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Abstract

Energy, power and resilience are the major challenges that the HPC community faces in

moving to larger supercomputers. Data centers worldwide consumed energy equivalent to 235

billion kWh in 2010. A significant portion of that energy and power consumption is devoted

to cooling. This thesis proposes a scheme based on a combination of limiting processor

temperatures using Dynamic Voltage and Frequency Scaling (DVFS) and frequency-aware

load balancing that reduces cooling energy consumption and prevents hot spot formation.

Recent reports have expressed concern that reliability at the exascale level could degrade

to the point where failures become a norm rather than an exception. HPC researchers are

focusing on improving existing fault tolerance protocols to address these concerns. Research

on improving hardware reliability has also been making progress independently. A second

component of this thesis tries to bridge this gap and explore the potential of combining both

software and hardware aspects towards improving reliability of HPC machines. Finally,

the 10MW consumption of present day HPC systems is certainly becoming a bottleneck.

Although energy bills will significantly increase with machine size, power consumption is

a hard constraint that must be addressed. Intel’s Running Average Power Limit (RAPL)

toolkit is a recent feature that enables power capping of CPU and memory subsystems

on modern hardware. The ability to constrain the maximum power consumption of the

subsystems below the vendor-assigned Thermal Design Point (TDP) value allows us to add

more nodes in an overprovisioned system while ensuring that the total power consumption

of the data center does not exceed its power budget. The final component of this thesis

proposes an interpolation scheme that uses an application profile to optimize the number

of nodes and distribution of power between CPU and memory subsystems that minimizes

execution time under a strict power budget. We also present a resource management scheme

including a scheduler that uses CPU power capping, hardware overprovisioning, and job

malleability to improve the throughput of a data center under a strict power budget.
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CHAPTER 1
Introduction

Computational scientists are among the leading users of high performance computing (HPC).

These scientists usually run codes that simulate physical processes. Such simulation codes

have an everlasting demand for computational power. In order to satisfy the demands

for running these computational models, the HPC community will need to keep advancing

their quest for larger machines. Soaring energy consumption, accompanied by declining

reliability, together loom as the biggest hurdles for the next generation of supercomputers.

As we approach the exascale era, both hardware and software designers will need to account

for power, energy, and reliability of the machine while optimizing performance.

The combined energy consumption for data centers worldwide totaled 235 billion kWh in

2010 [1]. Most HPC researchers have been primarily focussing on energy minimization in

the past decade [2,3]. The majority of this work is concentrated on reducing machine energy

consumption. In this dissertation, we first attack the ‘other’ side of the problem i.e., cooling

energy consumption, which can account for up to 50% of the total energy consumption of

a data center [4–7]. Chip manufacturers have ceased to increase processor frequency and

have resorted to adding more cores on a chip to keep up with the ever increasing demand

for faster computers. This stagnation in processor frequency has been caused by a sharp

increase in the heat density of chip. Earlier studies show a connection between the operating

temperature of a processor and its reliability [8–10]. These studies mention the existence of

an exponential relationship between a processor’s temperature and its Mean Time Between

Failures (MTBF). Most HPC research focused on energy optimization and machine reliability

does not consider the impact of processor temperature. Although thermal considerations

have not been a primary concern for recent supercomputers, it can significantly improve

MTBF and hence, performance of future supercomputers. An exascale machine is predicted

to have more than 200,000 sockets [11]. Recent studies also show that supercomputers can
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Figure 1.1: Mean Time Between Failures (MTBF) for different numbers of sockets using
different MTBF per socket.

have a per socket MTBF as low as 5 years [12]. The implications of such large numbers

of sockets coupled with the existing MTBF values per socket are depicted in Figure 1.1.

This figure shows the MTBF of large supercomputers for different numbers of sockets and

different MTBF per socket. Figure 1.1 shows that with a per socket MTBF of 5 years, a

200K socket machine is likely to fault every 26 mins. Such a high fault rate could have a

dramatic effect on machine utilization. On the other hand, a per socket MTBF of 100 years

can improve the machine reliability and increase the machine MTBF to 262 mins for a 200K

socket machine. This thesis makes an attempt at improving the per socket MTBF of a large

machine by using Dynamic Voltage and Frequency Scaling (DVFS) in conjunction with an

adaptive runtime system.

Although energy minimization and thermal control are major challenges, in order to reach

exascale computing within the 20MW power envelope proposed by the DOE, data cen-

ters would have to significantly improve their performance per watt. Figure 1.2 shows the

power consumption and the theoretical peak performance of all the supercomputers from

the Top500 [13] for which power consumption data is available (blue circles). It also plots

the power consumption bound (20MW) set by the DOE for the exascale machine (red box).

Given the trend of current supercomputers, it is unlikely that the HPC community will

achieve exascale computing within the 20MW power budget. Looking at the data from

Figure 1.2, 100MW seems to be a more realistic target to achieve an exaflop. Although

2
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Figure 1.2: Power consumption and theoretical peak performance for supercomputers from
the Top500 (blue circles). The proposed Exascale machine under a power budget of 20MW
(red square).

hardware advances will be needed to build an exascale machine, efficient runtime techniques

are necessary to make the best use of what the hardware will provide.

1.1 Thesis Organization

This thesis is organized in three major parts. Part one contains Chapter 2 and Chapter 3.

This part demonstrates techniques for controlling core temperature and their impact on

performance and reliability. Chapter 2 describes how Dynamic Voltage and Frequency Scal-

ing (DVFS) can restrain processor temperatures and our scheme that uses object migration

to minimize the timing penalty associated with DVFS. Chapter 2 further presents the ex-

perimental results for restraining processor temperatures using different applications, and

demonstrates the reduction in timing penalty as well as energy consumption. It includes

a comprehensive discussion about application reaction to thermal restraint. Chapter 3 in-

troduces a novel technique that combines fault tolerance with thermal restraint to improve

system reliability. It demonstrates how restraining core temperatures can eventually ben-

efit application performance as a result of improved machine reliability. It also presents

the estimated benefits in machine reliability and application performance of using temper-

3



ature restraint for massively parallel machines running different types of applications. We

thank Esteban Meneses for his interest in the research on improving reliability using ther-

mal restraint (Chapter 3). We had a lot of discussions which helped improve the quality

of our work. In particular, Esteban’s incisive comments and his mathematical modeling

background helped us a great deal.

Part two of the thesis tackles the imminent problem of data center operation under a

strict power budget. It contains Chapters 4 and Chapters 5. Operating under a power

constraint is a challenging problem as it poses a constraint rather than a restraint which is

a less stricter limiting condition. While restraining, we try to apply a limit whereas in case

of a constraint that limit is strictly enforced. In this part, we use Intel’s Running Average

Power Library (RAPL) to cap processor and memory power for overprovisioned systems [14]

to improve application performance. Chapter 4 uses RAPL to improve application perfor-

mance for a single application executing in an overprovisioned system. Chapter 5 proposes

a resource management strategy that maximizes job throughput by intelligently scheduling

applications with different resource configurations. This chapter also proposes a detailed

strong scaling power aware model that can estimate the execution time of an application

based on its characteristics for any resource configuration. We thank Akhil Langer for his

interest in the research on optimization under strict power budget (Chapter 4 and 5). We

had numerous productive discussions during which we gave direction to this work. In partic-

ular, his insightful comments, his linear programming background, his work on the SLURM

simulator, and clear presentation of the ideas (including writing of the papers) helped us a

great deal.

Chapter 6 contains the last part of the thesis which summarizes the contributions of this

thesis and possible directions for future work. We outline multiple directions in which we

plan to extend our thesis work. The first idea relates to improving machine reliability by

taking into account the effects of thermal throttling. The second idea explores the possibility

of operating a data center under strict power and thermal constraints.
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CHAPTER 2
Thermal Restraint Using Migratable Objects

Energy consumption has emerged as a significant issue in modern high-performance com-

puting systems. Some of the largest supercomputers draw more than 10 megawatts, leading

to millions of dollars per year in energy bills. What is perhaps less well known is the fact

that 40% to 50% of the energy consumed by a data center is spent in cooling [4], [5], [6], to

keep the computer room running at a lower temperature. How can we reduce this cooling

energy?

Increasing the thermostat setting on the computer room air-conditioner (CRAC) reduces

the cooling power. But the increase in the thermostat will also increase the ambient tem-

perature in the computer room. The reason the ambient temperature is kept cool is to

keep processor cores from overheating. If they run at a high temperature for a long time,

the processor cores may be damaged. Additionally, cores consume more energy per unit of

work when run at higher temperatures [15]. Further, due to variations in the air flow in

the computer room, some chips may not be cooled as effectively as the rest. Semiconduc-

tor process variation will also likely contribute to variability in heating, especially in future

processor chips. So, to handle such ‘hot spots’, the ambient air temperature is kept at a low

temperature to ensure that no individual chip overheats.

Modern microprocessors contain on-chip temperature sensors that can be accessed by

software with minimal overhead. Further, they also provide means to change the frequency

and voltage at which the chip runs, known as dynamic voltage and frequency scaling, or

DVFS. Running processor cores at a lower frequency (and correspondingly lower voltage)

reduces the thermal energy that they dissipate, leading to a cool-down.

This suggests a method for keeping processors cool while increasing the CRAC set-point

(i.e. the thermostat setting). A component of the application software can periodically

check the temperature of the chip. When it exceeds a pre-set threshold, the software can
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reduce the frequency and voltage of that particular chip. If the temperature is lower than a

threshold, the software can correspondingly increase the frequency.

This technique will ensure that no processors overheat. However, in HPC computations,

and specifically in tightly-coupled science and engineering simulations, DVFS creates a new

problem. Generally, computations on one processor are dependent on the data produced by

the other processors. As a result, if one processor slows down to half its original speed, the

entire computation can slow substantially, in spite of the fact that the remaining processors

are running at full speed. Thus, such an approach will reduce the cooling power, but increase

the execution time of the application. Running the cooling system for a longer time can also

increase the cooling energy.

We aim to reduce cooling power without substantially increasing execution time, and thus

reduce cooling energy. We first describe the temperature sensor and frequency control mech-

anisms, and quantify their impact on execution time mentioned above (Section 2.2). Our

solution leverages the adaptive runtime system underlying the Charm++ parallel program-

ming system (Section 2.3). In order to minimize total system energy consumption, we study

an approach of limiting CPU temperatures via DVFS and mitigating the resultant timing

penalties with a load balancing strategy that is conscious of these effects (Section 2.4). We

show the impact of this combined technique on application performance (Section 2.6) and

total energy consumption (Section 2.7).

2.1 Related Work

Cooling energy optimization and hot spot avoidance have been addressed extensively in the

literature of non-HPC data centers [16–19], which shows the importance of the topic. As

an example, job placement and server shut down have shown savings of up to 33% in cool-

ing costs [16]. Many of these techniques rely on placing jobs that are expected to generate

more heat in the cooler areas of the data center. Such job placement schemes can not be

directly applied to HPC applications because different nodes are running parts of the same

application with similar power consumption. As an example, Rajan et al [20] use system

throttling for temperature-aware scheduling in the context of operating systems. Given their

assumptions, they show that keeping temperature constant is beneficial with their theoretical

models. However, their assumption of non-migratability of tasks is not true in HPC applica-

tions, especially with an adaptive runtime system. Le et al. [21] constrain core temperatures

by turning the machines on and off and consequently reduce total energy consumption by

18%. However, most of these techniques, cannot be applied to HPC applications as they are

6



not practical for tightly-coupled applications.

Minimizing energy consumption has also been an important topic for HPC researchers.

However, most of the work has focused on machine energy consumption rather than cool-

ing energy. Freeh et al. [2] show machine energy savings of up to 15% by exploiting the

communication slack present in the computational graph of a parallel application. Lim et

al [22] demonstrate a median energy savings of 15% by dynamically adjusting the CPU

frequency/voltage pair during the communication phases in MPI applications. Springer et

al. [3] generate a frequency schedule for a DVFS-enabled cluster that runs the target appli-

cation. This schedule tries to minimize the execution time while staying within the power

constraints. The major difference of our approach to the ones mentioned is that our DVFS

decisions are based on saving cooling energy consumption by constraining core temperatures.

The total energy consumption savings that we report represent both machine and cooling

energy consumption.

Huang and Feng describe a kernel-level DVFS governor that tries to determine the power-

optimal frequency for the expected workload over a short time interval that reduces machine

energy consumption up to 11% [23]. Hanson et al. [24] devise a runtime system named PET

for performance, power, energy and thermal management. They consider a more general case

of multiple and dynamic constraints. However, they just consider a serial setting without

the difficulties of parallel machines and HPC applications. Extending our approach for

constraints other than temperature is an interesting future work.

Banerjee et al. [25] try to improve the cooling cost in HPC data centers by an intelligent

job placement algorithm yielding up to 15% energy savings. However, they do not consider

the temperature variations inside a job. Thus, their approach can be less effective for data

centers with a few large-scale jobs rather than many small jobs. They also depend on

job pre-runs to get information about the jobs. In addition, their results are based on

simulations and not experiments on a real testbed. Tang et al. [26] reduce 30% of cooling

energy consumption by scheduling tasks in a data center. However, the benefits of their

scheme for large-scale jobs are questionable.

Merkel et al. [27] discuss the scheduling of tasks in a multiprocessor to avoid hot cores.

However, they do not deal with complications of parallel applications and large-scale data

centers. Freeh et al. [28] exploit the varying sensitivity of different phases in the application to

core frequency in order to reduce machine energy consumption for load balanced applications.

This work is similar to ours, as it deals with load balanced applications. They reduce

machine energy consumption by a maximum of 16%. However, our work is different as

we achieve much higher savings in total energy consumption primarily by reducing cooling

energy consumption.
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2.2 Limiting Temperatures

The design of a machine room or data center must ensure that all equipment stays within

its safe operating temperature range while keeping costs down. Commodity servers and

switches draw cold air from their environment, pass it over processor heatsinks and other

hot components, and then expel it at a higher temperature. To satisfy these systems’

specifications and keep them operating reliably, cooling systems in the data center must

supply a high enough volume of sufficiently cold air to every piece of equipment.

Traditional data center designs treated the air in the machine room as a single mass, to be

kept at an acceptable aggregate temperature. If the air entering some device was too hot, the

CRAC’s thermostat should be adjusted to a lower set-point. That adjustment would cause

the CRAC to run more frequently or intensely, increasing its energy consumption. More

modern designs, such as alternating hot/cold aisles [4] or in-aisle coolers, provide greater

separation between cold and hot air flows and more localized cooling, easing appropriate

supply to computing equipment and increasing efficiency.

However, even with this tighter air management, variations in air flow, system design,

manufacturing and assembly, and workload may still leave some devices significantly hotter

than others. To illustrate this sensitivity, we run an intensive parallel (Wave2D) application

on a cluster (Energy Cluster) with a dedicated CRAC unit. We changed the machine room’s

cooling by manipulating the CRAC set-point. The details of the application and our Energy

Cluster are described in Appendix B and Appendix A respectively. Figure 2.1 shows two

runs of Wave2D with different CRAC set-point temperatures. For each run, we plot both

the average core temperature across the entire cluster, and the maximum deviation of any

core from that average.

Unsurprisingly, observed core temperatures correlate with the temperature of the air pro-

vided to cool them. With a set-point increase of 2.3◦ C, the average temperature across the

system increases by 6◦ C. More noteworthy is that this small shift creates a substantial hot

spot, that worsens progressively over the course of the run. At the higher 25.6◦ C set-point,

the temperature difference from the average to the maximum rises from 9◦ C to 20◦ C. In

normal operations, this difference of 11◦ C would be an unacceptable result, and the CRAC

set-point must be kept low enough to avoid it.

An alternative approach, based on DVFS, shows promise in addressing the issue of over-

cooling and hot spots. DVFS is already widely used in laptops, desktops, and servers in

non-HPC data centers as a means to limit CPU power consumption. However applying

DVFS naively to HPC workloads entails an unacceptable performance degradation. Many

HPC applications are tightly-coupled, such that one or a few slow cores would effectively
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Figure 2.1: Average core temperatures and maximum difference of any core from the average
for Wave2D

slow down an entire job. This timing penalty implies decreased throughput and increased

time-to-solution.

To demonstrate the impact of DVFS, we repeat the earlier experiment with a temperature

constraint. We fix a threshold temperature of 44◦ C that we wish to keep all CPUs below.

We sample temperatures periodically, and when a CPU’s average temperature is over this

threshold, its frequency is lowered by one step, i.e., increase the P-state by a level. If it is

more than a degree below the threshold, its frequency is increased by one step i.e. decrease

its P-state by a level. We repeat this experiment over a range of CRAC settings, and

compute their performance in time and energy consumption relative to a run with all cores

working at their maximum frequency and the CRAC set to 12.2◦ C. As shown in Figure 2.2,

DVFS alone in this setting hurts performance and provides minimal savings in total energy

consumption. Most of the savings from cooling energy consumption are offset by an increase

in machine energy consumption. This effect arises because the decreased energy consumption

of the slower cores is more than offset by the additional machine energy consumed by all

the cores, including some at higher frequencies, running for the extended time. Not only

that, the slower cores can sometimes add such a large timing penalty that even they start

consuming more energy (24.4◦ C CRAC set-point case) due to the extra time they have to

run while parts outside the CPUs keep consuming the same power. Nevertheless, our results

in Figure 2.3 (described in detail in Section 2.6) show that DVFS effectively limits both

overall temperatures and hot spots.

More radical liquid-cooling designs mitigate some of the hot spot concerns, but they are
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Figure 2.2: Execution time and energy consumption for Wave2D running at different CRAC
set-points using DVFS

not a panacea. Equipment must be specifically designed to be liquid-cooled, and data centers

must be built or retrofit to supply the coolant throughout the machine room. The present

lack of commodity liquid-cooled systems and data centers means that techniques to address

the challenges of air-cooled computers will continue to be relevant for the foreseeable future.

Moreover, our techniques for limiting core temperatures can actually reduce the overall

thermal load of an HPC system, leading to energy savings even for installations using liquid

cooling.

2.3 Charm++ and Load Balancing

Charm++ is a general-purpose C++-based parallel programming system designed for pro-

ductive HPC programming [29]. It is supported by an adaptive runtime system that au-

tomates resource management. It relies on techniques such as processor virtualization and

over-decomposition (having more work units than the number of cores) to improve perfor-

mance via adaptive overlap of computation and communication and data-driven execution.

The automated resource management implies that the developer does not need to program

in terms of the physical cores, but instead divides the work into pieces with a suitable grain

size to let the system manage them easily.

A key feature of Charm++ is that the units of work decomposition are migratable objects.
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The adaptive runtime system can assign these objects to any processor and move them

around during program execution, for purposes including load balancing, communication

optimization, and fault tolerance. To enable effective load balancing, it tracks statistics of

each object’s execution, including its computation time and communication volume [30].

The runtime system provides a variety of plug-in load balancing strategies that can account

for different application characteristics. Through a simple API, these strategies take the

execution statistics from the runtime and generate a set of migration instructions, describing

which objects to move between which processors. Application developers and users can

provide their own strategy implementations as desired. Load balancing strategies can be

chosen at compilation or run-time. The majority of these strategies are based on the heuristic

‘principle of persistence’, which states that each object’s computation and communication

loads tend to persist over time. The principle of persistence holds for a large class of iterative

HPC applications. In this study, we have developed a new load balancing strategy that

accounts for the performance effects of DVFS-induced heterogeneity. The new strategy is

described in detail in Section 2.4.

At small scales, the cost of the entire load balancing process, from instrumentation through

migration, is generally a small portion of the total execution time, and less than the improve-

ment that it provides. For cases where load balancing costs can be significant, a strategy

must be chosen or adapted to match the application’s needs [31]. Our approach can be eas-

ily adapted to available hierarchical schemes, which have been shown to scale to the largest

machines available [32]. By limiting the cost of decision-making and scope of migration, we

expect these schemes to offer similar energy benefits.

2.3.1 AMPI

The Message Passing Interface (MPI) is a standardized communication library for distributed-

memory parallel programming. MPI has become the dominant paradigm for large-scale par-

allel computing. Thus, techniques for addressing the energy consumption of large parallel

systems must be applicable to MPI applications.

Charm++ provides an implementation of MPI known as Adaptive MPI (AMPI). AMPI

makes the features of the Charm++ runtime system available to MPI programs. Common

MPI implementations implement each unit of parallel execution, or rank, as a separate

process. Pure MPI applications run one rank per CPU core, while others use fewer ranks

and gain additional shared-memory parallelism via threading.

In contrast, AMPI encourages running applications with several ranks per core. AMPI
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implements these ranks as light weight user-level threads, many of which can run in each

process. The runtime schedules these threads non-preemptively, and switches them when

they make blocking communication calls. Internally, these threads are implemented as mi-

gratable objects, enabling the same benefits for MPI programs as for native Charm++.

In particular, AMPI allows us to apply the Charm++ load balancing strategies without

intrusive modifications to application logic.

