placement policies and communication
patterns. In this section, we briefly describe these job place-
ment policies, list the communication patterns, and explain the
experimental set up.

A. Job Placement

Job placement refers to the scheduling scheme used to
assign a particular set of cores in a particular order for
execution of a job. The ordering of the cores is important
because it determines the mapping of MPI ranks to the physical
cores. We explore the following schemes that have been chosen
based on our previous work on two-tier direct networks [5] and
the schemes that are currently in use at supercomputer centers
that host Cray XC30, a dragonfly interconnect based machine.

TABLE I: Details of communication patterns.

Communication Number of Messages Message
Pattern Processes per Process Size

(TDC) (KB)

Unstructured Mesh 8,847,360 6 - 20 512
Structured Grid 80 × 48 × 48 × 48 8 2,048
Many to many 180 × 128 × 384 127 100
Uniform Spread 8,847,360 6 - 20 512

Random Nodes (RDN): In this scheme, the job is allocated
randomly selected nodes from the set of all available nodes
in the system. The cores of a nodes are ordered consecutively,
while the nodes are ordered randomly. Random placement may
be helpful in spreading the communication uniformly in the
system, thus resulting in higher utilization of the links.

Random Routers (RDR): The RDR scheme increases the
level of blocking by allocating randomly selected routers (set
of four nodes) to a job. The cores attached to a router are or-
dered consecutively, but the routers are ordered randomly. The
additional blocking may help in restricting the communication
leaving the router. It also avoids contention within a router
among different jobs running on different nodes of the router.

Random Chassis (RDC): This scheme allocates randomly
selected chassis to a job. The cores within a chassis are
ordered, but the chassis are randomly arranged. The additional
blocking may limit the number of hops to one L1 link for the
messages of a job with communicating nearby MPI ranks.

Random Groups (RDG): The RDG scheme further increases
the blocking to groups. This may be useful in reducing
the average pressure on L2 links by restricting a significant
fraction of communication to be intra-group. However, it may
also overload a few L2 links if the groups connected by a L2
link contains nearby MPI ranks that communicate heavily.

Round Robin Nodes (RRN): In this scheme, a job is allocated
nodes in a round robin manner across the groups. The cores of
a nodes are ordered consecutively, while the nodes are ordered
in a round robin manner. Such a distribution ensures uniform
spreading of a job in the system.

Round Robin Routers (RRR): The RRR scheme is similar
to the RRN scheme, but allocates routers instead of individual
nodes to a job in a round robin manner.

B. Communication Patterns

Kamil et al. [21] have defined topological degree of
communication (TDC) of a processor as the number of its
communication partners. They study a large set of important
applications and show that the TDC of common applications
vary from as low as 4 to as large as 255. In order to span a
similar range of TDC and study a representative set of common
communication patterns [6], [7], the patterns listed in Table I
have been used. Each of the pattern is described in more detail
as we analyze prediction results for it in Section V.

The communication graphs for each of the pattern is
generated either by executing them using AMPI [22], which
allows us to execute more MPI processes than the physical
cores, or by using a simple sequential program that replicates
the communication structure of these patterns.

1

10

1E2

1E3

1E4

1E5

1E6

 0 20 40 60 80 100

N
um

be
r

of
 L

in
ks

Communication Volume (binsize = 31.4 KB)

Model for Direct routing

1

10

1E2

1E3

1E4

1E5

1E6

 0 20 40 60 80 100

N
um

be
r

of
 L

in
ks

Communication Volume (binsize = 1.4 KB)

Model for Indirect routing

1

10

1E2

1E3

1E4

1E5

1E6

 0 20 40 60 80 100

N
um

be
r

of
 L

in
ks

Communication Volume (binsize = 1.4 KB)

Model for Hybrid routing

1

10

1E2

1E3

1E4

1E5

1E6

 0 20 40 60 80 100

N
um

be
r

of
 L

in
ks

Communication Volume (binsize = 31.4 KB)

SST for Direct routing

1

10

1E2

1E3

1E4

1E5

1E6

 0 20 40 60 80 100

N
um

be
r

of
 L

in
ks

Communication Volume (binsize = 1.4 KB)

SST for Indirect routing

1

10

1E2

1E3

1E4

1E5

1E6

 0 20 40 60 80 100

N
um

be
r

of
 L

in
ks

Communication Volume (binsize = 1.4 KB)

SST for UGAL-L routing

Fig. 2: Comparison of the predictions by the presented model with predictions by SST/macro, a packet-level simulator, for a 4D
Stencil simulated on a 36, 864 router system.