2.4 ‘Cool’ Load Balancer

In this section, we introduce a novel approach that reduces energy consumption of the system

with minimal timing penalty. It is based on limiting core temperatures using DVFS and task

migration. Because our scheme is tightly coupled to task migration, we chose Charm++ and

AMPI as our parallel programming frameworks as they allow easy task (object) migration

with low overhead. All implementations and experiments were done using Charm++ and

AMPI. However, our techniques can be applied to any parallel programming system that

provides efficient task migration.

The steps of our temperature-control scheme can be summarized as applying the following

process periodically:

1. Check the temperatures of all cores

2. Apply DVFS to cores that are hotter or colder than desired

3. Address the load imbalance caused by DVFS using our load balancer, TempLDB :

(a) Normalize task and core load statistics to reflect old and new frequencies

(b) Identify overloaded or underloaded cores

(c) Move work from overloaded cores to underloaded cores

The remainder of this section describes this process in detail.

Our temperature control scheme is periodically triggered after equally spaced intervals in

time, referred to as steps. Other DVFS schemes [23] try to react directly to the demands

of the application workload, and thus must sample conditions and make adjustments at

intervals on the order of milliseconds. In contrast, our strategy only needs to react to much

slower shifts in chip temperature, which occur over intervals of seconds. At present, DVFS

is triggered as part of the runtime’s load balancing infrastructure at a user-specified period.
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Variable Description

n number of tasks in application
p number of cores
Tmax maximum temperature allowed
k current load balancing step
Ci set of cores on same chip as core i
taskT imeki execution time of task i during

step k (in ms)
coreT imeki time spent by core i executing tasks

during step k
fki frequency of core i during step k (in Hz)
mk

i core number assigned to task i
during step k

{task, core}Tickski num. of clock ticks taken by ith task/core
during step k

tki average temperature of chip i at start of
step k (in ◦C)

overHeap heap of overloaded cores
underSet set of underloaded cores

Table 2.1: Description for variables used in Algorithm 1

Our control strategy for DVFS is to let the cores work at their maximum frequency as

long as their temperature is below a threshold parameter. If a core’s temperature crosses

above the threshold, it is controlled by decreasing the voltage and frequency using DVFS.

When the voltage and frequency are reduced, power consumption will drop and hence the

core’s temperature will fall. Our earlier approach [33] raised the voltage and frequency as

soon as temperatures fell below the threshold, causing frequent changes and requiring effort

to load balance in every interval. To reduce overhead, our strategy now waits until a chip’s

temperature is a few degrees below the threshold before increasing its frequency.

The hardware in today’s cluster computers does not allow reducing the frequency of each

core individually and so we must apply DVFS to the whole chip. This raises the question:

what heuristic should we use to trigger DVFS and modulate frequency? In our earlier

work [15], we conducted DVFS when any of the cores on a chip were considered too hot.

However, our more recent results [33] show that basing the decision on average temperature

of the cores in a chip results in better temperature control.

Another important decision is how much a chip’s frequency should be reduced (respec-

tively, raised) when it gets too hot (is safe to warm up). Present hardware only offers discrete

frequency and voltage levels built into the hardware, the ‘P-states’. Using this hardware, we

observed that reducing the chip’s frequency by one level at a time is a reasonable heuristic

because it effectively constrains the core temperatures in the desired range (Figure 2.3).

Lines 1–6 of Algorithm 1 apply DVFS as we have just described. The description of the
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variables and functions used in the algorithm is given in Table 2.1.

When DVFS adjusts frequencies differently across the cores in a cluster, the workloads on

those cores change relative to one another. Because this potential for load imbalance occurs

all at once, it makes sense to react to this load balance immediately. The system responds

by rebalancing the assignment of work to cores according to the strategy described by lines

7–32 of Algorithm 1.

Algorithm 1: Temperature Aware Refinement Load Balancing

1: On every node i at start of step k
2: if tki > Tmax then
3: decreaseOneLevel(Ci) . increase P-state
4: else if tki < Tmax − 2 then
5: increaseOneLevel(Ci) . decrease P-state
6: end if
7: On Master core
8: for i ∈ [1, n] do
9: taskT icksk−1i = taskT imek−1i × fk−1

mk−1
i

10: totalT icks += taskT icksk−1i

11: end for
12: for i ∈ [1, p] do
13: coreT icksk−1i = coreT imek−1i × fk−1i

14: freqSum += fki
15: end for
16: createOverHeapAndUnderSet()
17: while overHeap NOT NULL do
18: donor = deleteMaxHeap(overHeap)
19: (bestTask, bestCore) =
20: getBestCoreAndTask(donor, underSet)
21: mk

bestTask = bestCore
22: coreT icksk−1donor− = taskT icksk−1bestTask

23: coreT icksk−1bestCore+ = taskT icksk−1bestTask

24: updateHeapAndSet()
25: end while
26:

27: procedure isHeavy(i)
28: return coreT icksk−1i > (1 + tolerance) ∗ totalT icks
29: ∗(fki /freqSum)
30:

31: procedure isLight(i)
32: return coreT icksk−1i < totalT icks ∗ fki /freqSum

The key principle in how a load balancer must respond to DVFS actuation is that the
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load statistics must be adjusted to reflect the various different frequencies at which load

measurements were recorded and future work will run. At the start of step k, our load

balancer retrieves load information for step k−1 from Charm++’s database. This data gives

the total duration of work executed for each task in the previous interval (taskT imek−1i ) and

the core that executed it (mk−1
i ). Here i refers to task id and k − 1 represents last step.

We normalize the task workloads by multiplying their execution times by the old frequency

values of the core that hosted them. We then sum these normalized task workloads to

compute the total load, as seen in lines 8–11. This normalization is an approximation to

the performance impact of different frequencies. However, different applications might have

different characteristics (e.g., cache hit rates at various levels, instructions per cycle) that

determine the sensitivity of their execution time to core frequency. We plan to incorporate

more detailed load estimators in our future work. The scheme also calculates the work

assigned to each core and sum of frequencies for all the cores to be used later (lines 12-15).

Once the load normalization is done, we create a max heap for overloaded cores (overHeap)

and a set for the underloaded cores (underSet) on line 16. The cores are classified as

overloaded and underloaded by procedures isHeavy() and isLight() (lines 26–30), based on

how their normalized loads from the previous step, k−1, compare to the frequency-weighted

average load for the coming step k. We use a tolerance in identifying overloaded cores to

focus our efforts on the worst instances of overload and minimize migration costs. In our

experiments, we set the tolerance to 0.07, empirically chosen for the slight improvement that

it provided over the lower values used in our previous work.

Using these data structures, the load balancer iteratively moves work away from the most

overloaded core (donor, line 18) until none are left (line 17). The moved task and recipient

are chosen as the heaviest task that the donor could transfer to any underloaded core such

that the underloaded core does not become overloaded (line 19, implementation not shown).

Once the chosen task is reassigned (line 20), the load statistics are updated and the data

structures are updated accordingly (lines 21–23).

2.5 Experimental Setup

To evaluate our approach to reducing energy consumption, we must be able to measure

and control core frequencies and temperatures, air temperature, and energy consumed by

computer and cooling hardware. All experiments were run on real hardware and this chapter

does not include any simulation results.

We tested our scheme on the Energy Cluster hosted by the Computer Science department
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at University of Illinois Urbana Champaign (see Appendix A). Its cooling design is similar

to the cooling systems of most large data centers. We were able to vary the CRAC set-point

across a broad range as shown in our results (following sections).

Because the CRAC unit exchanges machine room heat with chilled water supplied by a

campus-wide plant, measuring its direct energy consumption (i.e., with an electrical meter)

would only include the mechanical components driving air and water flow, and would miss

the much larger energy expenditure used to cool the water. To capture the machine room’s

cooling energy, we use a model [21] based on measurements of how much heat the CRAC

actually expels. The instantaneous power consumed by the CRAC to cool the temperature

of the exhaust air from Thot down to the cool inlet air temperature Tac can be approximated

by:

Pac = cair ∗ fac ∗ (Thot − Tac) (2.1)

In this equation, cair is the heat capacity constant and fac is the constant rate of air flow

through the cooling system. We use temperature sensors on the CRAC’s vents to measure

Thot and Tac. During our experiments, we recorded a series of measurements from each of

these sensors, and then integrated the calculated power to produce total energy figures.

By working in a dedicated space, the present work removes a potential source of error from

previous data center cooling results. Most data centers have many different jobs running

at any given time. Those jobs dissipate heat, interfering with cooling energy measurements

and increasing the ambient temperature in which the experimental nodes run. In contrast,

our cluster is the only heat source in the space, and the CRAC is the primary sink for that

heat.

We investigate the effectiveness of our scheme, using five different applications, of which

three are Charm++ applications and two are written in MPI. These applications have a

range of power profiles and are described in Appendix B.

Most of our experiments were run for 300 seconds as it provided ample time for all ap-

plications to settle to their steady state frequencies. All results that we show are averaged

over three identically configured runs, with a cool-down period before each. All normalized

results are reported with respect to a run where all 128 cores were running at the maximum

possible frequency with Intel Turbo Boost in operation and the CRAC set to 12.2◦ C. To

validate the ability of our scheme to reduce energy consumption for longer execution times,

we ran Wave2D (the most power-hungry of the five applications we consider) for 2.5 hours.

The longer run was consistent with our findings, with the temperature being constrained

well within the specified range and we were able to reduce cooling energy consumption for

the entire 2.5 hour period.
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2.6 Constraining Core Temperatures and Timing Penalty

The approach that we have described in Section 2.4 constrains processor temperatures with

DVFS while attempting to minimize the resulting timing penalty. Figure 2.3 shows that all

of our applications when using DVFS and TempLDB, settle to an average temperature that

lies in the desired range (the two horizontal lines at 47 ◦C and 49 ◦C on Figure 2.3). As the

average temperature increases to its steady-state value, the hottest single core ends up no

more than 6◦ C above the average (lower part of Figure 2.3) as compared to 20◦ C above

average for the run where we are not using temperature control (Figure 2.1).

Figure 2.4 shows the timing penalty incurred by each application under DVFS, contrasting

its effect with and without load balancing. The effects of DVFS on the various applications

are quite varied. The worst affected, Wave2D and NAS MG, see penalties of over 50%, which

load balancing reduces to below 25%. Jacobi2D was the least affected, with a maximum

penalty of 12%, brought down to 3% by load balancing. In all cases, the timing penalty

sharply decreases when load balancing is activated, generally by greater than 50%. Before

analyzing the timing penalty for individual applications we first see how load balancing helps

in reducing timing penalty compared to naive DVFS.

To illustrate the benefits of load balancing, we use Projections [34], which is a multipurpose

performance visualization tool for Charm++ applications. Here, we use processor timelines

to see the utilization of the processors in different time intervals. For ease of comprehension,

we show a representative 16-core subset of the 128-core cluster. The top part of Figure 2.5

shows the timelines for execution of Wave2D with the naive DVFS scheme. Each timeline

(horizontal line) corresponds to the course of execution of one core visualizing its utilization.

The green and pink colored pieces show different computation but white ones represent idle

time. The boxed area in Figure 2.5 shows some of the cores have significant idle time.

The top 4 cores in the boxed area take much longer to execute their computation than

the bottom 12 cores which is why the pink and green parts are longer for the top 4 cores.

However, the other 12 cores execute their computation quickly and stay idle waiting for the

rest of cores. The idle time is caused because DVFS decreased the frequency of the first

four cores and so they are slower in their computation. It means that the timing penalty

of naive DVFS is dictated by the slowest cores. The bottom part of Figure 2.5 shows the

same temperature control but using our TempLDB. In this case, there is no significant idle

time because the scheme balances the load between slow and fast processors by taking their

frequencies into account. Consequently, the latter approach results in much shorter total

execution time, as reflected by shorter timelines (and figure width) in the bottom part of

Figure 2.5. Now we try to understand the timing penalty differences amongst different
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Figure 2.3: Our DVFS and load balancing scheme successfully keeps all processors within
the target temperature range of 47◦–49◦ C, with a CRAC set-point of 24.4◦ C.

applications by examining more detailed data. Jacobi2D experiences the lowest impact of

DVFS, regardless of load balancing (Figure 2.4(a)). The small timing penalty for Jacobi2D

occurs for several interconnected reasons. From the high level, Figure 2.3 shows that it takes

the longest of any application to increase temperatures to the upper bound of the acceptable

range, where DVFS activates. This slow ramp-up in temperature means that its frequency

does not drop until later in the run, and then falls relatively slowly, as seen in Figure 2.6

which plots the minimum frequency at which any core was running (Figure 2.6(a)) and

the average frequency (Figure 2.7(a)) for all 128 cores. Even when some processors reach

their minimum frequency, Figure 2.7(a) shows that its average frequency decreases more

slowly than any other application, and does not fall as far. The difference in the average

frequency and the minimum frequency explains the difference between TempLDB and naive

DVFS, as the execution time for TempLDB is dependent on average frequency whereas the

execution time for naive DVFS depends on the minimum frequency at which any core is

running. Another way to understand the relatively small timing penalty of Jacobi2D is

to compare its utilization and frequency profiles. Figure 2.8(a) depicts each core’s average
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Figure 2.4: Execution timing penalty with and without Temperature Aware Load
Balancing

19



Figure 2.5: Execution timelines before and after Temperature Aware Load Balancing for
Wave2D

frequency over the course of the run. Figure 2.9(a) shows the utilization of each core while

running Jacobi2D. In both figures, each bar represents the measurement of a single core.

The green part of the utilization bars represents computation and the white part represents

idle time. As can be seen, utilizations of the right half cores are roughly higher than the left

half. Furthermore, the average frequency of the right half processors is roughly lower than

the other half. Thus, lower frequency has resulted in higher utilization of those processors

without much timing penalty. The reason this variation can occur is that the application

naturally has some slack time in each iteration, which the slower processors dip into to keep

pace with faster ones.

To examine the differences among applications at another level, Figure 2.10 shows the

performance impact of running each application with the processor frequencies fixed at a

particular value (the marking 2.4+ refers to the top frequency plus Turbo Boost). All ap-

plications slow down as CPU frequency decreases. However, Jacobi2D incurs the smallest

timing penalty compared to other applications. This marked difference can be better under-

stood in light of the performance counter-based measurements shown in Table 2.2. These
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Figure 2.7: Average core frequencies produced by DVFS for different applications at 24.4◦

C

Counter Type Jacobi2D Mol3D Wave2D

MFLOP/s 373 666 832
Traffic L1-L2 (MB/s) 762 1017 601
Cache misses to DRAM 663 75 402
(millions)

Table 2.2: Performance counters for Charm++ applications on one core
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Figure 2.9: Utilization of processors for Jacobi2D using TempLDB
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measurements were taken in equal-length runs of the three Charm++ applications using

the PerfSuite toolkit [35]. Jacobi2D has a much lower computational intensity, in terms of

FLOP/s, than the other applications. It also retrieves much more data from main memory,

explaining its lower sensitivity to frequency shifts. Its lower intensity also means that it

consumes less power and dissipates less heat in the CPU cores than the other applications,

explaining its slower ramp-up in temperature, slower ramp-down in frequency, and higher

steady-state average frequency. In contrast, the higher FLOP counts and cache access rates

of Wave2D and Mol3D explain their high frequency sensitivity, rapid core heating, lower

steady-state frequency, and hence the large impact DVFS has on their performance.
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Figure 2.10: Frequency sensitivity of the various applications

2.7 Energy Savings

In this section, we evaluate the ability of our scheme to reduce total energy consumption. Our

current load balancing scheme with the allowed temperature range strategy resulted in less

than 1% time overhead for applying DVFS and load balancing (including the cost of object

migration). Due to that change, we now get savings in both cooling energy consumption

as well as machine energy consumption, although savings in cooling energy consumption

constitute the main part of the reduction in total energy consumption. In order to understand

the contribution for both cooling energy consumption and machine energy consumption, we

look at them separately.
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2.7.1 Cooling energy consumption

The essence of our work is to reduce cooling energy consumption by constraining core tem-

peratures and avoiding hot spots. As outlined in Equation 2.1, the cooling power consumed

by the air conditioning unit is proportional to the difference between the hot air and cold

air temperatures going in and out of the CRAC respectively. As mentioned in earlier work

[4–6], cooling cost can be as high as 50% of the total energy budget of the data center. How-

ever, in our calculation, we take it to be 40% of the total energy consumption of a baseline

run with the CRAC at its lowest set-point, which is equivalent to 66.6% of the measured

machine energy during that run. Hence, we use the following formula to estimate the cooling

power by feeding in actual experimental results for hot and cold air temperatures:

PLB
cool =

2 ∗ (TLBhot − TLBac ) ∗ P base
machine

3 ∗ (T basehot − T baseac )
(2.2)

TLBhot represents the temperature of hot air leaving the machine room (entering the CRAC)

and TLBac represents the temperature of the cold air entering the machine room. T basehot and

T baseac represent the hot and cold air temperatures with the largest difference while running

Wave2D at the coolest CRAC set-point (i.e., 12.2◦ C), and P base
machine is the power consumption

of the machine for the same experiment.

Figure 2.11 shows the machine power consumption and the cooling power consumption for

each application using TempLDB. Figure 2.11(b) shows that the cooling power consumption

falls as we increase the CRAC set-point for all applications. A higher CRAC set-point means

the cores heat up more rapidly, leading DVFS to set lower frequencies. Thus, machine

power consumption falls as a result of the CPUs drawing less power (Figure 2.11(a)). The

machine’s decreased power draw and subsequent heat dissipation means that less energy is

added to the machine room air. The lower heat flux to the ambient air means that the

CRAC requires less power to expel that heat and to maintain the set-point temperature, as

seen in Figure 2.11(b).

Wave2D consumes the highest cooling power for three out of the four CRAC set-points

that we used, which is consistent with its high machine power consumption. Figure 2.12

shows the savings in cooling energy in comparison to the baseline run where all cores are

working at the maximum frequency without any temperature control. These figures include

the extra time that the cooling needs to run corresponding to the timing penalty introduced

because of applying DVFS. Due to the large reduction in cooling power (Figure 2.11(b))

our scheme was able to save as much as 63% of the cooling energy in the case of Mol3D

running at a CRAC set-point of 24.4 ◦C. We can see that the savings in cooling energy
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Figure 2.11: Machine and cooling power consumption for no-DVFS runs at a 12.2 ◦C set-
point and various TempLDB runs
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consumption are better with our technique than naive DVFS for most of the applications

and the corresponding set-points. This improvement in energy consumption is mainly due

to the higher timing penalty for naive DVFS runs, which causes the CRAC to work for much

longer than the corresponding TempLDB run.

2.7.2 Machine energy consumption

Although TempLDB does not optimize for reduced machine energy consumption, we still end

up showing savings for some applications. Figure 2.13 shows the change in machine energy

consumption. A number less than 1 represents a saving in machine energy consumption

whereas a value greater than 1 points to an increase.

It is interesting to see that NPB-FT and Wave2D end up saving machine energy con-

sumption when using TempLDB. For Wave2D, we end up saving 6% of machine energy

consumption when the CRAC is set to 14.4 ◦C whereas the maximum machine energy sav-

ings of NPB-FT, 4%, occurs when the CRAC is set to 14.4 ◦C or 24.4 ◦C. To find the reasons

for these savings in machine energy consumption, we performed a set of experiments where

we ran the applications with the 128 cores of our cluster fixed at each of the available fre-

quencies. Figure 2.14 plots the normalized machine energy for each application against the

frequency at which it was run. Power consumption models dictate that CPU power con-

sumption can be regarded as being proportional to the cube of the frequency, which would

imply that we should expect the power to fall as a cubic of frequency whereas the execution

time increases only linearly in the worst case. This cubic relationship would imply that we

should always reduce energy consumption by moving to a lower frequency. This proposition

does not hold because of the high base power drawn by everything other than the CPU and

memory subsystem, which is 40W per node for our cluster. We can say that while moving

to each successive lower frequency we reach a point where the savings in the CPU energy

consumption are offset by an increase in base energy consumption due to the timing penalty

incurred, leading to the U-shaped energy curves. When our scheme lowers frequency as a

result of core temperature crossing the maximum temperature value, we move into the more

desirable range of machine energy consumption, i.e., closer to the minimum of the U-shape

energy curves.

To see a breakdown of execution time, Figure 2.15 shows the cumulative time spent by

all 128 cores at different frequency levels for Wave2D using TempLDB at a CRAC set-

point of 24.4 ◦C. We can see that most of the time is spent at frequency levels between

1.73GHz–2.0GHz, which corresponds to the lowest point for normalized energy for Wave2D
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Figure 2.12: Savings in cooling energy consumption with and without Temperature Aware
Load Balancing (higher is better)
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Figure 2.13: Change in machine energy consumption with and without Temperature Aware
Load Balancing (values less than 1 represent savings)
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in Figure 2.14.

In order to study the relationship between machine power consumption and average fre-

quency we plotted the power consumption for each application over the course of a run using

TempLDB in Figure 2.16. It was counter intuitive to see that despite starting at the same

level of machine power consumption as NPB-FT and NPB-MG, Jacobi2D ended up having

a much higher average frequency (Figure 2.7(a)). The other interesting observation that we

can make from this graph is the wide variation in steady state power consumption among

the applications.