C. Prediction Runs

The parallel code that implements the presented model
was executed on Vesta and Mira, IBM Blue Gene/Qs at
ANL and Blacklight, an SGI UV shared-memory system at
PSC. For each run, three input parameters were provided: 1)
communication pattern based on MPI ranks, 2) mapping of
MPI ranks to physical cores, 3) system configuration including
the routing strategy. Depending on the communication pattern
and the routing, different core counts were used for runs.
Typically, for SD and AD routing schemes, 512 cores were
used to complete the simulation in ≈ 5 minutes. For the
remaining routings, 2, 048 cores were used to simulate the
lighter communication patterns, such as structured grid, in up
to ≈ 30 minutes. For heavy communication patterns, e.g. many
to many, 4096 − 8192 cores were required to finish the runs
in up to two hours.

D. Model Comparison

In order to verify the accuracy of the presented model,
we compare the predictions made by the model with the
predictions by SST/macro, a packet-level discrete-event sim-
ulator [23]. For these comparisons, we use near-neighbor
communication pattern of an application that performs four-
dimensional stencil computation. The prototype system con-
sidered here is relatively small (36, 864 routers with one active
MPI rank per router), so that the predictions using SST/macro
can be obtained in a reasonable time frame.

The left graph in Figure 2 shows the histograms of the
predicted traffic distributions for direct routing using our
model and SST/macro. The two histograms are very similar
which attests that the presented model closely resembles the
predictions of a packet-level simulation for direct routing.
Similar results are seen for indirect routing (center graph
in Figure 2) which validates the model for indirect routing.
For hybrid routing, we were not able to use SST/macro
for a direct verification because it implements UGAL-L (a
localized version of UGAL), while our model assumes global
knowledge. Nevertheless, we present the predictions by SST’s

UGAL-L and our model’s routing schemes in the right graph
in Figure 2. We observe that the predictions by SST’s UGAL
routing are very similar to its predictions using indirect routing.
This is possibly due to the localized view of the queues on
a router; the queues for direct routes gets filled up quickly
for large messages, hence diverting the traffic towards indirect
routes. In contrast, the hybrid model is able to offload heavily
used links (due to its global knowledge) and shift many links
to left bins in comparison to the indirect routing.

V. PREDICTIONS FOR SINGLE JOBS

The first half of the experiments are focused on under-
standing network throughput for single job execution on the
dragonfly interconnect. We begin this section with a brief
guide on how to analyze the box plots presented in the rest
of the paper. Following it, the four communication patterns
are studied in detail. Finally, we present prediction results for
the case in which the many-to-many pattern is executed in
isolation on the system with variation in the number of cores
used by it.

A. Description of the Plots

Figure 3 shows a typical box plot used in this paper. The
x-axis contains combinations of routing strategies and job
placement policies, which are grouped based on the routing
strategy. The log scale based y-axis is the amount of traffic
flowing on links in megabytes. For each combination of job
placement and routing, six data points are shown — the
minimum traffic on any link, the first quartile – 25% of links
have lesser traffic than it, the median traffic, the average traffic
on all the links, the third quartile – 75% of links have lesser
traffic than it, and the maximum traffic on any link. The plot
also shows a horizontal dotted blue line that indicates the
lowest maximum traffic among all the combinations.

Very high value of maximum traffic relative to other
data point indicates network hotspots . Hence, it is a good
measure to identify scenarios whose throughput is impacted
by bottleneck link(s). The average traffic is an indicator of

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Static Direct Adaptive Direct Static Indirect Adaptive Indirect Adaptive Hybrid

Unstructured Mesh Pattern (All Links)

Median Average Lowest maximum

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Static Direct Static Indirect Adaptive Indirect

Unstructured Mesh Pattern (L1 Links)

Median
Average

Lowest maximum

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR
Li

nk
 U

sa
ge

 (
M

B)

 Static Direct Static Indirect Adaptive Indirect

Unstructured Mesh Pattern (L2 Links)

Median
Average

Lowest maximum

Fig. 4: Unstructured Mesh Pattern (UMesh): blocking helps in improving the traffic distribution.

1

10

1E2

P1 P2

Li
nk

 U
sa

ge
 (

M
B)

Job placements grouped based on Routing

Example Plot

minimum
1st quartile

average

median
3rd quartile
maximum

minimum and 1st quartile are same

Lowest maximum

Fig. 3: Example to explain the data displayed in the plots.

the overall load on the interconnect. It is helpful in finding
scenarios that reduce total traffic and hops taken by the
messages. Comparing the average with median is valuable for
estimating the distribution. If average is significantly higher
than the median (P1 in Figure 3), the distribution is skewed
to the right — most of the links have relatively low traffic,
but a long tail stretches to the right. In contrast, if median
is higher than the average, the distribution is skewed to the
left — most of the links have more traffic than the average,
but a long tail stretches to the left. Finally, the quartiles can
be used to find more information about how much fraction
of the links had what volume of traffic flowing through them.
Overall, we suggest that a distribution with closer values of
these data points is good for network throughput. In case of
similar distributions, lower values are better for throughput.