Since all the applications are settling to the same average core temperature, the laws of

thermodynamics dictate that a CPU running at a fixed temperature will transfer a particular

amount of heat energy per unit of time to the environment through its heatsink and fan

assembly. Thus, each application should end up having the same CPU power consumption.

Similar CPU power consumption would mean that the difference in power draw among the

applications in Figure 2.16 is caused by something other than CPU power consumption.

Table 2.2 shows that Jacobi2D and Wave2D have many more cache misses than Mol3D and

thus end up with a higher power consumption in the memory controller and DRAM, which

do not contribute to increased core temperatures but do increase the total power draw for

the machine.

In order to verify our hypothesis, we ran two of our applications, Jacobi2D and Wave2D,

on a single node containing a 4-core Intel Core i7-2600K, with a temperature threshold of

50◦C. Using our load balancing infrastructure and the newly added hardware energy counters

in Intel’s recent Sandy Bridge technology present in this chip, we can measure the chip’s

power consumption directly from machine specific registers using Running Average Power

Limit (RAPL) library [36]. Both applications begin execution with the CPU at its maximum

frequency, which our system decreases as temperatures rise.

The CPU power consumption results from these runs are graphed in figure 2.17. As

expected, both applications settled near a common steady state of power consumption for

the CPU package (cores and caches combined).

Before highlighting the key findings of our study, we compare our load balancer, i.e.,

TempLDB, with a generic Charm++ load balancer, i.e., RefineLDB. RefineLDB ’s load bal-

ancing strategy relies on execution time data for each task without taking into account the

frequency at which each core is working. Similar to TempLDB, RefineLDB also migrates

extra tasks from the overloaded cores to the underloaded cores. We implemented our tem-

perature control scheme using DVFS into this load balancer but kept the load balancing

part the same. Because RefineLDB relies only on task execution time data to predict future

load without taking into account the transitions in core frequencies, it ends up taking longer
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Figure 2.18: Timing penalty and energy savings of TempLDB and RefineLDB compared to
naive DVFS

and consumes more energy to restore load balance. The improvement that TempLDB makes

can be seen from Figure 2.18 which shows a comparison between both load balancers for all

applications with the CRAC set-point at 22.2◦C.

2.8 Tradeoff in Execution Time and Energy Consumption

The essence of our results can be seen in Figure 2.19, which summarizes the tradeoffs between

execution time and total energy consumption for all five applications. Each application

has two curves, one for each of the Naive DVFS and TempLDB runs. These curves give

important information: the slope of each curve represents the execution time penalty one

must pay in order to save each joule of energy. A movement to the left (reducing the

energy consumption) or down (reducing the timing penalty) is desirable. For all CRAC

set-points across all applications, TempLDB takes its corresponding point from the Naive

DVFS scheme at the same CRAC set-point down (saving timing penalty) and to the left

(saving energy consumption).

From Figure 2.19(b), we can see that Wave2D is only conducive to saving energy with

the CRAC set below 21.1◦ C, as the curve becomes vertical with higher set-points. However

we should note that the temperature range of 47 ◦C–49 ◦C was much lower than the average

temperature Wave2D reached with the CRAC set at the coolest set-point of 12.2◦ C without

any temperature control. Thus, a higher CRAC set-point imposes too much timing penalty

to provide any total energy savings beyond the 21.1◦ C set-point. Even at 14.4◦ C we
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are able to reduce its total energy consumption by 12%. The benefits of using TempLDB

will eventually end for any application, i.e., the curve will become vertical, as we keep on

increasing the CRAC set-point. However, the set-point at which the benefits end would

differ amongst different applications.

For Mol3D, the nearly flat curve shows that our scheme does well at saving energy, since

we do not have to pay a large execution time penalty in order to reduce energy consumption.

The same effect holds true for Jacobi2D. NPB-MG ’s sloped curve places it in between these

two extremes. It and NPB-FT truly present a tradeoff, and users can optimize according to

their preferences.
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CHAPTER 3
Thermal Restraint and Reliability

HPC research and its endeavor to build larger machines face several major challenges today

including, power, energy, and reliability. Petascale systems spend significant time dumping

checkpoint data to remote storage while executing large scientific applications. Although

these systems are built from highly reliable individual components, the overall failure rate

for them is high due to the shear number of components involved in building such large

machines. Current petascale machines have Mean Time Between Failures (MTBF) that can

be anywhere from a few hours to days [37]. These MTBF numbers could be significantly

smaller for an exascale machine as pointed out in Figure 1.1. Given the current per socket

MTBF values, the proposed exascale machine can have an MTBF of less than an hour!

Past research has shown a relation between core temperatures and reliability. The failure

rate of a compute node doubles with every 10◦ C increase in temperature [8,38–40]. This rule

is commonly known as the 10-degree rule. Most HPC researchers have focused on developing

efficient fault tolerance protocols in the past [41–44]. The work presented in this chapter

follows a different path. Instead of efficiently dealing with faults, we aim at reducing their

occurrence. Hence, our scheme can be beneficial when combined with any fault tolerance

protocol. In Chapter 2 we demonstrated the ability of thermal restraint to reduce total

energy consumption of a data center. We now extend the scheme proposed in Chapter 2 and

combine it with a checkpoint-restart protocol [41] to improve application performance in a

faulty environment. In this chapter we show that by restraining processor temperatures,

we can empower the user to select the reliability of the system from within a range. An

increase in reliability can improve the performance of an application especially by using

load balancing for overdecomposed systems [45]. We also show how different applications

can affect the Mean Time Between Failures (MTBF) for a machine due to different thermal

profiles. We present and analyze the tradeoffs of improving reliability and its associated cost,
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i.e., the slowdown caused by DVFS-driven temperature control. In particular, this chapter

makes the following contributions:

• We analyze how restraining temperature of individual processors improves the relia-

bility of the entire machine (Section 3.2.1).

• We formulate a model that relates total execution time of an application to reliability

and the associated slowdown for temperature restraint (Section 3.2.2).

• We propose, implement and evaluate a novel approach that extends our earlier work [33,

46] and combines temperature restraint, load balancing and checkpoint/restart to in-

crease reliability while reducing total execution time for an application (Section 3.3).

We do several experiments that span over an hour and have at least 40 faults. This

work is, as far as we know, the first extensive experimental study that provides insights

on the effects of temperature restraint on estimated MTBF for HPC machines.

• We first validate the accuracy of our model (Section 3.4) and then use it to show the

scheme’s expected benefits for larger machines (Section 3.5). Our results show that

for a 340K socket machine, we improve the machine efficiency from 0.01 to 0.22 as a

result of improving the machine reliability by a factor of up to 2.29.

3.1 Related Work

The classical solution for coping with an ever increasing failure rate due to larger machine

sizes and thermal variations is to increase the checkpoint frequency. Unfortunately, check-

point/restart might not be usable indefinitely as the failure rate grows.

Some alternatives have been explored to keep up with a small MTBF . Using local storage

to store the state of the tasks has been proposed in the double in-memory checkpoint/restart

mechanism [41,47]. Checkpointing in the memory of the nodes is fast and checkpoint periods

can become smaller to tolerate frequent failures. Although this mechanism may not tolerate

the failure of more than one node, several studies have confirmed that in a high percentage

of the failures, only one node is affected [47, 48]. Another possibility is to improve recovery

time through message-logging. In such protocols, a failure only requires the crashed node to

roll back. The rest of the system will re-send the messages and wait for the crashed node

to catch up with the rest of the system. A technique called parallel recovery [49] leverages

message-logging by distributing the tasks on the failed node to be recovered in parallel on

other nodes of the system. This mechanism has been demonstrated to tolerate a higher

36



failure rate [50]. More recently, replication of tasks has been proposed to deal with high

failure rates [12]. However, replication decreases the utilization of the system to 50% at the

best. An extremely high failure rate will make this sacrifice pay off, as the utilization of a

system using checkpoint/restart drastically decreases if failures are very frequent.

In this dissertation, we take a different approach of dealing with faults. Instead of finding

efficient schemes that deal with faults, we aim to avoid failures by controlling tempera-

ture in all nodes of a system using DVFS. The net result of this temperature capping is a

smaller failure rate. We compensate for loss of performance due to DVFS with load bal-

ance and over-decomposition. A decreased failure rate is particularly more convenient for

checkpoint/restart, but our scheme can be used in tandem with any fault-tolerance method.

One of the key advantages of decreasing the failure rate is the reduction in maintenance

cost of the supercomputing facility. Each failure may require at least a reboot, but in some

situations manual intervention of experts is needed to diagnose the root cause of the crash.

3.2 Implications of Temperature Control

Processor temperature has a profound impact on the fault rate of a processor. For every

10◦ C increase in processor temperature the fault rate doubles [8, 38–40]. While restraining

processor temperature improves reliability, it also causes an execution time slowdown due to

DVFS. In this section, we use temperature control to estimate the improvement in reliability

and its impact on the total execution time of an application.

3.2.1 Effects of Temperature Control on Reliability

MTBF for a processor (m) is exponentially related to its temperature and can be expressed

as: [8–10]

m = A ∗ e−b∗T (3.1)

where T is the processor temperature, A and b are constants. Assuming an m of 10 years

at 40◦ C, m per processor based on the 10-degree rule can be expressed as:

m = 160 ∗ e−0.069T (3.2)
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Figure 3.1: Histogram of max temperature for each node of the cluster using Wave2D

In a system where the failure of a single component can cause the entire application to fail,

the MTBF of the system can be defined as (M) [51]:

M =
1∑N

n=1
1
mn

(3.3)

where N is the number of nodes and mn is the MTBF for socket n. Although the absolute

value of core temperatures is important for each processor’s reliability (Equation 3.2), relia-

bility of the entire cluster also depends on the variance of core temperatures for all processors

present in the cluster (Equation 3.3). Presence of hot spots can degrade reliability of the

system.

To analyze processor temperature behavior, we ran a 5-point stencil application, Wave2D,

on a 32 node (128 cores) cluster for over 30 mins and recorded the maximum temperature

reached by each processor. The results are pictured in Figure 3.1 where each bar shows

the number of processors reaching a specific maximum temperature during the 30-min run.

The red bars in Figure 3.1 indicate the presence of a hot spot composed of three processors

(hot processors) that heated up to 78◦ C-80◦ C. The maximum temperature reached by the

remaining 29 processors (cold processors) ranged from 55◦ C-63◦ C (shown in blue). The

average temperature for the cool processors was Tc = 59◦ C, with a standard deviation of σ

= 2.17◦ C. Feeding the temperature data from Figure 3.1 to Equations 3.2 and 3.3 estimates

the MTBF to be 24 days for our cluster. As Equation 3.2 outlines, we can increase m for

each processor by restraining its temperature to a lower value and hence increase overall M
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Figure 3.2: Effect of cooling down processors on MTBF of the system

for the cluster. To estimate the improvement in M , we do the following:

1. Remove the hot spot by bringing the hot processors’ distribution back to that of cool

processors

2. Shift the entire distribution towards the left so that all processors operate at an average

temperature of 50◦ C instead of 59◦ C

Suppose we remove the hot spot by restraining temperature for the three hot processors to

Tc = 59◦ C, i.e., the average temperature for cool processors. Using these new temperature

values for the three processors in the hot spot, along with the actual temperature values we

got for cool processors, we re-estimate M and notice an increase of 7 days (from 24 to 31

days). The estimated improvement in M after hot spot removal is shown by the dashed line

in Figure 3.2 which joins the two points representing the value of M with (red circle) and

without (blue diamond) hot spot. We can now predict M given a temperature restraint for

a processor in the hot spot. For example, keeping the three processors in the hot spot to

70◦ C would result in an estimated 27.5 days for M .

So far we have argued that hot spot removal improves M . Next, we study the effect of

restraining temperatures for all the processors to 50◦ C. For this, we generate 32 normally

distributed random temperature values with a mean of 50◦ C and σ = 2.17◦ C (same as

cool processors) and re-estimate M . The improvement in M for any temperature restraint

between 50◦ C to 59◦ C (black ‘+’ and blue diamond in Figure 3.2 respectively) can be

estimated from the solid line in Figure 3.2.
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These improvements motivated us to use our temperature aware load balancer (Chap-

ter 2) for restraining temperatures to study the slowdown associated with using DVFS for

temperature control. For the purpose of this study, we assume that the reliability stays con-

stant while the input voltage to the processor is decreased. Although processor reliability

decreases if the processor is operating close to Near Threshold Voltage (NTV) values, the

allowed range for DVFS is above the NTV numbers. Hence, our assumption of constant

reliability for changing input voltage is reasonable for this study. To test how well DVFS

restrains core temperature, we ran Wave2D using different temperature thresholds. The

small green dots in Figure 3.2 represent experiments carried out on our Energy Cluster (see

Appendix A). The percentage in the labels represents the slowdown in execution time com-

pared to the experiment where temperatures are not restrained and all processors always

work at maximum frequency. The number in brackets shows the temperature threshold used

for that experiment. Decreasing temperature threshold causes the points to move towards

the left indicating a decrease in average temperature for all processors. Since the processors

are operating at lower temperatures, the estimated M (using actual temperature data) keeps

increasing according to Equations 3.2 and 3.3. However, this improved reliability comes at

the cost of DVFS induced slowdown which keeps increasing with reduction in temperature

threshold.

3.2.2 Effects of Temperature Control on Total Execution Time

In this section, we focus on analyzing whether improvement in M is significant enough to

overcome the slow down associated with temperature control. To this end, we combine the

checkpointing technique for fault tolerance [41] with temperature control, to formulate the

resulting execution time. This formulation will allow us to investigate the relative impact of

different parameters of our framework and enable us to project the results to exascale.

Checkpoint-restart mechanism saves the current state of an application for later restart.

Checkpoint time (δ), is the time to dump application state to local storage and checkpoint

period (τ) is the frequency of checkpointing. In a fault-prone environment, if the system

checkpoints too often, then time may be wasted unnecessarily in dumping the checkpoints.

In contrast, a low checkpoint frequency will mean a high amount of work lost in a failure

and hence large recovery time. Therefore, a balance must be found. Earlier work [52, 53]

proposes well-known models to determine the optimum checkpoint period for a particular

combination of system and application.

We leverage DVFS, to incorporate temperature control and its corresponding slowdown,

40



to extend a popular checkpoint/ restart model [52]. Our model assumes that failure arrival

is exponentially distributed and failures are independent of each other. The exponential

distribution was assumed to undertake experiments and our work is equally applicable to

other fault distributions. We use a collection of parameters to represent different factors that

affect performance of a resilient framework. Table 3.1 lists the parameters of our performance

model along with a short description of each.

Parameter Description

W Time to completion in a fault-free scenario
M MTBF of the system
T Total execution time
δ Checkpoint time
τ Optimum checkpoint period
R Restart time
µ Temperature control slowdown

Table 3.1: Parameters of the performance model

With the above parameters, we obtain the total execution time of an application as follows:

T = TSolve + TCheckpoint + TRecover + TRestart (3.4)

where TSolve is the time to complete program execution in a fault-free scenario, TCheckpoint

is the total checkpointing time during the entire program execution, TRecover is the time to

recover lost work for all faults occur during execution, and TRestart is the time necessary to

detect the failures and to have the entire system ready to resume execution.

The detailed formulation for total execution time (T ) of a program under temperature

restraint becomes:

T = Wµ+

(
Wµ

τ
− 1

)
δ +

T

M

(
τ + δ

2

)
+
T

M
R (3.5)

µ is the ratio between an application’s total execution time in a fault-free scenario with

and without temperature restraint. In other words, the parameter µ represents the cost of

temperature restraint that includes load balancing decision time as well as object migration.

In Equation 3.5,
(
Wµ
τ
− 1
)

represents the number of checkpoints, T
M

is the number of faults

expected to occur during execution, and
(
τ+δ
2

)
is the average recovery time per fault.
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3.3 Approach

In this section, we propose a novel approach, based on task migration and temperature

control, to control the estimated reliability of HPC machines (within a range). While doing

so, our approach simultaneously minimizes total execution time including the overheads

of fault tolerance, i.e., checkpointing, recovery and restart. Our scheme should work well

with any parallel programming framework allowing task migration. We start by giving an

overview of the system model, followed by details of how to use DVFS and task migration to

restrain processor temperature efficiently. We then discuss the checkpoint/restart mechanism

and conclude by giving an overview of how to combine temperature control, load balancing

and checkpoint/restart.

3.3.1 System Model

We conceive the underlying machine as a set of processors connected through a network that

does not guarantee in-order delivery. Each processor is able to run an arbitrary number of

tasks. The collection of all tasks running on the processors compose the parallel application.

Each task will hold a portion of the data and perform its part of computation. The only

mechanism to exchange information in the task set is via message passing.

Tasks are migratable: each task can serialize its state and be moved to a different processor.

A smart runtime system is responsible for monitoring the underlying machine and balancing

the load of different processors to achieve better performance. The runtime system uses

synchronization points in the application to trigger load balancing and checkpoint/restart

frameworks. The runtime system also monitors the temperature in each processor and can

change the frequency at which processors operate.

3.3.2 Temperature Control and Communication-Aware Load Balancer

We now describe our temperature control mechanism along with communication aware load

balancing to mitigate the cost of temperature restraint. The idea is to let each processor

work at the maximum possible frequency as long as it is below a user-defined maximum

temperature threshold. Since machines of today do not allow DVFS on a per-core basis, we

use the average temperature for all on-chip cores to decide whether or not to change the

frequency. A key parameter for us is the lower temperature threshold after which we can

increase the frequency of the chip. If this lower threshold is close to the maximum threshold,
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Variable Description

n number of tasks in the application
p number of processors
Tmax maximum temperature allowed
Tmin minimum temperature allowed
k current load balancing step
taskT imeki execution time of task i during

step k (in ms)
procT imeki time spent by processor i executing

tasks during step k (in ms)
fki frequency of processor i during step k (in Hz)
mk

i processor number assigned to task i
during step k

taskT ickski number of clock ticks taken by ith task
during step k

procT ickski number of clock ticks taken by ith processor
during step k

tki average temperature of chip i at start of
step k (in ◦C)

overHeap heap of overloaded processors
underSet set of underloaded processors

Table 3.2: Description for variables used in Algorithm 2 and Algorithm 3

it can cause frequency thrashing and lead to expensive object migrations done to achieve load

balance.

The pseudocode for our temperature restraint strategy is given in Algorithm 2 with a

description of variables in Table 3.2. We start with all processors checking their temperature

against the user defined maximum threshold. If the temperature (tki ) exceeds the maximum

threshold, the frequency for that chip (Ci) is decreased by one level (P-state). In contrast,

if the temperature is less than Tmin, the operating frequency for that chip is increased by

one level.

Once the frequencies have been changed, the system might become load imbalanced where

some processors (with lowered frequency) are now overloaded. We leverage task migratability

to correct the load imbalance and transfer objects from the slower-hot processors to the

faster-cool processors. This load balancing strategy is an extension of our previous work

(Chapter 2) which did not account for communication costs in its load balancing decisions.

Algorithm 3 shows the pseudocode for our communication-aware load balancer. We start

by estimating the total ticks required for each task during the last load balancing period

as a product of each task’s execution time and the frequency at which its host processor

was operating (line 3). To fix load imbalance, we calculate the amount of work assigned

to each processor (procT icks) during the recent load balancing period in terms of ticks
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(line 7). While calculating procT icks, we also calculate the sum of frequencies (sumFreqs

at line 8) at which all processors should operate in the coming load balance period. We use

sumFreqs to categorize a processor as heavy or light for the upcoming load balance period

in the function createOverHeapAndUnderSet. This function takes the procT icks for all

processors and uses the isHeavy and isLight methods (line 26-line 31) to determine if a

processor is overloaded or underloaded based on a tolerance number. It uses the isHeavy

method to create a maximum heap for all overloaded processors whereas the underloaded

processors are determined by using isLight method and are kept in a set.

After identifying overloaded and underloaded processors, we transfer tasks from the former

to the latter until no overloaded processors are left in the maximum heap (line 11-line 24).

For migration cost minimization, we assume that the initial task-to-processor mapping (m

vector) is the best and strive to restore it when trying to transfer tasks. To track the

initial mapping, we introduce the notion of a foreign task. A task is said to be foreign

if it currently resides on a processor other than the one to which it was initially mapped.