B. Unstructured Mesh Pattern (UMesh)

In this pattern, each MPI process r communicates with
6− 20 other MPI processes in its neighborhood (within range
[r-30, r+30]). Such a pattern is representative of unstructured
mesh based and particle in cell (PIC) codes with space filling
curve based mapping of MPI processes (e.g. Morton ordering).

Effect of Job Placement: Figure 4 (top) presents the expected
link utilization when UMesh is executed on the full system. It
can be seen that as we increase the blocking in job placement,
the maximum, the average, and the quartiles decrease signif-
icantly. For UMesh with many communicating nearby MPI
ranks, this trend is observed because increasing blocking from
nodes to router avoids network communication. Additionally, it
may also decrease the number of hops traversed by messages,
since it places most communicating MPI processes within a
chassis or a group (as we move from RDR to RDC and RDG).

Effect of Indirect Routing: Comparison among routings
shows that the use of any form of indirect routing leads to an
increase in average traffic on the links, a trend that is seen in all
results presented in this paper. This is expected since indirect
routing forces use of extra hops. However, indirect routing also
leads to a more uniform distribution of loads on the links which
is demonstrated by the closes values of the quartiles. Also, the
median is closer to the average for indirect routing, in contrast
with direct routing for which median is mostly zero (indicating
a distribution skewed to the right). Note that although indirect
routing increases the average, owing to a better distribution, the
maximum is never worse than the direct routings for a given
job placement. These characteristics indicate better network
throughput for indirect routing in comparison to direct routing.

We also observe that for direct routing with RRN and RRR

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Static Direct Adaptive Direct Static Indirect Adaptive Indirect Adaptive Hybrid

Structured Grid Pattern (All Links)

Median Average Lowest maximum

10

1E2

1E3

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Static Direct Adaptive Direct Static Indirect Adaptive Indirect Adaptive Hybrid

Random Neighbors Pattern (All Links)

Median Average Lowest maximum

Fig. 5: Structured Grid Pattern (4D Stencil) and Random Neighbors Pattern (Spread)

placements (shown for SD in Figure 4 (bottom)), only a few
L2 links are being used heavily, thus increasing the overall
maximum. These are the L2 links that connect the consecutive
groups which are used by the communication among nearby
MPI ranks mapped to the nodes and routers placed in a
round-robin manner. Indirect routing offloads these L2 links
by distributing the traffic to other unused L2 links.

Effect of Adaptivity: We observe that the expected traffic for
adaptive versions of the routing schemes have very similar
distribution to the static version with similar or lesser corre-
sponding values for the data points of interest. In particular, for
RDC and RDG, the AI routing scheme reduces the maximum
traffic by 50% in comparison to its static counterpart, SI.
We attribute this improvement to unloading of overloaded
L1 links. As shown in Figure 4 (bottom), comparison of the
average suggests that the L1 links are more loaded which is
expected given the dominant nearby MPI rank communication
in UMesh. For RDC and RDG, the AI routing is able to
improve the distribution of traffic on L1 links, and thus reduces
the maximum traffic.

C. Structured Grid Pattern (4D Stencil)

Based on a four-dimensional nine-point stencil, this pattern
is representative of the communication pattern in MILC, a
Lattice QCD code [24]. The MPI processes are arranged
in a 4-D grid, with each process communicating with its 8
nearest neighbors in the four dimensions. As a result, this
pattern has lesser MPI rank based communication locality in
comparison to UMesh. For 4D Stencil, two of an MPI process’
communicating partners are its immediate MPI rank neighbors,
but the remaining six neighbors are placed incrementally

further away from it. For the configuration provided in Table I,
two of the neighbors are 48 MPI ranks away, the next pair is
2, 304 ranks away, and the final two are 110, 592 ranks away.

Effect of Job Placement: Figure 5 (top) shows the traffic
distribution predictions for 4D Stencil. For direct routings, in
a manner similar to UMesh, the average and the quartiles
decrease as blocking is increased, although the decrease in
average is significantly lesser when compared to UMesh.
However, in contrast to UMesh, the maximum traffic increases
as we increase the blocking. We suspect that the increase in the
maximum is due to high traffic on a few L2 links — links that
connect groups which contain many pairs of communicating
MPI processes. Such scenarios may arise when blocking is
performed at chassis and group levels. In this case, commu-
nication between corresponding consecutive MPI processes in
two sets that are roughly 48, 2304, or 110, 592 MPI ranks
apart may result in large number of communicating pairs, thus
overloading a few L2 links. To verify this assumption, we
first studied the histogram for L2 link utilization (shown in
Figure 6). It can be seen that while most of the L2 links are
unused, a few are overloaded. Then, we identified these links
using the raw link usage data and found them to be suspected
links, hence verifying our assumption.

Effect of Indirect Routing: The skewness caused by the
overloading of a few L2 links for direct routing is eliminated
by the use of indirect routing. As shown in Figure 5 (top),
indirect routing leads to a better distribution of traffic on the
links. However, as we saw for UMesh, it also increases the
average traffic on the links. These results are consistent with
our past work on two-level direct networks in which 4D Stencil
was also used as communication pattern [5].

0.0 0.5 1.0 1.5 2.0
Traffic (MB) 1e4

100

101

102

103

104

105

106

Li
n
k

C
o
u
n
t

Histogram for L2 Links Traffic

Fig. 6: 4D Stencil: distribution of traffic on L2 links for RDG.

Effect of Adaptivity: Use of AI further decreases the variation
in traffic distribution. For many job placements (RDG, RRN,
RRR), use of AI lowers the maximum traffic by up to 25%.
Similar to UMesh, this gain is based on a better distribution
of traffic on L1 links which leads to reduced maximum traffic.
The adaptive hybrid routing provides a distribution that is
similar to AI, but is marginally skewed by use of direct routes.

D. Many to Many Pattern (M2M)

In this pattern, the MPI processes are arranged in a 3-D grid
with subsets being created along the Y axis. Within subsets of
size 128, an all-to-all operation is performed. Such a pattern is
representative of applications that perform many parallel Fast
Fourier transform, e.g. pF3D [25], PARATEC, NAMD [26],
and VASP [27]. Using the configuration presented in Table I,
an MPI process’s communicating partners are separated by
multiples of 384 , i.e. a process r typically communicates
with MPI ranks such as r+384, r-384, r+2*384, r-2*384 etc.
Depending on the position of a process in the 3D grid of the
processes, the number of partners that are to the left and to
the right of an MPI process varies. Also, as was the case with
4D Stencil, each MPI process in a set of consecutive MPI
processes typically communicates with the corresponding MPI
process in another set if the two sets are 384 ranks apart on
an average.

Effect of Job Placement: Figure 7 shows the prediction
results for M2M. In a manner similar to 4D Stencil, while the
average and the median decreases on increasing the blocking
for direct routing, albeit in lower proportions, the maximum
traffic increases significantly. This increase is attributed to the
overloading of certain L2 links as shown by the huge difference
between the third quartile and the maximum in Figure 7
(bottom). This skewness is due to the non-uniform spread of
communicating pairs described in the previous paragraph.

Effect of Indirect Routing: Use of indirect routing helps
in offloading the overloaded L2 links, but it increases the
load on L1 links (Figure 7 (bottom)). The extra load on L1
links is expected since indirect routing doubles the number
of hops on an average. However, unlike the benchmarks we
have seen so far, the maximum traffic is lower for direct
routing with randomized placements and minimal blocking
(RDN and RDR). We hypothesize that this is induced by a
good distribution of traffic on links by randomized placement.
The lower nearby values of the minimum, the median, and
the quartiles for direct routing with randomized placement
confirms this hypothesis. As a result, for M2M, direct routing

is more likely to provide higher network throughput. We
believe that such a distribution was not obtained for UMesh
and 4D Stencil because of the fewer number of communicating
partners with better MPI rank locality.

Effect of Adaptivity: The adaptive versions of the static
routings had a positive but limited impact on the distribution of
traffic. This is in part due to the limited opportunity available
for adaptivity in already uniform distribution (for randomized
placements and indirect routing). For cases with skewed dis-
tribution, e.g. SD with RRN, the skewness is caused by a few
L2 links that are the only path available for the messages to
traverse from one group to other (Figure 7 (bottom)). As a
result, adaptivity cannot improve the distribution. The adaptive
hybrid yields a distribution that resembles AI, but unlike
earlier, use of direct routes helps it improve upon AI.

E. Random Neighbors Pattern (Spread)

This pattern spreads the communication uniformly in the
system by making each MPI process communicate with 6−20
neighbors selected randomly. In applications that perform com-
putation aware load balancing, e.g. NAMD, or are not executed
on near-by physical cores, such communication pattern arise.
Figure 5 (bottom) shows the expected distribution of traffic for
execution of Spread on the full system.

The first thing to observe is that almost all links are utilized
irrespective of the job placement and the routing. This is
a direct impact of the spread of the communicating pairs
that the benchmark provides. Another effect of the spread
is the minimal impact of the job placement on the load
distribution. Next, we note that while the average quality of the
distribution has improved, the gap between the maximum and
other data points (average, median and quartiles) has increase
significantly for indirect routings. Similar observation can be
made for direct routing with randomized placement if we
compare with the results for M2M. Further analysis of L1
and L2 links traffic distribution shows that such a skewness is
caused by overloading of certain L1 links. We believe this
is caused by non-uniformity in the communication pattern
— randomization of communication patterns is probably not
uniformly distributing them.