We then pop the most overloaded processor from the maximum heap (line 12) and check

if it has any foreign tasks (line 13). If so, we randomly select one foreign task (line 14),

otherwise we randomly select one regular task (line 16). Once the bestTask is determined, we

look for the best possible processor to whom we could transfer the bestTask. The function

getBestProcList (line 33-line 39) takes the bestTask, iterates over all underloaded processors

and calculates the amount of communication that occurs between the bestTask and each of

the underloaded processors i. The function getCommForTask on line 35 takes the bestTask

along with an underloaded processor i and returns the amount of communication that occurs

between them in kilobytes. Using the candidate processors from sortedProcsList (line 18),

the method getBestProc selects the processor (bestProc) that communicates the most with

bestTask and would not be overloaded after receiving bestTask. To trigger the actual

transfer, the mapping (mk
bestTask) is updated along with the procT icks variables for both the

donor and the bestProc (receiver) at line 20-22. Now that the bestTask has been decided

for migration from donor to bestProc, we update the loads of overHeap and underSet to

reflect this migration (line 23) and continue the loop from line 11.
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Algorithm 2: Temperature Control

1: On every processor i at start of step k

2: if tki > Tmax then

3: decreaseOneLevel(Ci) . increase P-state

4: else if tki < Tmin then

5: increaseOneLevel(Ci) . decrease P-state

6: end if

3.3.3 Checkpoint/Restart

Rollback-recovery techniques are highly popular in large-scale systems to provide fault toler-

ance. Among those techniques, checkpoint/restart is the preferred mechanism in HPC. The

fundamental principle behind checkpoint/restart is to save the state of the system periodi-

cally and to rollback to the latest checkpoint in case of a failure. Several libraries implement

one of the many variants of checkpoint/restart [41,47,54,55].

Our fault tolerance scheme is called double local-storage checkpoint/restart [41]. Local-

storage refers to any storage device local to the processor (main memory, solid-state drive,

local hard disk). Additionally, every processor stores a checkpoint copy in two places. One

checkpoint copy is saved in the local storage of the processor and another copy in the local

storage of a checkpoint buddy. In case of a failure, all processors rollback to the previous

checkpoint. The affected processor receives the checkpoint from its buddy. The rest of the

processors pull the checkpoint from their own local storage.

Checkpointing is performed in coordination such that all participating processors store

their checkpoint at a synchronization point determined by the programmer. Once the check-

point call is made, every processor collects the state of all tasks residing on it and proceeds

to store its two copies of the checkpoint. The runtime system provides a simple interface for

each task to dump its state.

We assume the underlying system runs a failure detection mechanism with a processor

being considered as the failure unit. Indeed, our checkpoint/restart is resilient to single-

processor failures. Multiple-processor failures may be tolerated, without any guarantees for

the general case. We follow the fail-stop model for processor failures. This means, after a

processor crashes, it becomes unavailable and does not come back again. Such processor is

replaced by a spare processor taken from a pool of available processors.
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Algorithm 3: Communication Aware Load Balancing

1: On Master processor
2: for i ∈ [1, n] do
3: taskT icksk−1i = taskT imek−1i × fk−1

mk−1
i

4: totalT icks += taskT icksk−1i

5: end for
6: for i ∈ [1, p] do
7: procT icksk−1i = procT imek−1i × fk−1i

8: freqSum += fki
9: end for

10: createOverHeapAndUnderSet()
11: while overHeap NOT NULL do
12: donor = deleteMaxHeap(overHeap)
13: if numForeignObjs(donor) > 0 then
14: bestTask = getForeignTask(donor)
15: else
16: bestTask = getRandomTask(donor)
17: end if
18: sortedProcsList = getBestProcsList(bestTask)
19: bestProc = getBestProc(sortedProcsList)
20: mk

bestTask = bestProc
21: procT icksk−1donor− = taskT icksk−1bestTask

22: procT icksk−1bestProc+ = taskT icksk−1bestTask

23: updateHeapAndSet()
24: end while
25:

26: procedure isHeavy(i)
27: return procT icksk−1i > (1 + tolerance) ∗ totalT icks
28: ∗(fki /freqSum)
29:

30: procedure isLight(i)
31: return procT icksk−1i < totalT icks ∗ fki /freqSum
32:

33: procedure getBestProcList(bestTask)
34: for i ∈ underSet do
35: bestProcs[i].comm = getCommForTask(i,bestTask)
36: bestProcs[i].procId = i
37: end for
38: return bestProcs
39:
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Figure 3.3: Dynamic power management and resilience framework.

3.3.4 Framework

In this section, we explain how we provide controllable resilience for HPC systems by bringing

together all three modules of our approach, i.e., temperature control (TC), communication

aware load balancing (LB) and checkpoint-restart. Figure 3.3 shows our framework with a

system of two processors (X and Y ) running a total of five tasks (from A to E) that are

executed in each iteration of a parallel program. The initial distribution of tasks places tasks

A and B on processor X while tasks C, D, and E are mapped to processor Y .

As Figure 3.3 shows, the program performs temperature control and load balancing (TC &

LB) several times during a checkpointing period, i.e., between two adjacent checkpoints. The

runtime system routinely adjusts the frequency of processors and solves the load imbalance

that may appear. This temperature-capping process decreases the failure rate. However, if

a failure occurs, the checkpoint/restart mechanism provides fault tolerance. The program

performs several iterations until the TC & LB modules are called after iteration i. The

TC module detects processor Y running at a temperature higher than the max threshold

and reduces its frequency. Following this, the LB module takes control and removes the

load imbalance by migrating task D from Y to X as outlined in Algorithm 3. The system

checkpoints after iteration i+ 1 and continues execution. A failure takes down processor X

during iteration i + 2, which gets replaced by a spare processor that we call processor X ′.

The checkpoint buddy of processor X provides checkpoint data for X to the replacement

processor X ′ to resume execution until the program finishes.

3.4 Experiments

In this section, we provide a comprehensive experimental evaluation of our techniques using

three different applications. The first one is Jacobi2D : a canonical benchmark that iteratively

applies a five-point stencil over a 2D grid of points. The second application, Wave2D, uses

a finite difference scheme over a 2D discretized grid to calculate the pressure resulting from
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an initial set of perturbations. The third application, Lulesh, is a shock hydrodynamics

application that was defined and implemented by Lawrence Livermore National Laboratory

(LLNL) [56]. More details about these applications can be found in Appendix B.

The rest of this section describes our implementation, testbed and experimental results.

All experimental results are based on real hardware, and this section does not present any

simulation results.

3.4.1 Implementation Using Charm++

Charm++ is a parallel programming runtime system that leverages processor virtualization.

It provides a methodology where the programmer divides the program into smaller chunks

(objects or tasks) that are distributed among the p available processors by Charm++’s

adaptive runtime system [45]. Each of these small chunks is a migratable C++ object that

can reside on any processor. The runtime system tracks task execution time and maintains

this log in a database to be used by a load balancer for quantifying the amount of work in

each task [30].

Based on this information, if the load balancer in the runtime system detects load im-

balance, it migrates objects from an overloaded processor to an underloaded one. At small

scales, the cost of the entire load balancing process, from instrumentation through migration,

is generally a small portion of the total execution time, and less than the improvement that

it provides in execution time. When load balancing costs are significant, a strategy must

be chosen or adapted to match the application’s needs [31]. Our communication-aware load

balancer can be adapted to existing hierarchical schemes, which have been shown to scale

to the largest machines available [32]. More details about Charm++ load balancing can be

found in Chapter 2.

Charm++ implements a coordinated checkpointing strategy in which all processors coor-

dinate their checkpoints to form a consistent global state. Global state includes application-

specific data representing all object data as well as the runtime system state that constitutes

virtual processor data. Each physical processor keeps a copy of the runtime system state

with an arbitrary number of objects and their states. The Charm++ runtime keeps an

image of each object on two processors. The first copy resides on the processor which hosts

the object whereas the other copy is kept on the buddy processor. During checkpointing

each processor performs two concurrent steps: 1) packs its system state and sends it to its

buddy, 2) packs the user data representing all objects it hosts and sends it to its buddy. In

case of a crash, the recovery process is triggered in which all processors rollback to the most
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Parameter Lulesh Jacobi2D Wave2D

δ (s) 9.57 7.65 8.01
Tavg(

◦ C) 55.31 53.42 55.56
M (s) 40.31 44.40 39.02
τ(s) 18.2 18.4 17.0
R (s) 2.2 1.52 1.60
Recovery(%) 33.31 29.05 31.19
Checkpointing(%) 21.40 20.11 20.89
Restart(%) 5.38 3.48 4.03

Table 3.3: Application parameters for NC case

recent checkpoint. The crashing processor is either replaced by a new processor or its ob-

jects are distributed among existing processors. The object data for the crashing processor

is recovered from its buddy.

3.4.2 Testbed and Experimental Settings

We evaluated our scheme on the Energy Cluster described in Appendix A. This cluster uses

a Liebert power distribution unit installed on the rack containing the cluster to measure the

machine power at 1 second intervals on a per-node basis. We gather these readings for each

experiment and integrate them over the execution time to obtain the total machine energy

consumption.

In Section 3.2.1, we estimated the MTBF for our cluster (M) to be in the range of 24 - 55

days. To carry out experiments representative of a much larger system, we scale our cluster

M proportionally. We chose anm of 1 hour at 40◦ C per socket. For a system of 690K sockets,

these settings emulate an m of 10 years per socket. After demonstrating the accuracy of

our model by showing that it closely matches experimental results, we make predictions for

larger machines. The three applications that we considered exhibited different temperature

profiles. Therefore, to make our experiments realistic, we used actual temperature values

to estimate M for each application for experiments without temperature restraint. More

precisely, we estimate M using the maximum temperature that each of the 32 nodes reaches

for each application. Table 3.3 shows the cluster-wide average max temperatures for each

application in case of no temperature restraint. We refer to this baseline case as NC for the

rest of the chapter. For experiments where we restrain temperatures, we use the maximum

temperature threshold to estimate M . The values of M corresponding to each temperature

threshold are shown in Table 3.4. After determining M for each temperature threshold,

we generate sequences of exponential random numbers for each experiment, by taking each
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Figure 3.4: Reduction in execution time for different temperature thresholds

M as the distribution mean. We manually insert faults according to these random number

sequences for each experiment, by killing a process on any one of the nodes using the kill

-9 command to wipe off all data. To recover from the artificially inserted failures, we

calculate the optimum checkpoint period (τ) for each experiment as follows [52]:

τ =
√

2δM − δ (3.6)

Given that τ depends on M and the checkpoint time (δ), we obtain a different optimum

checkpoint period for each application when running at a given temperature threshold. The

δ for each application is listed in Table 3.3.
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Tmax 54 52 50 48 46 44 42

M 43.8 50.4 57.8 66.4 76.2 87.5 100.2

Table 3.4: MTBF (sec) for different temperature thresholds (42◦ C - 54◦ C)

3.4.3 Experimental Results

To establish and to quantify the benefits of our scheme and to validate the accuracy of our

model (outlined in Section 5.4), we carried out a number of experiments. We demonstrate

how we can improve reliability using temperature control and compare the execution time for

experiments with and without temperature control. All experiments reported in this section

are compared to the baseline experiments (represented by NC) where all processors always

operate at the max frequency without any temperature control. Since the load balancing

technique is not the main focus of this chapter, we would not be giving a detailed comparison

of the improved load balancer proposed in Section 3.3 and the one proposed in Chapter 2.

However, our proposed new strategy does improve execution time for all three applications.

For Tmax =49◦ C, the communication-aware load-balancer can reduce execution time by

14%, 18%, and 5% for Wave2D, Lulesh and Jacobi2D, respectively, compared to the load-

balancer proposed in our earlier work [46]. Each data point (experiment) reported in this

section represents a benchmark running for more than 1 hour and being subject to at least

40 faults.

Table 3.3 lists the average maximum temperature for each application. Both Lulesh and

Wave2D have an average maximum temperature that is 2◦ C higher than that for Jacobi2D.

Due to this difference in temperature profile, we ran Jacobi2D for a maximum temperature

threshold range of 42◦ C-52◦ C as opposed to 44◦ C-54◦ C used for Lulesh and Wave2D. This

difference in thermal profile is also responsible for making different applications operate at

different average frequencies. For example, when running below a temperature threshold of

46◦ C, the average frequencies across the cluster for Lulesh, Jacobi2D and Wave2D, were

2.30 Ghz, 2.31GHz and 2.27 GHz, respectively. Although our testbed has a maximum

Turbo Boost frequency of 2.8Ghz, using DVFS to restrain temperatures resulted in lower

average frequency for all applications. A detailed discussion about the interaction between

temperature, frequency and performance can be found in Chapter 2.

Figure 3.4 shows percentage reduction in execution time using both temperature restraint

and load balancing compared to the baseline experiments, i.e., NC. The two curves in

each plot compare experimental results with model predictions. The model predictions for

Figure 3.4 were gathered by feeding checkpoint time, slowdown, restart time and useful

work time to Equation 3.5 and using golden section search and parabolic interpolation to
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optimize τ for minimum total execution time. The inverted U shape of all three curves

strongly suggests a tradeoff between reliability (M) and the DVFS induced slowdown (µ)

due to temperature restraint. Figure 3.4 also shows the ratio of M for the machine using our

scheme relative to the NC case. For example, by restraining temperatures to 42◦ C in case

of Jacobi2D, M for the machine increased 2.3 times compared to the case of NC. Hence,

restraining the temperature to a lower value may decrease the benefits of our scheme but it

would always improve estimated reliability of the machine.

3.4.4 Interplay Between Temperature, MTBF and Checkpointing
Overheads

MTBF for a machine (M) is dependent on each processor’s temperature. Higher processor

temperatures for Lulesh and Wave2D imply a lower M than Jacobi2D (Table 3.3). This

forces Wave2D and Lulesh to spend a higher percentage of time in recovery as they en-

counter more failures compared to Jacobi2D (Table 3.3). Although M for Wave2D and

Lulesh are close in the case of NC, they spend different percentages of time in recovery,

i.e., 31.19% and 33.31% respectively. This observation can be explained by looking at their

τ values (Table 3.3). According to Equation 3.6, a larger checkpoint time (δ in Table 3.3)

for Lulesh results in a larger τ which increases the average recovery time for Lulesh ( τ+δ
2

in Equation 3.5). On the other hand, Lulesh’s higher τ causes it to spend almost an equal

percentage of time in checkpointing as Jacobi2D and Wave2D , i.e., 21.40% (Table 3.3),

despite Lulesh’s large δ. Although the time per checkpoint (δ) for Lulesh is the highest,

the product of the number of checkpoints and δ is equal to other applications due to fewer

checkpoints
(
Wµ
τ
− 1
)

for Lulesh. Lulesh also spends 5.38% of its total time in restarts,

which can be attributed to the higher restart cost of 2.2 seconds (Table 3.3).

3.4.5 Comparing the Benefits Across Applications

Although all three applications have a inverted U shaped curve, their maxima occur at differ-

ent temperature thresholds. We define this optimum point for each application by the tuple

(Tmax, rmax), where Tmax is the temperature threshold corresponding to the point that rep-

resents the maximum reduction in execution time for an application. Figure 3.4 shows that

the optimum points for Jacobi2D, Wave2D, and Lulesh are (46◦ C,14.2%), (48◦ C,13.5%),

and (50◦ C,11%) respectively. We notice that the applications differ in both members of the

tuple. An application’s optimum point depends on the tradeoff between percentage reduc-
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Figure 3.5: Execution time penalty for DVFS

tion in each category of total time (recovery, checkpoint and restarting times), which is a

result of improvement in M , and its associated cost. This slowdown, including overhead

of object migration during load balancing, is shown in Figure 3.5. The slowdown for each

application increases as the temperature threshold decreases. As the temperature threshold

decreases, the frequency at which a processor could operate also decreases. The reduced

frequency in turn implies a higher slowdown. The slowdown is worse in case of CPU inten-

sive applications. Figure 3.5 points to a similar trend. Lulesh is the most CPU intensive

application whereas Jacobi2D has the highest memory foot print. Hence, the slowdown for

Lulesh is higher than Jacobi2D for all temperature thresholds. In general, we should expect

applications having high memory footprint to have smaller slowdown and hence, higher ben-

efits for using our scheme. Figure 3.4 shows that Jacobi2D has the most gain, i.e., 14.2%

using our scheme, whereas the gain for Lulesh is 11%. These gains validate our claim: lower

the slowdown, higher the gain for using our scheme.

Another observation that we can make is that the temperature threshold and the cost of

temperature control µ are directly related. Figure 3.5 shows that Lulesh had the maximum

slowdown leading to a larger optimum temperature threshold (50◦ C) and therefore it receives

the least reduction in execution time (11%) among all three applications. On the other

hand, Jacobi2D, experiences the least slowdown, which results in the highest reduction in

execution time, i.e., 14.2%, and the lowest optimum temperature threshold. The slowdown

for Wave2D lies in between Lulesh and Jacobi2D, which results in a reduction in execution

time that is between 11%-14.2%, i.e., 13.5%.

53



44 46 48 50 52
0

2

4

6

8

10

12

14

16

18

20

Maximum temperature threshold (C)

R
e
d
u
ct

io
n
/ 
In

cr
e
a
se

 in
 e

a
ch

 c
a
te

g
o
ry

 o
f 
tim

e
 (

%
)

 

 
Recovery Checkpoint Restart Cost

L J L J 
44 

Maximum temperature threshold (°C) 

L J L J 
46 

L J L J 
48 

L J L J 
50 

L J L J 
52 

L- Lulesh 
J - Jacobi2D 

Figure 3.6: Gains/cost of increasing reliability for different temperature thresholds

3.4.6 Understanding Application Response to Temperature Restraint

All applications that we considered respond differently to temperature restraints which is

why each one has a different optimum point. For more insights, we compare and contrast

how Jacobi2D and Lulesh respond to temperature control in Figure 3.6. Here, we plot

the percentage of time reduced for each category of execution time (including recovery,

checkpoint, and restart times), as a percentage of total time taken in case of NC.

We used the following formula to determine the recovery percentage (preci ) corresponding

to the maximum temperature threshold of i◦ C for Figure 3.6:

preci =
trecNC − treci
TNC

∗ 100 (3.7)

where TNC is the total execution time in case of NC, trecNC is the recovery time for NC and treci

is the recovery time for the experiment where the maximum threshold was i◦ C. Figure 3.6

also shows the cost of temperature control for Lulesh and Jacobi2D which represents DVFS-

incurred slowdown in doing useful work (Wµ in Equation 3.5). This cost pcosti as well as the

percentage reduction in checkpoint pckpti and restart times presi are calculated similar to preci

in Equation 3.7. We make two observations from Figure 3.6.

First, we look at the total gain (sum of recovery, checkpointing and restart gains). While

the total gains are always greater for Lulesh compared to Jacobi2D (except for 44◦ C ), its

cost of temperature control is always significantly lesser than that for Lulesh. Hence, the
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net gain (total gains - cost) for Jacobi2D makes it much more appropriate for our scheme

compared to Lulesh.

Next, we observe that prec48 , prec50 and prec52 are higher for Lulesh compared to Jacobi2D

whereas for lower thresholds, prec44 and prec46 are lower for Lulesh. Recall from Figure 3.4 that

Lulesh improves reliability of the system more than Jacobi2D, i.e., (1.86X, 2.14X) compared

to (1.74X, 2.00X) for thresholds of 46◦ C and 44◦ C, respectively. Even then, the high timing

penalty for Lulesh depicted in Figure 3.6 is limiting the gains from increased reliability. The

timing penalty not only contributes directly as cost of improving reliability by prolonging

useful work, it also indirectly affects the benefits of our scheme by limiting the gains that

we obtain in recovery. So if a timing penalty of µ gets added to the total execution time,

then the faults, checkpoints and restart that happen during µ essentially work to cancel out

some of the gains achieved by temperature restraint during the earlier part of execution.

The timing penalty is precisely what shrinks the gain bars in Figure 3.6. However, even

with the higher timing penalty of Lulesh, its gains are sufficient to reduce execution time as

compared to the case of NC.

3.4.7 Reduction in Energy Consumption

After highlighting how our scheme successfully reduces execution time and increases M ,

we now analyze the reduction in machine energy consumption that happens as a direct

consequence of our scheme. Figure 3.7 shows the percentage reduction in machine energy

consumption for each application compared to the baseline case (NC). These numbers

represent actual machine energy consumption for experiments measured using power meters.

The figure shows that we were able to reduce machine energy consumption by as much as

25% in case of Jacobi2D by restraining processor temperatures at 42◦ C. Although the

reduction in execution time contributes to reduction in energy consumption, the major part

of savings comes from temperature control which reduces the machine’s power consumption.

In addition to the reported reduction in machine energy, our scheme should also reduce the

cooling energy significantly (Chapter 2).

3.5 Projections

In Section 3.4, we thoroughly investigated our approach and validated our model by carefully

comparing it against experimental results. Now, we use the validated model to project the

benefits of our scheme for larger machines. We estimate improvement in machine efficiency
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Figure 3.7: Reduction in machine energy consumption for all applications

for larger number of sockets and also analyze the benefits of our scheme while increasing

memory size of an exascale machine.

3.5.1 Benefits for Increasing Number of Sockets

Figure 3.8 shows the reduction in execution time that we achieve for all three applications

compared to the case of NC. For this plot, we use an m of 10 years per socket with a restart

time of 30 secs. We show all three applications using their optimum temperature thresholds

(Tmax) from Section 3.4.5. Moreover, to highlight how Tmax influences the reduction in

execution time, we plot Jacobi2D for Tmax= 42◦ C as well. We assume checkpoint time to

be 240 secs [11]. The dashed black line in Figure 3.8 shows 0% reduction in execution time.