The next important observation from the Figure 5 (bottom)
is the lower values of all data points (minimum, quartiles,
average, and maximum) for direct routing in comparison to
the indirect routing. This result is similar to what we described
in M2M — given a sufficiently distributed communication
pattern, indirect routing only adds extra traffic because of the
extra hops it takes. Finally, we note that the adaptive versions
of the routings reduce the maximum traffic by up to 10%.
Other than that, they provide a very similar distribution. As we
saw in M2M, the AH routing provides a distribution similar
to AI with lower maximum traffic due to use of direct routes.

F. Summary of Full System Predictions

Based on the analysis so far, we list the following summa-
rizing points for single jobs executed on full systems:

— For patterns with many communicating nearby MPI
processes, blocking may reduce the average and quartiles
(UMesh).

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Static Direct Adaptive Direct Static Indirect Adaptive Indirect Adaptive Hybrid

Many to Many Pattern (All Links)

Median Average Lowest maximum

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Static Direct Static Indirect

Many to Many Pattern (L1 Links)

Median Average

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR
Li

nk
 U

sa
ge

 (
M

B)

 Static Direct Static Indirect

Many to Many Pattern (L2 Links)

Median Average

Fig. 7: Many to many pattern (M2M): direct routing with randomized placement has lower average and maximum traffic.

— Direct routing may overload a few links, especially L2 links,
if the communication is distribute evenly (4D Stencil, M2M).
— Randomized placement spreads traffic for patterns with
non-uniform distribution of traffic (4D Stencil, M2M).
— Indirect routing is helpful in improving the distribution of
traffic, but typically increases the average traffic (all patterns).
— If the communication pattern and job placement spreads
the communication uniformly, indirect routing may increase
the quartiles and the maximum traffic (M2M, Spread).
— Adaptive routing typically provides a similar traffic distribu-
tion, but may lower the maximum traffic significantly. Thus,
in order to save space, we avoid showing results for static
routings in the rest of the paper.
— Adaptive hybrid provides a traffic distribution similar to AI,
but may provide a higher or lower maximum traffic depending
on the relative performance of AD and AI.

G. Variations in Job Size

We now present a case study in which one of the patterns,
M2M, is executed in isolation on the full system, but occupies
only a fraction of the cores. For comparison, we use M2M
predictions on the full system from Figure 7 (top) and traffic
distributions presented in Figure 8 for predictions using 66%
and 33% of cores in isolation.

We observe very similar trends in traffic distribution across
job placements and routings as we move from predictions
for 100% cores to predictions for 33% cores. As expected,
the absolute values of most data points (maximum, average,
quartiles) decrease steadily for the combinations that provide a
good distribution. Direct routing with randomized placements
consistently outperform indirect routings for critical data points
including the maximum traffic.

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Adaptive Direct Adaptive Indirect Adaptive Hybrid

Many to Many Pattern using 66% cores (All Links)

Median
Average

Lowest maximum

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Adaptive Direct Adaptive Indirect Adaptive Hybrid

Many to Many Pattern using 33% cores (All Links)

Median
Average

Lowest maximum

Fig. 8: Traffic distribution for M2M on 66% and 33% cores.

TABLE II: Percentage cores allocated to patterns in workloads.

Comm Pattern Workload 1 Workload 2 Workload 3 Workload 4

UMesh 20 10 20 40
2D Stencil 10 10 40 10
4D Stencil 40 20 10 20

M2M 20 40 10 20
Spread 10 20 20 10

Benefits of adaptive routing are significantly higher for job
executions with smaller core counts. For the 100%, 66% and
33% cores executions, adaptive routing reduces the maximum
traffic by up to 10.2%, 31.1% and 35% respectively. We
attribute the increasing effect of the adaptivity to the non-
uniformity that use of a fraction of cores in the system induces.
Adaptive routing is able to observe these non-uniformities, and
guides the traffic towards a better distribution.

Finally, we draw attention to the adaptive hybrid routing.
For job placements that suit AD for this pattern (RDN and
RDR), as we move from 100% to 33% cores, the critical data
points (maximum, average, median) for AH are significantly
lesser than those for AI. In fact, for the 33% cores case, the
maximum traffic is least for AH among all the routings. This
suggests that as non-uniformity in the system increases, AH
is able to judiciously capitalize on good attributes of both AD
and AI — use direct routes when they are not congested, else
use indirect routes to offload traffic.

VI. PREDICTIONS FOR PARALLEL WORKLOADS

In this section, we focus on the more practical scenario
in which multiple jobs with different patterns use the network
simultaneously. Table II presents the representative workloads
that we use for the experiments. These workloads represent
capability jobs that use at least 10% of the total system size.
For each workload, the system is divided among 5 single jobs
that represent the following communication patterns: UMesh,
2D Stencil, 4D Stencil, M2M, and Spread. While four of these
patterns are the ones described in Section IV, 2D Stencil is
a new addition. It represents a two-dimensional stencil-based
communication found in many applications such as WRF [28].

A. Comparing Different Parallel Workloads

Figure 9 presents the predicted traffic distribution for
workloads listed in Table II. A common observation for all the
workloads is the very high value for maximum traffic for AD
with heavy blocking (RDC and RDG). Detailed histogram for
the traffic on the links revealed that a few L2 links are heavily
loaded. Initially, we suspected this to be caused by overloading
of a few L2 links by 4D Stencil in a similar manner as we
saw in Section V-C. In order to verify our assumption, we
tried another workload with only four jobs: UMesh, Spread,
M2M and 2D Stencil. However, for this fifth workload too,
we observed similar overloading for AD with heavy blocking.
Hence, we conclude that job placements with heavy blocking
exposes any locality in communicating pairs of MPI ranks and
leads to a few overloaded L2 links.

Figure 9 (a) presents the predicted traffic distribution for
Workload 1, in which 40% of the cores are allocated to 4D
Stencil; UMesh and M2M are assigned 20% cores each. For

AD with blocked placement (RDC and RDG), we note that
the average traffic is significantly higher than the median —
a characteristic of 4D Stencil which occupies 40% of the
cores in this workload. Use of randomized placement and
indirect routing helps in reducing the skewness and maximum
traffic. Among the combinations with similar distributions, the
maximum traffic is lowest for AI with RRR placement and
AH with RDN/RDR placement. Adaptive routings reduce the
maximum traffic by up to 35% in comparison to their static
counterparts.

In Workload 2, M2M is allocated the most number of cores
(40%), while 4D Stencil and Spread are allocated 20% cores
each. Other than the impact of locality in communicating pairs
for AD with RDC and RDG described earlier, one can observe
the impact of higher fraction of Spread and M2M in the closer
values for average, median, and the quartiles. It also leads to
AD with RRR and AH with RDN/RDR having the lowest value
for the maximum traffic. Similar to Workload 1, adaptivity
reduces the maximum traffic by up to 34.3%.

2D Stencil is assigned the largest number of cores (40%)
in Workload 3, with UMesh and Spread being allocated
20% cores each. In 2D Stencil, four messages of size 64
KB are exchanged with its neighbors. For Workload 3, the
traffic distribution shows mixed impact of Spread and 2D
Stencil in Figure 9 (c). Contribution from Spread leads to
a general increase in the maximum traffic for AI, while the
gains obtained by randomized placements of 2D Stencil lower
the maximum traffic for those combinations. Overall, the AH
routing appears to take advantage of these effects and provides
a nice distribution with the lowest value of maximum traffic
for RDN and RDR. For Workload 4, predictions shown in
Figure 9 (d) are very similar to Workload 3.

We make the following conclusions from these results:
1) Single capability jobs may have a significant impact on the
traffic distribution of a workload, especially on its skewness
as shown by the impact of 4D Stencil, 2) Similar traffic
distributions are observed for workloads with the same set of
jobs executing in different proportions, 3) The adaptive hybrid
routing is able to combine positive features of AD and AI,
thus providing a better traffic distribution.

B. Job-specific Routing

Results presented in this section are for another interesting
scenario in which each job in a workload is allowed to use
a routing of its choice. This is currently not allowed on most
systems but might become a useful option as system sizes
increase further. We use Workload 2 and Workload 4 from
Table II for these experiments. For each job, we select the
routing that resulted in the lowest maximum traffic for a given
job placement when the job was run by itself (Section V).

Comparison of the traffic distribution for Workload 2,
shown in Figure 10, with the results in Figure 9 (b) indicates
that the distribution for job-specific routing is most similar to
that of AH. However, for certain job placements, e.g. RDN and
RDR, it has lower values for minimum traffic and first quartiles
— a characteristic shown by AD routing for Workload 2. This
is not surprising because Workload 2 is dominated by M2M
and Spread for which AD and AH were the best routings.

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Adaptive Direct Adaptive Indirect Adaptive Hybrid

(a) Workload 1 (All Links)

Median
Average

Lowest maximum

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Adaptive Direct Adaptive Indirect Adaptive Hybrid

(b) Workload 2 (All Links)

Median
Average

Lowest maximum

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Adaptive Direct Adaptive Indirect Adaptive Hybrid

(c) Workload 3 (All Links)

Median
Average

Lowest maximum

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR
Li

nk
 U

sa
ge

 (
M

B)

 Adaptive Direct Adaptive Indirect Adaptive Hybrid

(d) Workload 4 (All Links)

Median
Average

Lowest maximum

Fig. 9: Parallel workloads traffic distribution.