The points below this signify an overhead of our scheme whereas the ones above this line

represent reduction in total execution time using our scheme. The numbers in the legend

of Figure 3.8 represent the times improvement in M for each application. Even though we

can see an execution time penalty of 15% for 1K sockets in case of Jacobi2D with a Tmax

of 42◦ C, it increases the reliability of the machine by a factor of 2.29X. The same Jacobi2D

runs with lesser penalty at Tmax of 46◦ C for 1K sockets but its reliability decreases to 1.74X.

For a smaller number of sockets(less than 32K), running Jacobi2D with a Tmax of 42◦ C

incurs a cost that is much higher than the gain. However, beyond the crossover point (32K),

the cost is justified as the gain becomes significantly higher. Hence, the optimum Tmax can

be different for different applications at various scales, e.g., at 230K sockets, Jacobi2D with

56



1K 2K 4K 8K 16K 32K 64K 128K 256K
−20

−10

0

10

20

30

40

Number of sockets

R
e

d
u

c
ti
o

n
 i
n

 e
x
e

c
u

ti
o

n
 t

im
e

 (
%

)

 

 

Jacobi2D (46 °C)−1.74X

Wave2D (48 °C)−1.73X

Lulesh (50 °C)−1.48X

Jacobi2D (42 °C)−2.29X

Figure 3.8: Execution time reduction for all applications at large scale

a Tmax of 42◦ C reduces the execution time by 38% compared to 32% if run at Tmax of 46◦ C.

Efficiency can be defined as the fraction of the total execution time, including the fault

tolerance overheads, that is spent in doing useful work. A decrease in total execution time

can be thought of as an improvement in machine efficiency. Figure 3.9 plots the machine

efficiency for Wave2D at Tmax = 48◦ C using the same parameters as Figure 3.8. Even

though we account for DVFS incurred slowdown in our efficiency calculation, our scheme

still improves machine efficiency significantly for larger socket counts. The numbers shown

in Figure 3.9 represent the ratio of efficiency for our scheme relative to the case of NC.

For less than 32K sockets, we get a lower efficiency compared to the case of NC (efficiency

< 1X). However, after 32K sockets, our scheme starts outperforming the NC case (> 1

efficiency values). For 340K sockets, our scheme is projected to operate the machine with

an efficiency of 0.22 (95% reduction in execution time) compared to 0.01 for the NC case.

Finally, for 350K sockets, the efficiency for NC case drops to 0.003 making the machine

almost non-operational using only checkpoint/restart, whereas our scheme can still operate

the machine at an efficiency of 0.20.

3.5.2 Sensitivity to Memory-per-socket and MTBF

The checkpoint time of 240 sec predicted in Kogge’s report [11] is made under the assump-

tion that an exascale machine will have 224K sockets with 64GB of memory per socket.

Adding more memory to the proposed machine increases the number of components that
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can significantly decrease the reliability. With the proposed memory size (13.6 PB), the

machine will have a flop-memory ratio of 0.01 Petaflops/TB which is far smaller than 96

Petaflops/TB and 134 Petaflops/TB for Sequoia and the K computer [13] respectively. To

evaluate if our scheme can enable an exascale system to have more memory, we predicted the

improvement in M as well as the reduction in execution time that our scheme can achieve

compared to the case of NC as we keep on increasing memory per socket. Adding memory

implies more data to checkpoint. We use the same methodology used in Kogge’s report [11]

to calculate the checkpoint time as we keep on increasing memory per socket. Figure 3.10

shows the results from our model for Jacobi2D projected on an exascale machine. MTBF

per socket can have a significant effect on the total execution time of an application. The

MTBF of LANL’s clusters is 10 years per socket [57] whereas Jaguar had a 50 years MTBF

per socket [58]. Other studies show MTBF per socket to be between 20-30 years [59, 60].

For capturing the sensitivity of our scheme to MTBF, we plotted lines corresponding to 5

different MTBF per socket ranging from 10-50 years. Figure 3.10 shows that our scheme

will decrease the execution time for any memory size per socket using any of the five MTBF

values. Even the two memory sizes used in Kogge’s report [11], i.e., 16GB and 64GB, will

end up benefitting from our scheme.
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CHAPTER 4
Optimizing Performance Under a Power

Budget

The first part of the thesis emphasized the importance of thermal restraint for an HPC

data center. Chapter 2 presented empirical results showing significant reductions in energy

consumption of a 128-core cluster. Chapter 3 combined checkpointing and thermal restraint

to improve application performance. In the next two chapters, we aim to deal with another

important challenge that the HPC community faces: improving application performance

under a strict power constraint.

Applications do not yield a proportional improvement in performance as the processor

frequency is increased [61]. This insensitivity is mainly because memory accesses are much

slower compared to processor frequency. Memory accesses therefore introduce stalls in pro-

cessor cycles. The extent of improvement in application performance resulting from increased

processor frequency depends on the application’s computational and memory demands. As

we approach the exascale era, the thrust is more on power consumption than on energy

minimization. A strict power constraint poses a hard research challenge. DOE has currently

set a bound of 20MW for an exascale system, therefore available power must be used effi-

ciently to achieve the exascale goal. Scaling frequency via DVFS does not guarantee a strict

limit on the power consumption of a processor. However, the recently released Intel’s Sandy

Bridge family of processors provide an enticing option of limiting the power consumption

of a processor chip and memory (also available in IBM Power6 [62], Power7 [63] and AMD

Bulldozer [64] architectures). The power consumption for package and memory subsystems

can be user-controlled through the RAPL (Running Average Power Limit) library [65].

In this part of the thesis (Chapter 4 and Chapter 5), we use Intel’s power gov [66] library

that in turn uses RAPL to cap power of memory and package subsystems in order to optimize
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application performance under a strict power budget for an overprovisioned system. An

overprovisioned system [14] has more nodes than a conventional system operating under

the same power budget. It cannot simultaneously power all nodes at peak power. However,

capping package (CPU) and memory power below peak power can enable an overprovisioned

system to operate all nodes simultaneously. Under a strict power budget, running the

application on fewer nodes with a higher CPU/memory power per-node can sometimes be

less efficient than running it on more nodes with relatively lower power per node. Capping

the CPU and memory power to lower values enables us to utilize more nodes for executing

an application. However, each additional node utilized has a fixed cost of powering up the

motherboard, power supply, fans and disks referred to as the base power. The base power of

a node determines the ease with which additional nodes can be utilized in an overprovisioned

system. The opportunity cost of base power for these additional nodes is the performance

benefit that can be achieved by increasing the CPU and memory power for the existing set

of nodes. This opportunity cost can vary between applications.

The work presented in this chapter optimizes the number of nodes and the subsequent

distribution of power between CPU and memory for an application under a strict power

budget. The major contributions of this chapter are listed below:

• We propose an interpolation scheme that captures the effects of strong scaling an

application under different CPU and memory power distributions with minimal profile

information.

• We present experimental results showing speedups of up to 2.2X using an overprovi-

sioned system compared to the case where CPU and memory powers are not capped.

• We show the optimized CPU and memory power distributions for different applications

and examine the factors that influence them.

• We analyze the effect and importance of base power on achievable speedup for an

overprovisioned system.

The rest of the chapter is organized as follows. Section 4.1 describes related work. In

Section 4.2, we outline our interpolation scheme. Section 4.3 details our experimental setup.

Section 4.4 presents a case study that demonstrates the working details of our scheme. In

Section 4.5 we present our experimental results.
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4.1 Related Work

To the best of our knowledge, this chapter provides the first study that estimates and

analyzes the optimized distribution of power among the CPU and the memory subsystem,

in the context of an overprovisioned system under a strict power budget. Rountree et al [65]

have studied the variation in application performance under varying power bounds using

RAPL. In continuation of this work, Patki et al [14] proposed the idea of overprovisioning

the compute nodes in power-constrained high performance computing. Their work relies

on selecting the best configuration out of a set of profiled configurations. Because of the

sheer number of possible configurations, exhaustively profiling an application for all possible

node counts, CPU power caps and memory power caps is practically infeasible. Our work

introduces a novel interpolation scheme, that takes into account the effects of strong scaling

an application under different CPU and memory power caps and estimates the missing

configurations. Our work also differs from prior work [14] since we take into account the

effect of memory capping that can significantly improve the speedups for most applications.

Another novel aspect is that our scheme is based on total machine power which includes

base power, i.e., power consumption of everything other than the CPU and the memory

subsystem, that can significantly alter the observed speedups across applications.

The idea of overprovisioning has been studied and implemented in the architecture com-

munity in a similar context [67] e.g. Intel’s Nehalem has overprovisioned cores. The CPU

can either run all of these cores at lower clock frequencies or a few of them at highest clock

frequencies due to power and thermal bounds. Additionally, earlier work has mostly focussed

on reducing energy consumption under a time bound for HPC applications. Rountree et al [2]

have used linear programming to reduce energy consumption with negligible execution time

penalty. In our earlier work, we have used DVFS to trade execution time for lower cooling

and machine energy consumptions [33,46].

4.2 Approach

Power consumption of different applications varies significantly. Moreover, the usefulness

of increasing the power budget of an application also varies between applications [61]. We

formulate our problem statement as follows:

Optimize the numbers of nodes (n), the CPU power level (pc) and memory power level

(pm) that minimizes execution time (t) of an application under a strict power budget (P ),

on an overprovisioned high performance computation cluster with pb as the base power per
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Variable Description

W Watts
pb node base power (W)
pc CPU/Package power cap (W)
pm memory power cap (W)
Pc set of allowed CPU caps used
Pm set of allowed memory caps used
N set of number of nodes used
Pc set of CPU power caps used for profiling in Step 1
Pm set of memory power caps used for profiling in Step 1
N set of number of nodes used for profiling in Step 1
P maximum allowed power budget (W)
t execution time for an application (s)

Table 4.1: Terminology

node.

In this section, we outline our interpolation scheme that estimates execution time using

application profiles for different scales, CPU power levels and memory power levels. The ter-

minology used in the chapter is defined in Table 4.1. We denote an operating configuration by

(n×pc, pm) where n is the number of nodes and pc, pm are the CPU and memory power caps,

respectively. To determine the optimized configuration for running an application, we need

to profile the application for each configuration (n× pc, pm) where n ∈ N , pc ∈ Pc, pm ∈ Pm.

Such exhaustive profiling adds up to a total of |N | × |Pc| × |Pm| possible configurations,

assuming Pc and Pm have integral values only. Such exhaustive profiling of an application is

practically infeasible because of the sheer number of possible configurations. For example,

in a cluster with only 20 nodes, 71 CPU power levels and 28 memory power levels, we would

need to profile the application for 39, 760 possible configurations, which is practically infea-

sible. Therefore, we break the application performance analysis into two steps: performance

measurement by actual profiling (Step 1) followed by performance estimation using curve

fitting/ interpolation (Step 2).

Step 1: Performance measurement by actual profiling

We start application profiling by running it for a selected set of configurations that span the

entire range of available configurations. In other words, we only profile the application for a

subset of the total possible configurations, i.e., (n× pc, pm) where n ∈ N , pc ∈ Pc, pm ∈ Pm.
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Step 2: Performance prediction by curve fitting or interpolation

In this step, we use curve fitting on the profiled data obtained in Step 1 to estimate the

execution time for any possible configuration (n×pc, pm) where n ∈ N , pc ∈ Pc and pm ∈ Pm.

Behavior of execution time (t) with n, pc, and pm, can be represented in a 4D plot. However,

visualizing a 4D plot can be tedious. Hence, we present application profiles by plotting t

against the total power p in 2D, where p takes pc, pm, and n into account, using the following

equation:

p = n ∗ (pb + pc + pm) (4.1)

Presenting the profile in a 2D plot facilitates its visualization and makes it easier to determine

the optimized configuration. To estimate execution time for any configuration we need to

find the relationship of execution time to power consumption across the three dimensions,

i.e., n, pc, and pm. Beginning with the |N | × |Pc| × |Pm| actually profiled configurations in

Step 1, interpolation is accomplished in the following three steps:

1. Interpolation across memory power: For each pair of (n, pc) where n ∈ N , pc ∈ Pc, we

fit a curve φn,pc(x) across the profiled values of memory caps, i.e., pm ∈ Pm, where

x ∈ Pm. This process yields |N | × |Pc| such curves. A given curve, φn,pc , can be used

to obtain an estimate of t corresponding to any pm ∈ Pm using n nodes capped at CPU

power level of pc. Using the φn,pc curves, we can estimate the execution times for all

configurations (n× pc, pm) where n ∈ N , pc ∈ Pc, and pm ∈ Pm.

2. Interpolation across node counts: To capture the behavior of strong scaling, we fit a

curve ψpc,pm(x) across the profiled values of n, i.e., n ∈ N , where x ∈ N , for each

pair of (pc, pm) where pc ∈ Pc and pm ∈ Pm. This process results in |Pc| × |Pm| strong

scaling curves. A given strong scaling curve, ψpc,pm , can estimate t for any n ∈ N where

each node is operating under CPU and memory power caps of pc and pm respectively.

These strong scaling curves can be used to obtain values of t for all configurations

(n× pc, pm) where n ∈ N, pc ∈ Pc, and pm ∈ Pm.

3. Interpolation across CPU power: Finally, we interpolate t across CPU power. We fit

a curve θn,pm(x) across the profiled values of pc (pc ∈ Pc) where x ∈ Pc, for every

pair of (n, pm) such that n ∈ N and pm ∈ Pm. We retrieve |N | × |Pm| curves for

interpolating across pc. A given curve, θn,pm , estimates t for any pc ∈ Pc using n nodes

operating under a memory power cap of pm. These θn,pm curves can be used to estimate
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execution times for all possible configurations, i.e., (n× pc, pm), where n ∈ N , pc ∈ Pc
and pm ∈ Pm.

4.3 Setup

We used the Power Cluster to carry out all experiments for this chapter (see Appendix A).

The Intel Sandy Bridge processor family supports on board power measurement and capping

through the Running Average Power Limit (RAPL) interface [36]. The Sandy Bridge archi-

tecture has four power planes: Package (PKG), Power Plane 0 (PP0), Power Plane 1 (PP1)

and DRAM. RAPL is implemented using a series of Machine Specifics Registers (MSRs) that

can be accessed to read power readings for each power plane. RAPL supports power capping

PKG, PP0 and DRAM power planes by writing into the relevant MSRs. The average base

power per node (pb) for our cluster was 38 watts. The base power was measured using the

in-built power meters on the Power Distribution Unit (PDU) that powers our cluster. We

experimented with Lulesh, Wave2D and LeanMD to demonstrate the use of our scheme (see

Appendix B).

4.4 Case Study: Lulesh

In this section, we demonstrate the application of our scheme in estimating the optimized

configuration for an iterative application under a strict power budget by considering the

Lulesh application. The profiling experiments were conducted on the Power cluster outlined

in Appendix A. The following CPU and memory power caps were selected for profiling (Step

1 ):

Pc = {28, 32, 36, 44, 50, 55}

Pm = {8, 10, 14, 18}

Since determining the optimized number of nodes (n) is part of our scheme, we profile the

application for strong scaling as well:

N = {5, 8, 12, 16, 20}

Figure 4.1 shows Lulesh’s execution profile for some of these configurations. The Y-axis

corresponds to the average execution time per step, and the X-axis shows the total power
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Figure 4.1: Average time per step of Lulesh for configurations selected in Step 1

(p) of the system (calculated using Equation 4.1). Each set of configurations in Figure 4.1

contains 6 points corresponding to varying CPU power, i.e., pc ∈ {28, 32, 36, 44, 50, 55}.
The leftmost point for each set corresponds to pc = 28W, whereas the rightmost point uses

pc=55W. Based on the profile data, we can pick an efficient configuration for a given power

budget as follows: We draw a vertical line at the given power budget P and choose the

lowest point on or to the left of that vertical line. Following are three examples of finding

the optimized configurations for a given power budget (P ).

• P = 1200W: the best profiled configuration is (12× 44, 18).

• P = 1600W: the best profiled configuration is (20 × 32, 10). In this case, using more

nodes with each node capped at relatively lower CPU and memory power levels is

better compared to the P = 1200W case, in which fewer nodes are used at a higher

CPU and memory power levels.

• P = 800W: Since we do not have profile data close to the power budget of 800W,

we have to proceed leftwards to the (5 × 55, 18) configuration. This configuration

corresponds to a total power consumption of 555W. Hence, the available power is not

completely used which makes it an inferior solution.
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We now see how our interpolation scheme can improve the solution. We need to identify

the three sets of functions φn,pm , ψpc,pm , and θn,pc that interpolate across all three dimensions.

Figure 4.1 shows that the behavior of t across all three dimensions is the same. t is more

sensitive to each of n, pc, and pm at lower values of p as compared to larger values of total

power (p). For example, for n = 12 and pm = 18, t reduces faster for pc in the range 28W to

36W compared to the case when pc is in the range 44W to 55W. Similarly, for n = 12 and

pc = 55, t reduces faster when pm is in the range 8W to 10W compared to when pm is in the

range 10W to 18W. This pattern can be modeled by the use of two exponential terms. We

therefore express execution time (t) for each of these curves, φn,pc , ψpc,pm and θn,pm by:

t(p) =
a

eb∗p
+

c

ed∗p
(4.2)

where a, b, c, and d are constants and p is total power budget. As mentioned in Section 4.2,

while interpolating across each of the n, pc and pm dimensions, the other two dimensions

remain constant. Hence, p (Equation 4.1) only captures the change in power consumption for

the dimension being interpolated since the other terms in Equation 4.1 are constant. We use

Matlab’s curve fitting toolbox that uses linear and non linear regression to determine these

constants for each of the curves. Based on the characteristic mentioned above, Equation 4.2

can be thought of as having two parts: fl(p) and fh(p).

t(p) = fl(p) + fh(p) (4.3)

For lower values of p, fl(p) dominates fh(p), whereas fh(p) becomes dominating at higher

values of p. This behavior is achieved by selecting appropriate constants. At lower values of

p, values of t are large and decrease at a faster rate. Hence, the constants a and b in fl(p)

are large. When p is large, t is smaller and decreases slowly with p. This implies smaller

values for the constants c and d in fh(p). For large values of p, a higher value of b also makes

fl(p) negligible.

Figure 4.2 plots a few of φn,pc , ψpc,pm and θn,pm curves for interpolating across the three

dimensions, i.e., n, pc, and pm. To simplify the discussion we omit a few profile points from

Figure 4.2. We remove pc = 28W from Pc so that it now is Pc = {32, 36, 44, 50, 55}. We

now explain how these curves were obtained by applying Step 2 described in Section 4.2.

• We demonstrate interpolation across memory using the following example. φ12,55 from

Figure 4.2 is obtained by fitting the curve from Equation 4.2 to configurations (12 ×
55, pm) for pm ∈ {8, 10, 14, 18} and evaluating the constants. We can now estimate

t for configuration (12 × 55, 9) using φ12,55 and Equation 4.1. This configuration is
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Figure 4.2: Average time per step of Lulesh after interpolation (Step 2)

represented by the rightmost ’*’ (in blue) in Figure 4.2. Similarly, we can fit curves

to profile data to obtain the curves φ12,pc for pc ∈ {32, 36, 44, 50}. Using these curves,

we can estimate t for configurations (12 × pc, 9) for pc ∈ {32, 36, 44, 50, 55}. These

configurations are shown by ’*’ in Figure 4.2.

• To estimate the strong scaling performance for different values of n, we use curve fitting

for fixed values of pc and pm. For example, ψ32,18 is obtained by fitting the curve from

Equation 4.2 to configurations (n × 32, 18), for n ∈ {5, 8, 12, 16, 20}. We later use

this curve to estimate t for n = 10. This configuration is represented by the topmost

solid black circle in Figure 4.2. We obtain the curves ψpc,18 for pc ∈ {32, 36, 44, 50} in a

similar manner and evaluate them at n = 10 to estimate t for combinations (10×pc, 18)

for pc ∈ {32, 36, 44, 50} (Figure 4.2).

• In the final step, we interpolate data from the previous step to estimate the execution

times for all CPU power caps. All solid lines in Figure 4.2 correspond to interpolation

across CPU power. For example, θ5,18 is obtained by fitting Equation 4.2 to configu-

rations (5× pc, 18) for pc ∈ {32, 36, 44, 50, 55}. Finally, we have |N | × |Pm| curves for

θ.

As a result of interpolating across these three dimensions, we now have a set of curves,

θn,pm , that represent all possible configurations that could be obtained using exhaustive

profiling. To get the optimized configuration for a power budget P , we evaluate the θ curves
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Figure 4.3: Speedups obtained using CPU and memory power capping in an over-
provisioned system

for that P and chose the configuration that results in the minimum t. If the curve θn0,p0m
(P )

results in the minimum t = t0 , the optimized configuration is given by (n0× P
n0−pb−p0m, p0m)

after using Equation 4.1 and solving for pc.