0

1

10

1E2

1E3

1E4

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Workload 2 Workload 4

Median
Average

Lowest maximum (Workload 2)
Lowest maximum (Workload 4)

Fig. 10: Job-specific routing traffic distribution (All Links).

An important observation to make is that the use of job-
specific routing reduces the maximum traffic on any link for all
job placements. Similarly, for Workload 4, the distribution of
traffic for job-specific routing is similar to the load distribution
for AI (Figure 9 (d)) which was the best performing routing
for UMesh and 4D Stencil that dominate it. It also provides
similar maximum traffic for best performing job placements.

VII. CONCLUSION

In this paper, we presented a comparative analysis of
various routing strategies and job placement policies w.r.t.
network link throughput for the dragonfly topology. We have
developed a congestion-aware model to determine the traf-
fic distribution given a communication trace and a routing
strategy. The output of this model is used to answer the
questions we posed in the introduction. The answer to the

first question is more nuanced than the other two because it
depends heavily on the application communication patterns.
The general observations are that a randomized placement at
the granularity of nodes and routers and/or indirect routing
can help spread the messaging traffic over the network and
reduce hot-spots. If the communication pattern results in non-
uniform distribution of traffic, adaptive routing may provide
significantly better traffic distributions by reducing hot-spots.

For parallel job workloads (second question), adaptive
hybrid routing is useful for combining good features of adap-
tive direct and adaptive indirect routings and may provide a
good traffic distribution with lower maximum traffic. Adaptive
routings also improve the traffic distribution significantly in
comparison to static routings. We also observed that allowing
the users to choose a routing for their application can be
beneficial in most cases on dragonfly networks (third question).
Use of randomized placement at the granularity of nodes and
routers is the suggested choice for such scenarios also. We
believe that the model developed in this paper will enable
system administrators and application end-users to try different
scenarios and help them optimize network throughput for their
use-cases.

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344. This work was
funded by the Laboratory Directed Research and Development
Program at LLNL under project tracking code 13-ERD-055
(LLNL-CONF-653557).

Experiments for this work were performed on Mira and

Vesta, IBM Blue Gene/Q installations at Argonne National
Laboratory. The authors would like to acknowledge PEA-
CEndStation and PARTS projects for the machine allocations
provided by them. The authors would also like to acknowledge
the staff of Pittsburgh Supercomputing Center and XSEDE for
allocation on Blacklight.

REFERENCES

[1] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” SIGARCH Comput. Archit. News, vol. 36,
pp. 77–88, June 2008.

[2] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally,
M. Denneau, P. Franzon, W. Harrod, J. Hiller, S. Karp, S. Keckler,
D. Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely,
T. Sterling, R. S. Williams, and K. Yelick, “Exascale computing study:
Technology challenges in achieving exascale systems,” 2008.

[3] B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel, B. Drerup,
T. Hoefler, J. Joyner, J. Lewis, J. Li, N. Ni, and R. Rajamony, “The
PERCS High-Performance Interconnect,” in 2010 IEEE 18th Annual
Symposium on High Performance Interconnects (HOTI), August 2010,
pp. 75–82.

[4] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson,
T. Johnson, J. Kopnick, M. Higgins, and J. Reinhard, “Cray cascade:
A scalable hpc system based on a dragonfly network,” in High Per-
formance Computing, Networking, Storage and Analysis (SC), 2012
International Conference for, Nov 2012.

[5] A. Bhatele, N. Jain, W. D. Gropp, and L. V. Kale, “Avoiding hot-spots
on two-level direct networks,” in Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’11. New York, NY, USA: ACM, 2011, pp. 76:1–
76:11.

[6] K. Antypas, J. Shalf, and H. Wasserman, “NERSC6 Workload Analysis
and Benchmark Selection Process,” Lawrence Berkeley National Lab,
Tech. Rep. LBNL-1014E, 2008.

[7] B. Austin, M. Cordery, H. Wasserman, and N. Wright, “Performance
measurements of the nersc cray cascade system.” Cray, Inc., May
2013.

[8] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken, “Logp: Towards a realistic model
of parallel computation,” in Fourth ACM SIGPLAN Symposium on
Principles & Practice of Parallel Programming PPOPP, San Diego,
CA, May 1993.

[9] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman,
“Loggp: incorporating long messages into the logp modelone step closer
towards a realistic model for parallel computation,” in Proceedings
of the seventh annual ACM symposium on Parallel algorithms and
architectures, ser. SPAA ’95. New York, NY, USA: ACM, 1995, pp.
95–105. [Online]. Available: http://doi.acm.org/10.1145/215399.215427

[10] M. I. Frank, A. Agarwal, and M. K. Vernon, “Lopc: modeling contention
in parallel algorithms,” in Proceedings of the sixth ACM SIGPLAN
symposium on Principles and practice of parallel programming, ser.
PPOPP ’97. New York, NY, USA: ACM, 1997, pp. 276–287.
[Online]. Available: http://doi.acm.org/10.1145/263764.263803

[11] C. A. Moritz and M. I. Frank, “Logpc: Modeling network contention in
message-passing programs,” SIGMETRICS Perform. Eval. Rev., vol. 26,
no. 1, pp. 254–263, Jun. 1998.

[12] C. Moritz and M. Frank, “Logpg: Modeling network contention in
message-passing programs,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 12, no. 4, pp. 404 –415, apr 2001.

[13] W. Chen, J. Zhai, J. Zhang, and W. Zheng, “Loggpo: An accurate
communication model for performance prediction of mpi programs,”
Science in China Series F: Information Sciences, vol. 52, no. 10, pp.
1785–1791, 2009.

[14] D. Martinez, J. Cabaleiro, T. Pena, F. Rivera, and V. Blanco, “Accurate
analytical performance model of communications in mpi applications,”
in Parallel Distributed Processing, 2009. IPDPS 2009. IEEE Interna-
tional Symposium on, May 2009, pp. 1–8.

[15] T. Hoefler, T. Schneider, and A. Lumsdaine, “LogGOPSim - Simulating
Large-Scale Applications in the LogGOPS Model,” in Proceedings of
the 19th ACM International Symposium on High Performance Dis-
tributed Computing. ACM, Jun. 2010, pp. 597–604.

[16] T. Hoefler and M. Snir, “Generic topology mapping strategies for
large-scale parallel architectures,” in Proceedings of the international
conference on Supercomputing, ser. ICS ’11. New York, NY, USA:
ACM, 2011, pp. 75–84.

[17] G. Zheng, G. Kakulapati, and L. V. Kalé, “Bigsim: A parallel simulator
for performance prediction of extremely large parallel machines,” in
18th International Parallel and Distributed Processing Symposium
(IPDPS), Santa Fe, New Mexico, April 2004, p. 78.

[18] V. T. Chakaravarthy, N. P. K. Katta, M. Kedia, Y. Sabharwal, A. Ra-
manan, and R. Rajamony, “Mapping Strategies for the PERCS Ar-
chitecture,” in 19th annual IEEE International Conference on High
Performance Computing (HiPC 2012), December 2012.

[19] N. Jain, A. Bhatele, M. P. Robson, T. Gamblin, and L. V. Kale,
“Predicting application performance using supervised learning on com-
munication features,” in ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’13. IEEE Computer Society, Nov. 2013, lLNL-CONF-635857.

[20] B. Prisacari, G. Rodriguez, P. Heidelberger, D. Chen, C. Minkenberg,
and T. Hoefler, “Efficient task placement and routing of nearest
neighbor exchanges in dragonfly networks,” in Proceedings of the
23rd International Symposium on High-performance Parallel and
Distributed Computing, ser. HPDC ’14. ACM, 2014, pp. 129–140.
[Online]. Available: http://doi.acm.org/10.1145/2600212.2600225

[21] S. Kamil, L. Oliker, A. Pinar, and J. Shalf, “Communication require-
ments and interconnect optimization for high-end scientific applica-
tions,” IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 2, pp. 188–202,
Feb. 2010.

[22] C. Huang, O. Lawlor, and L. V. Kalé, “Adaptive MPI,” in Proceedings
of the 16th International Workshop on Languages and Compilers for
Parallel Computing (LCPC 2003), LNCS 2958, College Station, Texas,
October 2003, pp. 306–322.

[23] K. Underwood, M. Levenhagen, and A. Rodrigues, “Simulating red
storm: Challenges and successes in building a system simulation,” in
Parallel and Distributed Processing Symposium, 2007. IPDPS 2007.
IEEE International, 2007, pp. 1 –10.

[24] M. Collaboration, “MIMD Lattice Computation (MILC) Collaboration
Home Page,” http://www.physics.indiana.edu/ sg/milc.html.

[25] C. H. Still, R. L. Berger, A. B. Langdon, D. E. Hinkel, L. J. Suter, and
E. A. Williams, “Filamentation and forward brillouin scatter of entire
smoothed and aberrated laser beams,” Physics of Plasmas, vol. 7, no. 5,
p. 2023, 2000.

[26] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kalé, “NAMD: Biomolec-
ular simulation on thousands of processors,” in Proceedings of the 2002
ACM/IEEE conference on Supercomputing, Baltimore, MD, September
2002, pp. 1–18.

[27] G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid
metals,” Phys. Rev. B, vol. 47, p. 558, 1993.

[28] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker,
W. Wang, and J. G. Powers, “A description of the advanced research wrf
version 2,” NCAR, Tech. Rep. Technical Note NCAR/TN-468+STR,
June 2005.