4.5 Results

In this section, we use our interpolation model to estimate optimized configurations for

different power budgets for the three parallel applications mentioned in Section 4.3. Machine

vendors specify the thermal design power (TDP) for CPU and memory subsystems. These
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numbers represent the maximum power each of these subsystems can draw while operating

within the thermal limits. Data centers do not take application characteristics into account

and therefore calculate the total power assuming that each node can draw the TDP wattage

specified by the manufacturer. We refer to this configuration as the baseline configuration .

The baseline configuration for a power budget of P is given by:

(nb × TDPc, TDPm)

where nb =

⌊
P

pb + TDPc + TDPm

⌋
,

and TDPc and TDPm represent the CPU and memory TDP values respectively. For our

testbed cluster, TDPc = 95W and TDPm = 35W. TDP of a node for our cluster totals

to 168W after adding the base power of 38W. Hence, for the baseline case we employ the

maximum number of nodes, without power capping, accounting for a maximum possible

power draw of up to 168W per node, i.e., nb = P
168

. We compare the benefits resulting from

power capping CPU and memory subsystems using our scheme against the baseline case for

different power budgets. We use speedup over the baseline case as the metric for comparison.

Speedup is defined as the ratio of the execution time for the baseline case and the execution

time that results from the optimized configuration estimated by our scheme. We perform

real experiments to corroborate the estimates made using our scheme. In particular, we

present results to gauge the effectiveness of our approach to meet the following criterion:

• Speedup achieved: Comparing the best configurations from profiled data (Step 1) to

the best configurations estimated using our scheme (Step 2).

• Quality of solution: Comparing model estimates to actual experimental results

• Cost of estimating the optimized configuration: Amount of profiling required to make

accurate predictions.

4.5.1 Benefits of Using our Interpolation Scheme

In Figure 4.3, we present the speedups achieved using power capping in an over-provisioned

system for different power budgets. The ‘Profiling’ curve plots the actual speedups that

are obtained by selecting the optimized configuration from the profiled data from Step 1

(without interpolation). The ’Interp. Estimate’ plots the estimated speedups obtained from

the interpolated curves from Step 2. We do actual experiments for the optimal configurations

predicted in Step 2 and plot the observed speedups shown as the ‘Interp. Observed’ curve.
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We can see from Figure 4.3 that the observed speedups (’Interp. Observed’) match closely to

the estimated speedups (’Interp. Estimate’). The difference in the estimated and observed

speedups can be attributed to system/cluster noise and to the estimation accuracy of our

interpolation scheme. Speedups of Lulesh, Wave2D, LeanMD fall in the range [1.55,1.80],

[1.45,1.9], [1.57,2.2] respectively. Although each application ends up in a different speedup

range, we get a minimum speedup of at least 1.45X for any power budget. Speedup that an

application can achieve is attributed to two factors:

• The difference between the CPU/memory TDP and the actual (measured) power con-

sumed by the CPU/memory.

• The sensitivity of execution time to the CPU/memory subsystems power consumption.

Performance can be improved by exploiting the first attribute through a single profiling

run. We can profile the application and determine the maximum CPU and memory power

consumed by the machine during the execution. However, speeding up the application

by exploiting the second factor is only possible if the relationship between t, pc, and pm is

known. Figure 4.3 also compares the speedups for optimized configurations estimated by our

model and profiling data. Although using only profiling data can speed up an application,

the configurations estimated by our scheme are much superior in terms of speedup. The

observed speedups resulting from our scheme for LeanMD are generally 0.40X greater than

the configurations estimated by simple profiling (Step 1).

We could improve on the speedups from just profiling (Step 1) through more exhaustive

profiling, which would require considerable machine time. We mentioned in Section 4.2 that

|N | × |P |c × |Pm| runs are required to profile an application exhaustively. Considering the

permissible ranges of pc, pm, and n for our testbed, we need to run each application for 39760

configurations, which is infeasible. However, for leanMD we did exhaustive profiling since

memory power is always less than 8W. We only need to profile it for different values of n and

pc. The speedups from this exhaustive profiling for LeanMD are shown in Figure 4.3 by the

curve labeled ’Exhaustive Profiling’. These speedups are close to the speedups estimated by

our interpolation scheme, which indicates the high accuracy of our scheme in predicting the

optimized configurations.

4.5.2 Profiling Requirements for Interpolation

To analyze the robustness of our scheme in estimating optimized configurations, we used

different amounts of profile data as an input to our interpolation scheme. Since there are
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input to our interpolation scheme

four unknowns (a, b, c, and d) in Equation 4.2, we require at least 4 data points to fit across

each dimension, i.e., n, pc and pm. Hence, we need at least 64 configurations (data points) for

interpolation. We used our scheme to estimate optimized configurations for three different

sets of profile data for Lulesh. Each profile data set had a different number of profiled

configurations, i.e., 112, 180 and 320 configurations. We used each of these profile data

sets as input to our interpolation scheme and evaluated the resulting speedups. Figure 4.4

shows the speedups achieved for various power budgets. These speedups are calculated by

performing actual experiments corresponding to the optimized configuration for each case.

Although the speedups resulting from optimized configurations generally improve as we

increase the profile data points, we are able to achieve reasonable speedups with even 112

configurations.

4.5.3 Optimized Number of Nodes, CPU and Memory Power Distribution

We present the optimized pc and pm values that result from our scheme for different power

budgets in Figure 4.5. We also plot the actual (measured) maximum values for CPU

and memory power consumption in the baseline experiments for the same power budgets.

Figure 4.5 shows that our scheme allocates higher CPU power (pc) for Lulesh and LeanMD

as compared to Wave2D. These optimized values of pc that result from our model lie in the

range of [29,35] for Wave2D. The optimized values for pc range from [41,46] and [40,47] for
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Figure 4.5: Optimized CPU and memory power caps under different power budgets compared
to the maximum CPU and memory power drawn in the baseline experiments

Lulesh and LeanMD, respectively. Extra watts allocated to any of the applications outside

the upper limit of its range can instead be used to power another node and strong scale

the application in an overprovisioned system. Figure 4.6 compares the optimized number

of nodes for each application for different power budgets to the number of nodes used in

the baseline case. The number of nodes in the baseline configuration are independent of the

application. Our scheme caps the CPU and memory power to lower values, which enables

it to use up to twice as many nodes as the baseline case. Wave2D generally requires the

lowest combined CPU + memory power followed by LeanMD and Lulesh (Figure 4.5). Thus,

Wave2D generally uses the highest number of nodes followed by LeanMD and Lulesh.

4.5.4 Analyzing the Optimized Configurations

The difference in the maximum measured values of CPU power for the baseline case and the

optimized value of pc from our scheme is about 12W for LeanMD and Lulesh (Figure 4.5).

This difference is as much as 20W in the case of Wave2D. To understand why the two cases

are different, we plot speedups for different values of pc and n. Speedups in Figure 4.7 are

normalized with respect to the execution time at pc = 25W. This normalization is done to

measure the benefits of increasing the CPU power beyond the minimum CPU power cap

allowed. Lulesh and LeanMD are more sensitive to pc as compared to Wave2D. In fact,

execution time for Wave2D ceases to improve beyond pc=35W for any value of n. Our
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interpolation scheme detects this and keeps the optimized value of pc in the range [29, 35]W.

Similarly, the curves for LeanMD and Lulesh in Figure 4.7 flatten at about 46W and 48W,

respectively. Thus, the optimized values of pc are in the range of [41, 46]W and [40, 47]W for

LeanMD and Lulesh, respectively. For most power budgets, the optimized CPU power cap

(pc) for Lulesh lies in the range of [46, 47]W (barring the two that are close to 41W). This

high value for CPU power cap is due to the high sensitivity of Lulesh on pc. Due to this

high sensitivity of execution time(t) on pc, our scheme allocates the highest value for pc to

Lulesh as compared to the other two applications. In the other two applications, the scheme

allocates relatively more nodes rather than increasing pc, even though every additional node

comes with an overhead - its base power.

The optimized memory power from our scheme and the maximum measured memory

power in the baseline experiments are almost the same in LeanMD and Lulesh (Figure 4.5).

For LeanMD, our model caps memory power at 8W which is the lowest memory power

cap supported by the machine vendor. Since execution time is highly sensitive to pm for

Lulesh, reducing it results in a significant penalty in execution time. Our model captures

this sensitivity and suggests a value of pm that is close to the maximum memory power

drawn in the baseline experiments (14W from Figure 4.5). However, for Wave2D, capping

memory power at values less than the maximum power drawn in the baseline scenario, can

give us higher speedups. Figure 4.5 shows a difference of 2W (on average) between the

optimized values of pm from our scheme and the max memory power drawn in the baseline

experiments. To explore the reasons for the 20W/2W difference in Wave2D CPU/memory

power values between our model and the baseline experiments observed in Figure 4.5, we

study the behavior of CPU and memory power over the course of execution of an application.

Figure 4.8 plots the measured CPU and memory power for the two configurations: c1 =

(5 × 55, 18) and c2 = (5 × 34, 14). The execution time for these configurations is almost

the same (within 1% of each other), despite the significant difference in allocated power.

Even though the max CPU power drawn reaches 53W for c1, its average CPU power is

just 2W higher than the average CPU power for c2. Similarly, the max memory power

drawn for c1 is 16W. Capping memory power to 14W in c2 does not affect execution time

(Figure 4.8). Data centers operators have to account for the peak power drawn when deciding

how many nodes to use. Due to the fluctuations in both CPU and memory power for c1,

the maximum power consumed by a node can reach up to 107W (53 + 16 + 38). However,

by using configuration c2, the maximum power per node can be limited to 86W without any

degradation in performance. Thus, our scheme can add more nodes while staying under the

same power budget with an overprovisioned system.
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4.5.5 Benefits of Capping Memory Power

To evaluate the impact of memory power capping, we compared the observed speedups

from power capping both CPU and memory (C&M) with the observed speedups from just

capping the CPU power (C). In the latter case, we determine the optimized configurations

accounting for the maximum TDP wattage of memory, i.e., 35W per node. Figure 4.9

presents the speedup results for these two cases under three different power budgets. The

speedups using CPU and memory power capping (C&M) are significantly higher than using

only CPU power capping (M). With LeanMD, capping memory power increases the speedup

from 1.43X to 1.94X for a power budget of 1400W. The ability to cap memory power in

addition to CPU power can therefore significantly increase the speedups.

4.5.6 Impact of Base Power on Speedups

The base power of the nodes plays an important role in determining the optimized configu-

ration. It forms an important and essential part of our scheme. Figure 4.10 shows estimated

speedups from our scheme for three different base powers (pb). These base powers of 10W,

38W, and 60W were measured on the Dell Optiplex 990, Dell PowerEdge R620, and Dell

Precision T5500 machines, respectively, using a power meter. As mentioned in Section 5.6.2,

the base power of a node in our testbed is 38W. Instead, if the base power was 10W, we
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can expect the speedup of LeanMD to increase from 2 to 2.5. Base power acts as the fixed

cost for adding additional nodes in an over-provisioned system. For example, for P = 800W,

(15×35, 8) and (7×46, 8) are the optimized configurations for LeanMD using base powers of

10W and 60W respectively. For pb = 10W, our model allocates less power to the CPU, i.e.,

pc=35, and uses 15 nodes. However, increasing pb to 60W makes it expensive to add more

nodes. For pb=60W, our model allocates more power to the CPU, i.e., pc=46, while using

only 7 nodes. Hence, the optimized configurations shown in Figure 4.5 would also change

if the base power is changed. As the base power increases (decreases), we expect that the

pc and pm from Figure 4.5 to increase (decrease). We have seen earlier that the optimized

configurations depend on the relationship of execution time with pm and pc. After looking

at Figure 4.10 we can now associate a correlation between optimum configuration and pb as

well. In general, we can conclude that decreasing the base power increases the speedup.
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CHAPTER 5
Job Scheduling Under a Power Budget

In the last chapter we described our interpolation scheme that optimizes execution time for

a single application under a power budget running on an overprovisioned system. In this

chapter, we explore a global power monitoring strategy for high performance computing

(HPC) that addresses optimum power allocation of resources at the data center level. This

chapter builds on the last chapter by applying the lessons learned on a much larger scale,

i.e., allocating resources optimally across a set of jobs.

Currently, some HPC data centers use a FIFO scheme with backfilling to schedule jobs.

While such policies are fair, they do not guarantee throughput maximization of the data

center. In addition, most HPC data centers are unaware of a job’s power characteristics and

hence allocate resources solely on the basis of required number of nodes. In this chapter,

we present a resource management scheme, powered by a novel scheduling methodology

that determines the optimal schedule and resource combination, i.e., number of nodes and

CPU power cap, for the jobs submitted to an HPC data center that maximizes throughput

under a strict power budget. In addition to the scheduling policy, this chapter also describes

a detailed strong scaling power aware model that estimates application execution time for

different resource combinations, i.e., number of nodes and the CPU power level for all of

them. The major contributions of the chapter are:

• An online resource manager (PARM) that uses overprovisioning, power capping and

job malleability along with power-response characteristics of each job for scheduling

and resource allocation decisions that improves the job throughput of the data center

significantly (Section 5.3).

• A performance model that accurately estimates an applications performance for a given

number of nodes and CPU power cap (Section 5.4). We demonstrate the use of our
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model by estimating characteristics of five applications having different power-response

characteristics (Section 5.5.3).

• An evaluation of our online resource manager on a 38 node cluster with two different job

data sets. A speedup of 1.7 was obtained when compared with SLURM (Section 5.5).

• An extensive simulated evaluation of our scheduling policy for larger machines and

its comparison with the SLURM baseline scheduling policy. We achieve up to 5.2X

speedup operating under a power budget of 4.75 MW (Section 5.6).

5.1 Related work

To the best of our knowledge, this work is the first to employ CPU power capping and

job malleability for improving throughput of an overprovisioned HPC data center. Patki

et al [14] proposed the idea of overprovisioning the compute nodes in power-constrained

high performance computing data centers. They profile an application at different scales

and different CPU power caps. Then they select the best operating configuration for the

application for a given power budget. In Chapter 4 we extended this idea to include memory

power caps and proposed a curve fitting scheme to get an exhaustive profile of an application

at various scales of CPU and memory power caps (within the range of input data). This

profile is then used to obtain the optimal operating configuration of the application under a

strict power budget. Our work proposes a novel scheduling scheme to maximize throughput

under a strict power budget for a data center scheduling multiple jobs simultaneously.

Performance modeling using DVFS has been studied previously [68]. Most of the ex-

isting research estimates execution time based on CPU frequency. These models cannot

be used directly in the context of CPU power capping because applications have different

memory/CPU characteristics can have cores working at different frequencies while operating

under the same CPU power cap. The strong scaling power aware model proposed in this

chapter differs from the work in the previous chapter as it estimates execution time of a

job for a given package power cap that includes the power consumption of cores, caches

and memory controller present on the chip. Researchers have also worked on developing

performance models that capture the energy efficiency of an application [69]. Most of the

energy efficiency work is focussed on optimizing energy consumption. Current data centers

are overprovisioned with respect to power, i.e., each node can be supplied its maximum TDP

power simultaneously, that is seldom needed. Adding more nodes and individually power

capping each node puts the onus on the runtime to ensure that the total power consumption
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of the data center does not exceed the maximum power that can be supplied to the entire

machine. If the runtime fails to ensure the total power cap, this overdraw may cause the

circuit breakers to trip, which can be costly. Treating power as a constraint can be a much

harder problem than optimizing energy efficiency.

5.2 Data Center and Job Capabilities

In this section, we describe some of the capabilities or features that, according to our un-

derstanding, ought to be present in future HPC data centers. In the following sections, we

highlight the role that these capabilities play for a scheduler that maximizes job throughput

of a data center while ensuring fairness.

Power capping: This feature allows the scheduler to constrain the individual power draw

of each node. Intel’s Sandy Bridge processor family supports on-board power measurement

and capping through the RAPL interface [65]. RAPL is implemented using a series of Ma-

chine Specific Registers (MSRs) that can be accessed to read power usage for each power

plane. RAPL supports power capping Package and DRAM power planes by writing into

the relevant MSRs. Here, ‘Package’ corresponds to the processor chip that hosts processing

cores, caches and memory controller. In this chapter, we use package power interchangeably

with CPU power, for ease of understanding. RAPL can cap power at a granularity of mil-

liseconds which is adequate given that the capacitance on the motherboard and/or power

supply smoothes out the power draw at a granularity of seconds.

Overprovisioning: Capping CPU power below the TDP value using RAPL, allows us to

use more nodes in an overprovisioned data center while staying within the power budget. An

overprovisioned system is thus defined as a system that has more nodes than a conventional

system operating under the same power budget. Due to the additional nodes, such a system

cannot enable all of its nodes to function at their maximum TDP power levels simultane-

ously.

Moldable jobs: In these jobs, user specifies the range of nodes (the minimum and the max-

imum number of nodes) on which the job can run. The job scheduler decides the number

of nodes within the specified range to be allocated to the job. Once decided, the number of

nodes cannot be changed during job execution.

Malleable jobs: Such jobs can shrink to a smaller number of nodes or expand to a larger

number of nodes upon instruction from an external command. Typically, the range of the

nodes in which the job can run is dictated by its memory usage and strong scaling char-
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acteristics. To enable malleable jobs, two components are critical – a smart job scheduler,

that decides when and which jobs to shrink or expand, and a parallel runtime system that

provides the dynamic contraction and expansion capability to the job. We rely on existing

runtime support for malleable jobs in Charm++ [45]. In Charm++, malleability is achieved

by dynamically exchanging compute objects between processors at runtime. Applications

built on top of such an adaptive system have been shown to shrink and to expand with small

costs [70]. Charm++ researchers are currently working on further improving the support for

malleable jobs. Malleability support in MPI applications has been demonstrated in earlier

work [71].

5.3 The Resource Manager

Figure 5.1 shows the block diagram of our online Power Aware Resource Manager, or PARM.

It has two major modules: the scheduler and the execution framework. The scheduler is

responsible for identifying which jobs should be scheduled and exactly what resources should

be devoted to each job. We refer to the resource allocation for each job by the resource

combination tuple, (n, p), where n is the number of nodes and p is the CPU power cap for

each of the n nodes. The scheduling decision is made based on the Integer Linear Program

(ILP), and the job profiles generated by our strong scaling power aware model described in

Section 5.4. The scheduler’s decisions are fed as input to the execution framework, which

implements/enforces them by launching new jobs, shrinking/expanding running jobs, and/or

setting the power caps on the nodes.

The scheduler is triggered whenever a new job arrives or when a running job ends or

abruptly terminates due to an error or any other reason (‘Triggers’ box in Figure 5.1). At

each trigger, the scheduler tries to re-optimize resource allocation to the set of pending as

well as currently running jobs with the objective of maximizing overall throughput. Our

scheduler uses both CPU power capping and moldability/malleability features for through-

put maximization. We formulate this resource optimization problem as an Integer Linear

Program (ILP). The relevant terminology is described in Table 5.1. Our scheduling scheme

can be summarized as:

Input: A set of jobs that are currently executing or are ready to be executed (J ) with

their expected execution time corresponding to a set of resource combinations (n, p), where

n ∈ Nj and p ∈ Pj.
Objective: Maximize data center throughput.

Output: Allocation of resources to jobs at each trigger event, i.e., identification of the jobs
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Figure 5.1: A high level overview of PARM

that should be executed along with their resource combination (n,p).

5.3.1 Integer Linear Program Formulation

We make the following assumptions and simplifications in the formulation:

• All nodes of a given job are allocated the same power.

• We do not include cooling power of the data center in our calculations.

• Job characteristics do not change significantly during the course of its execution.

• Expected wall clock time and the actual execution time are equal for the purpose of

decision making by the scheduler.

• Wbase, that includes power for all components of a node other than the CPU and

memory subsystems, is assumed to be constant.

• A job once selected for execution is not stopped until its completion, although the

resources assigned to it can change during its execution.
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Variable Description

N total number of nodes in the data center
J set of all jobs
I set of jobs that are currently running
I set of jobs in the pending queue
J set of jobs that have already arrived

and have not yet been completed, i.e., they
are either pending or currently running, J = I ∪ I

Nj set of node counts on which job j can be run
Pj set of power levels at which job j should be run or

in other words, the power levels at which job j’s
performance is known

nj number of nodes at which job j is currently running
xj,n,p binary variable, 1 if job j should run

on n nodes at power p, otherwise 0
tnow current time
taj arrival time of job j

Wbase base machine power that includes everything
other than CPU and memory

tj,n,p execution time for job j running on n
nodes with a power cap of p

sj,n,p strong scaling power aware speedup of application j
running on n nodes with a power cap of p

min(Nj) minimum number of nodes that can be assigned to job j
min(Pj) minimum amount of power that can be assigned to job j

Table 5.1: Integer Linear Program Terminology

• All jobs are from a single user (or have the same priority). This condition can be

relaxed by introducing appropriate priority factors in the objective function of the

ILP.

Scheduling problems are framed as ILPs and ILPs are NP-hard problems. Maximizing

throughput in the objective function requires introducing variables for the start and end

time of jobs. These variables make the ILP computationally very intensive and thus im-

practical for online scheduling in many cases. In this work, we propose to drop the job start

and end time variables and take a greedy approach by selecting jobs and resource alloca-

tions that maximizes the sum of the power-aware speedup (described later) of selected jobs.

This objective function improves the job throughput while keeping the ILP optimization

computationally tractable for online scheduling.
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Objective Function∑
j∈J

∑
n∈Nj

∑
p∈Pj

wj ∗ sj,n,p ∗ xj,n,p (5.1)

Select One Resource Combination Per Job∑
n∈Nj

∑
p∈Pj

xj,n,p ≤ 1 ∀j ∈ I (5.2)

∑
n∈Nj

∑
p∈Pj

xj,n,p = 1 ∀j ∈ I (5.3)

Bounding total nodes∑
j∈J

∑
p∈Pj

∑
n∈Nj

nxj,n,p ≤ N (5.4)

Bounding power consumption∑
j∈J

∑
n∈Nj

∑
p∈Pj

(n ∗ (p+Wbase))xj,n,p ≤Wmax (5.5)

Disable Malleability (Optional)∑
n∈Nj

∑
p∈Pj

nxj,n,p = nj ∀j ∈ I (5.6)

Figure 5.2: Integer Linear Program formulation of PARM scheduler

We define the strong scaling power-aware speedup of a job j as follows:

sj,n,p =
tj,min(Nj),min(Pj)

tj,n,p
(5.7)

where sj,n,p is the speedup of job j executing using resource combination (n, p) with respect

to its execution with resource combination (min(Nj),min(Pj)). Objective function (Eq. 5.1)

of the ILP maximizes the sum of the power-aware speedups of the jobs selected for execution

at every trigger event. This leads to improvement in FLOPS/Watt (or power efficiency, as

we define it). Improved power efficiency implies better job throughput (results discussed in

Section 5.5, 5.6). Oblivious maximization of power efficiency may lead to starvation for jobs

with low strong scaling power aware speedup. Therefore, to ensure fairness, we introduced

a weighing factor (wj) in the objective function, which is defined as follows:

wj = (tremj,min(Nj),min(Pj) + (tnow − taj ))α (5.8)

wj artificially boosts the strong scaling power aware speedup of a job by multiplying it to the

job’s completion time, where completion time is the sum of the time elapsed since the job’s ar-
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rival and the job’s remaining execution time with resource combination (min(Nj),min(Pj))

i.e. (tremj,min(Nj),min(Pj)) . The percentage of a running job completed between two successive

triggers is determined by the ratio of the time interval between the two triggers and the

total time required to complete the job using its current resource combination. Percentage

of the job that has been completed so far can then be used to compute tremj,min(Nj),min(Pj). The

constant α (α ≥ 0) in Eq. 5.8 determines the priority given to job fairness against its strong

scaling power aware speedup i.e. a smaller value of α favors job throughput maximization

while a larger value favors job fairness.

We now explain the constraints of our ILP (Figure 5.2):

• Select one resource combination per job (Eq. 5.2,5.3): xj,n,p is a binary variable indi-

cating if job j should run using resource combination (n, p). This constraint ensures

that at most one of the variables xj,n,p is set to 1 for any job j. The jobs that are

already running (set I) continue to run although they can be assigned a different re-

source combination (Eq. 5.3). The jobs in the pending queue (I), for which at least

one of the variables xj,n,p is equal to 1 (Eq. 5.2), are selected for execution and moved

to the set of jobs currently running (I).

• Bounding total nodes (Eq. 5.4): This constraint ensures that the number of active

nodes does not exceed the maximum number of nodes available in the overprovisioned

data center.

• Bounding power consumption (Eq. 5.5): This constraint ensures that power consump-

tion of all nodes does not exceed the power budget of the data center.

• Disable Malleability (Eq. 5.6): To quantify the benefits of malleable jobs, we consider

two versions of our scheduler. The first version supports only moldable jobs and is

called as noSE (i.e. no Shrink/Expand), The second version allows both moldable and

malleable jobs and is called as wSE (i.e. with Shrink/Expand). Malleability can be

disabled by using Eq. 5.6. This constraint ensures that the number of nodes assigned

to each running job does not change during the optimization process. However, it

allows changing the power allocated to running jobs. In real-world situations, the jobs

submitted to a data center will be a mixture of malleable and non-malleable jobs. The

scheduler can apply Eq. 5.6 to disable malleability for non-malleable jobs.
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5.4 Strong Scaling Power Aware Model

Recent processors allow power capping, which gives a new dimension to performance model-

ing. In this section, we propose a strong scaling power-aware model, by extending Downey’s [72]

strong scaling model and making it power aware. The goal is to develop a model that can

estimate the execution time of an application for any given resource combination (n, p).

5.4.1 Strong Scaling Model

We used Downey’s [72] strong scaling model after modifying the boundary conditions. An

application can be characterized by an average parallelism of A. The application’s paral-

lelism remains equal to A, except for a fraction σ of total execution time . The variance of

parallelism, represented as V = σ(A− 1)2, depends on σ, where 0 ≤ σ ≤ 1. The execution

time, t(n), of an application can then be defined as follows:

t(n) =



T1 − T1σ
2A

n
+
T1σ

2A
, 1 ≤ n ≤ A (5.9)

σ(T1 − T1
2A

)

n
+
T1
A
− T1σ

2A
A < n ≤ 2A− 1 (5.10)

T1
A
, n < 2A− 1 (5.11)

where n is the number of nodes and T1 is the execution time on a single node. Since we have

to estimate execution time corresponding to different number of nodes n given t(1) = T1,

we had to modify Downey’s model according to boundary condition t(1) = T1. The first

equation in this group represents the range of n where applications are most scalable. This is

the range where the number of nodes is less than A, i.e., the average amount of parallelism.

The application’s scalability declines significantly once n becomes larger than A because

some nodes are unable to do work in parallel owing to a lack of parallelism. Finally, for

n > 2A, the execution time t(n) equals T1/A and does not decrease. Given application

characteristics σ, A, and T1, this model can be used to estimate execution time for any

number of nodes n.

5.4.2 Adding Power Awareness to the Strong Scaling Model

The effect of increasing frequency on the execution time t varies from application to appli-

cation [61] . In this section, we first describe a basic framework that models t as a function
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of CPU frequency f . Since, f can be expressed as a function of CPU power p, we can finally

express t in terms of p.

Execution Time as a Function of Frequency

Existing work [61] indicates that an increase in CPU frequency beyond a certain threshold

frequency, fh, does not reduce the execution time t. The value of fh depends on the memory

bandwidth being used by the application. Since t ∝ 1
f
, we can express t as [68]:

t(f) =


W

f
+ T, for f < fh (5.12)

Th, for f ≥ fh (5.13)

where W and T are constants that roughly correspond to the CPU and memory bounded

work respectively. Th is the execution time at frequency fh. Given that fl is the smallest

possible frequency at which a CPU can operate, Equation 5.12 should obey the boundary

conditions t(fl) = Tl and t(fh) = Th where Tl is the execution time while operating at the

minimum frequency level (fl).

We define parameter β that characterizes the frequency-sensitivity of an application and

can be expressed as:

β =
Tl − Th
Tl

(5.14)

The range of β depends on the CPU’s DVFS range. Given the DVFS range of (fl, fmax),

β ≤ 1− fl
fmax

. Typically, CPU-bound applications have higher values for β whereas memory-

intensive applications have smaller β values.

Using Equation 5.14 and subjecting Equation 5.12 to boundary conditions, t(fl) = Tl and

t(fh) = Th, gives us:

W =
Thβflfh

(1− β)(fh − fl)
(5.15)

T = Th −
Thβfl

(1− β)(fh − fl)
(5.16)

Execution Time as a Function of CPU Power

Although Intel has not released complete details of the CPU power capping functionality, it

has been hinted that the power cap is ensured by using a combination of DVFS and CPU

throttling. Core input voltage and frequency can be set within manufacturer defined ranges.

This frequency-voltage range, in turn, defines a range over CPU power that can be achieved
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using DVFS. Let pl denote the CPU power corresponding to fl, where fl is the minimum

frequency the CPU can operate at using DVFS. Beyond pl, power is reduced by mechanisms

other than DVFS, e.g., CPU throttling. The threshold pl, where CPU throttling takes over

from DVFS, can be determined by looking at the processor’s operating frequency. CPU or

package power includes the power consumption by its various components such as cores,

caches, and memory controller. The value of pl varies depending on an application’s usage

of these components. In a CPU bound application, a processor might be able to cap power

to lower values using DVFS, since only the cores are consuming power. In contrast, for a

memory intensive application, pl might be higher, since the caches and memory controller

are also consuming power in addition to the cores. Since core input voltage is proportional

to f , power consumption of the cores, pcore, can be modeled as:

pcore = Cf 3 +Df (5.17)

where C and D are constants. Since the number of cache and memory accesses are pro-

portional to frequency, DVFS can change cache/memory controller power consumptions as

well. The CPU power can then be expressed as [73]:

p = pcore +
3∑
i=1

giLi + gmM + pbase (5.18)

where Li is accesses per second to level i cache, gi is the cost of a level i cache access (in

W), M is the number of memory accesses per second, gm is the cost per memory access (in

W), and pbase is the base package power consumption. Equation 5.18 can also be written as:

p = F (f) = af 3 + bf + c (5.19)

where a, b, and c are constants. In Equation 5.19, the term bf corresponds to the cores’

leakage power and the power consumption of the caches and the memory controller. The

term af 3 represents the dynamic power of the cores, whereas c = pbase is the base CPU power.

The constants a and b are application dependent since the cache and memory behavior can be

different across applications. Equation 5.19 can be rewritten as a depressed cubic equation:

f 3 +
b

a
f +

c− p
a

= 0 (5.20)

89



and solved using Fermat’s Last Theorem to get F−1:

f = F−1(p) =
3

√
p− c

2a
+

√
(p− c)2

4a2
+

b3

27a3

+
3

√
c− p

2a
+

√
(p− c)2

4a2
+

b3

27a3
(5.21)

To express t in terms of p, we use Equation 5.21 to replace f , fl, and fh in Equations 5.12,

5.15, 5.16. To combine our power aware model with the strong scaling model described in

Section 5.4.1, we replace Th in Equations 5.12, 5.15, 5.16 with t(n) from Equations 5.9, 5.10,

5.11.

Summary: We present a comprehensive model to estimate t for any resource combination

(n, p), given application parameters σ, T1, A, pl, ph, β, a and b. We substitute parameters

σ, T1 and A into Equations 5.9, 5.10, 5.11 to determine t = t(n), i.e., execution time using n

nodes working at maximum power. We then use Th = t(n) and parameters pl, ph, β, a and b

to determine t(n, p) using Equations 5.12, 5.15, 5.16, and 5.21, i.e., execution time using n

nodes operating at p Watts each.

5.5 Experimental Results

In this section, we describe our experimental setup that includes applications, testbed, and

job datasets. We obtain the application characteristics using the power-aware strong-scaling

performance model and finally compare the performance of the noSE and wSE versions of

PARM with SLURM.

5.5.1 Applications

We used five applications, namely, Wave2D, Jacobi2D, LeanMD, Lulesh, and Adaptive Mesh

Refinement or AMR [74]. These applications have different CPU and memory usage:

• Wave2D and Jacobi2D are 5-point stencil applications that are memory-bound. Wave2D

has higher FLOPS than Jacobi2D.

• LeanMD is a computationally intensive molecular dynamics application.

• CPU and memory usage of Lulesh and AMR lies in between the stencil applications

and LeanMD.
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5.5.2 Testbed

We conducted our experiments on a 38-node Dell PowerEdge R620 cluster (which we call

the Power Cluster). Each node containing an Intel Xeon E5-2620 Sandy Bridge with 6

physical cores at 2GHz, 2-way SMT with 16 GB of RAM. These machines support on-board

power measurement and capping through the RAPL interface [36]. The CPU power for our

testbed can be capped in the range [25− 95]W , while the capping range for memory power

is [8− 35]W .

5.5.3 Obtaining Model Parameters of Applications

Application characteristics depend on the input type, e.g., gird size. We fix the respective

input types for each application. Each application needs to be profiled for some (n,p) combi-

nations to obtain data for curve fitting. 1 step/iteration is sufficient to get the performance

for a given data point. Since, a step/iteration is usually of the order of milliseconds, the

cost of profiling the application at several data points is negligible compared to the overall

execution time of the application.

We use linear and non-linear regression tools provided by MATLAB to determine the ap-

plication parameters by fitting the sampled application performance data to the performance

model proposed in Section 5.4. Figure 5.3 (a-e) shows the observed (dots) and estimated

(lines) execution time corresponding to different CPU power caps for all applications when

run on 20 nodes of our Power Cluster. In all cases, the fitted curves match the observed

data with a Root Mean Square Error (RMSE) percentage of less than 2%. The obtained

parameter values for all applications are listed in Table 5.2 and are discussed here:

• The parameter c (CPU base power) lies in the range [13− 14]W for all applications

• pl was 30W for LeanMD and 32W for rest of applications. For LeanMD, it is possible

to cap the CPU power to a lower value just by decreasing the frequency using DVFS.

This is because LeanMD is a computationally intensive application and therefore most

of the power is consumed by the cores rather than caches and memory controller. On

the contrary, for other applications, CPU throttling kicks in at a higher power level

because of their higher cache/memory usage.

• value of ph lies in the range of [37− 54]W for applications under consideration.

• value of β lies in the range [0.08− 0.40]. Higher value of β means higher sensitivity to

CPU power.

91



30 35 40 45 50 55 60
1.2

1.4

1.6

1.8

2

2.2

2.4

CPU power (W)

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
) 

 

 

Observed

Model

(a) LeanMD

30 35 40 45 50 55 60

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

CPU power (W)

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
) 

 

 

Observed

Model

(b) Wave2D
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(c) Lulesh
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(d) AMR

30 35 40 45 50 55
0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

CPU power (W)

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
) 

 

 

Observed

Model

(e) Jacobi2D

Figure 5.3: Model estimates (line) and actual measured (circles) execution times for all
applications as a function of CPU power (a-e). Modeled power aware speedups for all
applications (f).
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Figure 5.4: Modeled (lines) and observed (markers) power aware speedups for four applica-
tions

• Wave2D and Jacobi2D have the largest memory footprint that results in high CPU-

cache-memory traffic. Therefore the value of b is high for these two applications.

Figure 5.4 shows the modeled (lines) as well as the observed (markers) power-aware

speedups for 4 applications under consideration. Since AMR’s characteristics are very sim-

ilar to Lulesh, we leave AMR out to improve the clarity of the figure. Each application’s

speedup was calculated with respect to the execution time when that application was exe-

cuting at p = pl. LeanMD has the highest power-aware speedup whereas Jacobi2D has the

lowest.

5.5.4 Power Budget

We assume a power budget of 3300W to carry out experiments using our Power Cluster.

Although the vendor-specified TDP of CPU and memory of the Dell nodes was 95W and

35W, respectively, the actual power consumption of CPU and memory never went beyond

60W and 18W, respectively, when running any of the applications. Therefore, instead of
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Application a b pl ph β

LeanMD 1.65 7.74 30 52 0.40
Wave2D 3.00 10.23 32 40 0.16
Lulesh 2.63 8.36 32 54 0.30
AMR 2.45 6.57 32 54 0.33
Jacobi2D 1.54 10.13 32 37 0.08

Table 5.2: Obtained model parameters

the vendor-specified TDP, we consider 60W and 18W as the maximum CPU and memory

power consumption and use them to calculate the number of nodes that can be installed

in a traditional data center. The maximum power consumption of a node, thus, adds up

to 60W + 18W + 38W = 116W , where 38W is the base power of a node. Therefore,

the total number of nodes that can be installed in a traditional data center with a power

budget of 3300W will be b3300
116
c = 28 nodes. By capping the CPU power below 60W, the

overprovisioned data center will be able to power more than 28 nodes.

5.5.5 Job Datasets

We constructed two job datasets by choosing a mix of applications from the set described in

Section 5.5.1. All these applications are written using the Charm++ parallel programming

model and hence support job malleability. Application’s power-response characteristics can

influence the benefits of PARM. Therefore, in order to better characterize the benefits of

PARM, these two job datasets were constructed such that they have very different average

values of β. We name these datasets as SetL and SetH, with average β value of 0.1 and 0.27,

respectively. For instance, SetH has 3 LeanMD, 3 Wave2D, 2 Lulesh, 1 Jacobi, and 1 AMR

job, that gives us an average β value of 0.27. A mix of short, medium and long jobs were

constructed by randomly generating wall clock times with a mean value of 1 hour. Similarly,

the job arrival times were generated randomly. Each dataset spans over 5 hours of cluster

time and approximately 20 scheduling decisions were taken (a scheduling decision is taken

whenever a new job arrives or a running job terminates). The minimum and the maximum

number of nodes on which a job can run was determined by the job’s memory requirements.

We used 8 node levels (i.e. |Nj| = 8) that are uniformly distributed between the minimum

and maximum number of nodes on which the job can run. The memory power is capped at

the fixed value of 18W whereas we used 6 CPU power levels - [30, 32, 34, 39, 45, 55]W.
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5.5.6 Performance Metric

We compare our scheduler with SLURM [75]: an open-source resource manager that allocates

compute nodes to jobs and provides a framework for starting, executing and monitoring jobs

on a set of nodes. SLURM provides resource management on many of the most powerful

supercomputers of the world including Tianhe-1A, Tera 100, Dawn, and Stampede. We

setup both PARM and SLURM on the testbed. For comparison purpose, we use SLURM’s

baseline scheme in which the user specifies the exact number of nodes requested for the job

and SLURM uses FIFO + backfilling for making scheduling decisions. We call this as the

SLURM baseline scheme or just the baseline scheme. The number of nodes requested for a

job submitted to SLURM is the minimum number of nodes on which PARM can run that

job.

We use response time and completion time as the metrics for comparing PARM and

SLURM. A job’s response time, tres, is the time interval between its arrival and the beginning

of its execution. Execution time, texe, is the time from start to finish of a job’s execution.

Completion time, tcomp, is the time between a job’s arrival and the time that it finishes

execution, i.e., tcomp = tres + texe. Job throughput is the inverse of the average completion

time of jobs. In this study, we emphasize on completion time as the performance comparison

metric, even though typically response time is the preferred metric. This is because unlike

conventional data centers, where resources allocated to a job and hence the jobs execution

time are fixed, our scheduler dynamically changes job configuration during execution which

can vary job execution time significantly. Hence, response time is not a very appropriate

metric for comparison in this study. Completion time includes both the response time and

the execution time and is therefore the preferred metric of comparison.

5.5.7 Results

Figure 5.5(a) shows the average completion times of the two datasets with SLURM and

the noSE and wSE versions of PARM. The completion times for wSE and noSE include

all overhead costs including the ILP optimization time and the costs of constriction and

expansion of jobs. As noted in the figure, PARM significantly reduces the average completion

time for both the data sets. This improvement can mainly be attributed to the reduced

average response times shown in Figure 5.5(b). Our scheduler intelligently selects the best

power levels for each job which allows it to add more nodes to benefit from strong scaling

and/or scheduling more jobs simultaneously. The completion times of wSE scheme are better

than noSE. Job malleability allows wSE scheme to shrink and expand jobs at runtime. This
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Figure 5.5: (a) Average completion times, and (b) average response times for SetL and SetH
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CPU power in the wSE and noSE versions of PARM.
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gives flexibility to the ILP to re-optimize the allocation of nodes to the running and pending

jobs. On the other hand, noSE reduces the solution space of ILP by not allowing running

jobs to change the number of nodes allocated to them. Additionally, wSE increases the

machine utilization towards the tail of the job dataset execution when there are very few

jobs left running. The wSE version can expand the running jobs to run on the unutilized

machines. These factors reduce both the average completion and the average response time

in wSE (Figure 5.5(a), 5.5(b)). As shown by Figure 5.5(c), wSE scheme utilizes 36 nodes on

an average compared to an average of 33 nodes used in the case of noSE for SetL.

A smaller value of β means that effect of decreasing the CPU power on application per-

formance is small. When β is small, the scheduler will prefer to allocate less CPU power

and use more nodes. On the other hand, when β is large, the benefits of adding more nodes

at the cost of decreasing the CPU power are smaller. The flexibility to increase the number

of nodes gives PARM higher benefit over SLURM when β is small as compared to the case

when β is large. Therefore, lower the sensitivity of applications to the allocated CPU power

(i.e. smaller value of β), higher will be the benefit of using PARM. This is corroborated

with the observation (Figure 5.5) that the benefits of using PARM as compared to SLURM

are much higher with dataset SetL (β = 0.1) as compared to dataset SetH (β = 0.27).

5.6 Large Scale Projections

After experimentally showing the benefits of PARM on a real cluster, we now analyze its

benefit on very large machines. Since doing actual job scheduling on a large machine is

practically infeasible for us, we use the SLURM simulator [76], which is a wrapper around

SLURM. This simulator gives us information about SLURM’s scheduling decisions without

actually executing the jobs. In the following subsections, we describe our shrink/expand

cost model, give the experimental setup and then present a comparison of PARM scheduling

with SLURM baseline scheduling policy.

5.6.1 Modeling Cost of Shrinking and Expanding Jobs

Constriction and expansion of jobs has an overhead associated with it. These overheads come

from data communication done to balance the load across the new set of processors assigned

to the job and from the boot time of nodes. A scheduler typically makes two decisions: 1)

how many nodes to assign to each job, and 2) which nodes to assign to each job. We address

the first decision in this paper and defer the second for future work. Let us say that job j
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with a total memory of mj MB, has to expand from nf nodes to nt nodes. For simplification

of analysis, we assume that each job is initially allocated a cuboid of nodes (with dimensions-

3
√
nf × 3

√
nf × 3

√
nf ) interconnected through a 3D torus. After the expand operation, size of

the cuboid becomes 3
√
nf × 3

√
nf × nt

2
3
√
nf

. For load balance, the data in memory (mj MB)

will be distributed equally among the nt nodes. Hence, the communication cost for the data

transfer can be expressed as tc (in seconds):

tc =
(
mj
nf
− mj

nt
) ∗ nf

2 ∗ b ∗ n
2
3
f

(5.22)

where b is the per link bandwidth. The numerator in Eq. 5.22 represents the total data to

be transferred whereas the denominator represents the bisection bandwidth of the cuboid.

Similarly, the cost of shrinking a job is determined by computing the cost of distributing the

data of nf − nt nodes equally across the final nt nodes.

Boot times can be significant for some supercomputers. Since many supercomputers in

Top500 [13] belong to the Blue Gene family, we include their boot time when evaluating our

scheme. We adopt a simple linear model to calculate the boot time (tb) for expand operation.

The following linear relationship is obtained by using the Intrepid boot time data [77]:

tb(in seconds) = (nt − nf ) ∗ 0.01904 + 72.73 (5.23)

In an expand operation, communication phase can start only after additional nodes be-

come available. These additional nodes might have to be booted. Therefore the total cost

of a shrink or expand operation is sum of the boot time and the data transfer time, i.e.,

tse = tc + tb. A job set for expansion might receive additional nodes from a job undergoing

constriction in the same scheduling decision. Therefore, an expanding job has to wait until

the shrinking job has released the additional resources. To simplify this analysis, we deter-

mine the maximum tse from among the shrinking/expanding jobs (tmaxse ) and add 2tmaxse to

the execution times of all jobs that shrink or expand due to the current scheduling decision.

To control the frequency of constriction or expansion of a job, and consequently its cost,

we define a parameter fse (in secs). fse is the time after which a job can shrink or expand,

i.e., if a job was shrunk or expanded at t secs, then it can be shrunk or expanded only after

t+ fse secs. This condition is enforced using Eq. 5.6.
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5.6.2 Experimental Setup

The results presented in this section are based on the job logs [78] of Intrepid. Intrepid is

a IBM BG/P supercomputer with a total of 40, 960 nodes, installed at Argonne National

Lab. The job trace spans over 8 months and has 68, 936 jobs. We extracted 3 subsets of

1000 successive jobs each from the trace file to conduct our experiments. These subsets will

be referred to as Set1, Set2, and Set3 and the starting job id for these subsets are 1, 10500,

and 27000, respectively. To measure the performance of PARM in the wake of diverse job

arrival rates, we generated several other datasets from each of these sets by multiplying the

arrival times of each job by γ, where γ ∈ [0.2− 0.8]. Multiplication of the arrival times with

γ increases the job arrival rate without changing the distribution of job arrival times.

As we do not know application characteristics (σ, T1, A, fl,

fh, β, a and b) of the jobs in the Intrepid trace file, we take the parameter values from

Section 5.5.3 and randomly assign values from these ranges to jobs in the Intrepid trace

file. Since Intrepid does not allow moldable/malleable jobs, jobs request a fixed number

of nodes instead of a range of nodes. For jobs submitted to the PARM scheduler, we

consider this number as the maximum nodes that the job is allowed to use, i.e., max(Nj)

and set min(Nj) = θ ∗max(Nj), where θ is randomly selected in the range [0.2− 0.6]. The

power consumption of Intrepid nodes is not publicly available, therefore we use the power

values from our testbed cluster (described in Section 5.5.2). Hence, the maximum power

consumption per node is taken to be 116W. The maximum power consumption of 40, 960

nodes thus equals 116× 40, 960 = 4, 751, 360W. The SLURM scheduler schedules on 40, 960

nodes with each node running at maximum power level. As in Section 5.5.5, PARM uses 6

CPU power levels, Pj = {30, 33, 36, 44, 50, 60}W .

5.6.3 Performance Results

Both noSE and wSE significantly reduce average completion times compared to SLURM’s

baseline scheduling policy (Figure 5.6). As γ decreases from 0.8 to 0.2, the average com-

pletion time increases in all the schemes because the jobs arrive at a much faster rate and

therefore have to wait in the queue for longer time before they get scheduled. However, this

increase in the average completion times with both our schemes is not as significant as it is

with the baseline scheme.

Both noSE and wSE have significantly improved average response times, with wSE out-

performing noSE (Table 5.3). Execution time in wSE includes the costs of shrinking or

expanding the job (Section 5.6.1). Despite this overhead, wSE outperforms noSE in average
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Figure 5.6: Average completion times of baseline, noSE and wSE. Job arrival times in all
the sets (Set1, Set2, Set3) were scaled down by factor γ to get diversity in job arrival rate
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Set
Avg Resp. Time (mins) Avg Exe. Time (mins) Avg. Num. of Nodes Speedup
baseline wSE noSE baseline wSE noSE baseline wSE noSE wSE noSE

1 (γ = 0.5) 90 3 6 80 84 95 453 610 601 1.91 1.70
2 (γ = 0.5) 500 34 57 57 69 89 632 714 721 5.25 4.66
3 (γ = 0.5) 217 99 88 60 73 90 520 662 665 1.65 1.61
2 (γ = 0.7) 142 12 20 57 66 83 596 656 660 2.36 1.96
3 (γ = 0.7) 194 95 86 60 73 90 488 596 599 1.54 1.43

Table 5.3: Comparison of the baseline, wSE and noSE scheduling policies for different data
sets.

execution time of jobs. wSE version consistently outperforms noSE in all data sets. The

average completion times reported in Figure 5.6) includes cost of all overheads. In all the job

datasets, the average overhead for shrinking and expanding the jobs was less than 1% of the

time taken to execute the dataset. We controlled these costs by setting fse = 500 secs, i.e.,

the scheduler waited for at least 500 secs between two successive contraction and expansion

operations for a job. We found the cost for solving the ILP to be small. The largest ILP that

we solved took 15 secs which is negligible given the frequency at which the scheduler was

invoked is much smaller. We use data from Table 5.3 to explain two observations related to

the speedups of our schemes. The speedup in average completion time for both our policies

is calculated relative to the baseline (shown in Table 5.3).

• Higher speedup in average completion time for γ = 0.5 compared to γ = 0.7 in

Set2: The baseline case has a 4 fold increase in response time compared to just a

2 fold increase in response time for wSE when γ changes from 0.7 to 0.5. Average

execution time in the wSE version increases only slightly after γ changes from 0.7 to

0.5 (Table 5.3), while it remains constant in the baseline scenario. Since, completion

time is the sum of response and execution time, we observe higher speedups for smaller

values of γ in Set2.

• Smaller speedups in Set3 as compared to Set2: Upon job trace inspection, we discovered

that there are not enough jobs to keep the machine fully utilized during the first half

of Set3. Therefore, even after reducing γ to small values, the response time is not

significantly affected in Set3. In contrast, Set2 has a very high machine utilization

which leads to a significant increase in the response time of the baseline scheduler as

γ is reduced (from 0.5 to 0.7), resulting in higher speedups for both our scheduling

policies.

To see the effectiveness of our scheme, we compared it with a baseline scheduler if it were

to schedule jobs on an overprovisioned system. All CPUs in this system are power capped

at the same value (< 60W). This allows the baseline scheduler to add more nodes while

remaining within the same power budget, e.g., setting the power cap for each CPU to 30W
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CPU power cap (W) 30 40 50 60

Speedup 4.32 1.86 2.33 5.25
Avg number of nodes 50332 42486 39700 37956

Table 5.4: Comparison of wSE with the baseline scheduler running on an overprovisioned
system (at different CPU power caps) using Set 2 (γ = 0.5)

allows baseline (SLURM) to use up to b 4,751,360
30+18+38

c = 55, 248 nodes. In Table 5.4, we present

the speedup of wSE relative to a baseline scheduler operating on an overprovisioned system

with different CPU power caps as the reference. Significant speedups in Table 5.4 emphasize

the benefits of solving the ILP for determining optimal job configurations rather than using

the baseline scheduler, which runs all jobs at the same node power. Table 5.4 shows that

even after scheduling on an overprovisioned system and using greater than 40,960 nodes, the

baseline scheduler still under performs our scheduler by a significant margin.

5.6.4 Increasing Job Arrival Rate While Maintaining the Same QoS

For the purpose of this study we define the Quality of Service (QoS) for a data center to

be determined by the average and maximum completion time of its jobs. To emphasize the

usefulness of our schedulers, we increased the arrival rate of jobs (by multiplying the original

arrival times by the constant γ) as much as possible, so long as we maintain the same QoS

as provided by the baseline schedule (γ = 1). The results are presented in Figure 5.7).

Consider the first group of bars: wSE allowed for arrival time of the last job of Set1 to be

reduced to just 2.2 days and still provided the same QoS as the baseline scheduler whose

last job arrived at 6.8 days (arrival times of other jobs are scaled down proportionately)..

Similarly trends may be seen in Figure 5.7 for the other sets.

5.6.5 Analyzing tradeoff between Fairness and Throughput

We introduced the term wj in the objective function of the scheduler’s ILP (Equation 5.1)

to prevent starvation of jobs with low power-aware speedup. In this section, we analyze the

tradeoff between maximum completion time of any job (fairness) and the average completion

time of jobs (equivalent to throughput). The parameter α can be be tuned by the data

center administrator to control fairness and throughput. We performed several experiments

by varying α and measured its impact on the average and maximum completion times.

Figure. 5.8 and Figure. 5.8 plot the average and maximum completion times of Set2 for
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Figure 5.7: Reduction in job arrival times while maintaining the same QoS as the baseline
scheduler

different values of α using γ = 0.8. As the value of α increases, the maximum completion time

decreases at the cost of an increase in average completion time (Figure. 5.8 and Figure. 5.9).

We further compare completion times of our scheduler with the baseline. Figure. 5.10

plots the cumulative distribution frequency (CDF) of completion times of the 1000 jobs of

Set 1 (with γ = 0.8) for our wiSE scheduler and the baseline scheduler. For readability,

wiSE’s performance is plotted with only two values of α.

For both values of α, wiSE is significantly better than the baseline. As α is increased, the

CDF for wiSE starts getting closer to the baseline’s CDF. Although this increase in α in-

creases the average completion time (decrease in slope), it reduces the maximum completion

time from 71, 644 secs to 62, 061 secs. Figure. 5.10 shows that our scheduler, using α = 0.28,

finishes 90% of the jobs within 11, 500 secs as compared to the baseline which takes 22, 000

secs to finish 90% jobs.

5.6.6 How Much Profile Data is Sufficient?

Our scheduler’s ILP takes a job’s execution profile at different resource combinations as

input. A Larger number of power levels |Pj|, will lead to better scheduling decisions compared
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Figure 5.8: Average completion times for Set 1 for different values of (α)
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Figure 5.9: Maximum (worst) completion times for Set 1 for different values of (α)
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Figure 5.10: CDF for completion times for baseline and wiSE for different α using SET1

to the case when fewer power levels are provided. However, the number of binary variables

in the ILP (xj,n,p) are proportional to the number of power levels of the jobs. The larger

the number of variables, the longer that it takes to solve the ILP. As mentioned earlier,

the maximum cost of solving the ILP in all of our experiments was 15 secs where we used

|Pj| = 6 and the queue J had 200 jobs. In this subsection, we see the impact of varying

the number of power levels used per job. We did several experiments in which we scheduled

Set1 with γ = 0.5 using up to 8 different power levels, |Pj| = 8. For example, the case

with 2 power levels means that all jobs can execute either at 30W or 60W. The average and

maximum completion times with the baseline scheduler for Set1 (γ = 0.5) were 170 mins

and 1, 419 mins, respectively. As we keep on increasing the number of power levels from

1 to 6, the solution space of the ILP increases and therefore we get better solutions, i.e.,

the average and maximum completion times decrease as the number of power levels increase

(Figure 5.11 and Figure 5.12). However, the improvement in both the average and maximum

completion times becomes negligible after 6 power levels. This insensitivity is due to huge

increase in the number of available resource combinations that each new power level brings

to the solution space. After 6 power levels, we can infer that the solution space has enough

resource combinations to get a solution that is close the best solution. Hence, adding more

power levels does not bring significant improvement.
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Figure 5.11: Effect of increasing the number of power levels (|Pj|) on the average completion
time of Set 1 (γ = 0.5).
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Figure 5.12: Effect of increasing the number of power levels (|Pj|) on the maximum comple-
tion time of Set 1 (γ = 0.5).
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CHAPTER 6
Concluding Remarks

The research described in this thesis leverages hardware and software capabilities and makes

a first attempt at solving three of the biggest challenges that the HPC community faces

in moving to larger machines, i.e., energy, reliability and power. It uses Dynamic Voltage

and Frequency Scaling (DVFS) and power capping of the CPU and memory subsystems in

conjunction with an adaptive runtime system to optimize application performance under

user specified thermal or power constraints. The proposed scheme can effectively restrain

CPU temperatures leading to a reduction in the cooling energy consumption of a data

center. This thesis also estimates the improvement in machine reliability resulting from

applying the proposed thermal restraint scheme. The later part of the thesis presents power-

aware scheduling, which can significantly improve the throughput of an HPC data center

by intelligently assigning power levels to all nodes in the data center. In this chapter, we

highlight the findings of this dissertation and outline an incomplete list of promising ideas

derived from it. This chapter is divided into two sections. Section 6.1 summarizes the

conclusions that result from applying thermal constraints along with potential directions for

future work. Section 6.2 states some conclusions and mentions potential future work for

power-constrained data centers.

6.1 Thermal Restraint

The following conclusions can be made from the first part of this thesis, which uses thermal

restraint to reduce cooling energy, improve reliability and optimize application performance:

• Cooling energy can be reduced by restraining processor temperatures. Our scheme

shown in Chapter 2 uses DVFS and demonstrates reduction of up to 63% in the

107



cooling energy consumption of a cluster.

• Naive use of DVFS can restrain processor temperatures but not without significantly

impacting the performance of parallel applications. Our scheme from Chapter 2 com-

bines DVFS with a dynamic runtime system that supports object migration to alleviate

the impact of DVFS. Our frequency-aware load balancing scheme from Chapter 2 shows

significant improvement in execution time over the baseline scheme that naively uses

DVFS.

• DVFS can be used to restrain processor temperatures for any application below a rea-

sonable threshold. However, the impact temperature restraint has on the execution

time of an application varies. Applications having lower FLOP/s rate can significantly

benefit from temperature restraint as their execution time is less affected by tempera-

ture control which in turn helps in reducing energy consumption. Chapter 2 shows that

restraining processor temperatures with a memory bound application (Jacobi2D) can

reduce the total energy consumption by as much as 18% while increasing the execution

time by only 3%.

• Restraining processor temperatures and hot spot avoidance can significantly improve

the reliability of an HPC machine. Chapter 3 outlines a model that relates processor

temperature to Mean Time Between Failures (MTBF) of a machine. It uses this

relationship to estimate the improvement in MTBF resulting from restraining processor

temperatures.

• Restraining processor temperatures can significantly improve the performance of an

HPC machine in a faulty environment. Chapter 3 builds a comprehensive model that

estimates execution time by combining thermal restraint with checkpoint/restart.

The following is an incomplete list of promising ideas derived from the contributions in

this thesis related to thermal restraint:

Sequential Execution Block Optimization: Our recent work [61] proposes and eval-

uates a runtime technique for MPI that reduces both machine and cooling energy

consumption on a single node. By dividing the computation into different Sequen-

tial Execution Blocks (SEBs) depending on their sensitivity to frequency, and running

them at different levels of frequency, we were able to reduce machine energy consump-

tion by 17% with as little as 0.9% increase in execution time while restraining core

temperatures below 60◦ C. In the future, one can extend our SEB-based work to han-

dle multiple nodes, i.e., combine it with CoolLB. Such a scheme will reduce both the
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machine and cooling energy consumption of a data center while constraining core tem-

peratures under a user defined threshold. Different nodes, when capped under a given

temperature threshold, might have to operate at different frequencies due to thermal

variations. Hence, this difference in frequencies can cause load imbalance which needs

to be fixed based on processor frequencies. Difference in the sensitivities of multiple

SEBs to frequency can be leveraged to reduce the impact of DVFS on execution time.

By migrating the sensitive SEBs to cooler processors (operating at higher frequencies)

and keeping the insensitive SEBs on the hotter processors (operating at lower frequen-

cies), our proposed scheme would be able to reduce the execution time penalty as well

as total energy consumption. However, this work requires the ability of per-core-DVFS

which is currently not available. Implementing such a technique on existing hardware,

i.e., with processor-wide DVFS, limits its applicability significantly.

Thermal restraint for message-logging and parallel recovery: Chapter 3 combined

thermal restraint with checkpoint/restart protocol for fault tolerance to improve the

reliability of an HPC machine. Since thermal restraint increases the Mean Time Be-

tween Failure (MTBF) of the system, it should benefit any fault tolerance protocol.

Extending our work by implementing thermal capping in other fault tolerance protocols

could be an interesting future work, e.g., message logging and parallel recovery [49],

and comparing their benefits to our current scheme.

Reducing thermal throttling: Earlier studies show that large temperature variations can

decrease the reliability of a processor [79]. Estimating the effects of such variations

on MTBF of a processor by looking at real temperature data of a processor for vari-

ous workloads could be an interesting future work. Based on the thermal profiles of

different applications that capture thermal throttling, application performance can be

improved by controlling processor temperature and reducing any large temperature

variations.

6.2 Power Constraint

The second part of this thesis optimizes performance under a strict power constraint and

makes the following conclusions:

• CPU and memory power capping can be used to constrain the power drawn by each

node of an HPC machine. This feature comes with a performance impact for the
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application. Chapter 4 describes a curve fitting scheme that can capture the relation

between execution time and CPU power.

• Power capping the CPU and memory subdomains in the context of an overprovisioned

system can significantly improve the performance of an application. Capping the CPU

and memory power subsystems allows us to add additional nodes that speedup the

computation while staying within the power budget. Chapter 4 demonstrates that

our overprovisioning scheme improves application performance under a strict power

budget.

• Base/idle power of a machine can significantly effect the usefulness of an overprovi-

sioned system. It acts as a fixed cost for adding more nodes and hence determines the

ease with which additional nodes can be added by capping the CPU/memory power

of other nodes. Chapter 4 shows how lower base/idle power can improve application

performance in an overprovisioned system.

• Depending on application characteristics, CPU power capping can degrade perfor-

mance differently. Chapter 5 captures the sensitivity of application performance to

CPU power by describing a comprehensive model that takes into account the power

consumed by various subcomponents of the CPU.

• CPU power capping can be used for improving the throughput of an entire data center

by using an efficient resource management system. Chapter 5 describes our scheduling

scheme that takes into account application characteristics to determine the best set of

jobs to execute along with an optimum resource combination for each of the selected

jobs.

The work described in the second part of this thesis presents the following interesting

ideas to explore in the future:

Power capping induced heterogeneity: Two compute nodes operating under the same

CPU power cap might end up working at different frequencies due to different thermal

conditions [80]. Such frequencies can get exaggerated for very low power caps. This

heterogeneity can be addressed by using dynamic load balancing capabilities of a system

that supports dynamic object migration [81]. Our frequency-aware load balancer can

be used to fix such heterogeneity. The frequency-aware load balancer should load

balance and hence improve performance.

Thermal and power constraints: Applying a thermal constraint can reduce cooling costs

(Chapter 2) and improve reliability (Chapter 3) of an HPC data center. In the future,

110



one can combine our power capping work with temperature restraint to combine the

benefits of both the schemes. Such a solution would efficiently operate an overprovi-

sioned data center under fixed power and temperature constraints.

Fine grained power capping: RAPL supports individually power capping both the PP0

(only the cores) and PKG (the entire processor including the cores, caches and the

memory controller) subdomains. So far, we have applied power capping at the PKG

level. Benefits of individually capping the PP0 and PKG subdomains would be an

interesting work to follow.
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APPENDIX A
Machine Descriptions

To evaluate the schemes proposed in this thesis, we required machines that allowed DVFS

or CPU power capping. We used two different Dell clusters located at the Computer Science

Department of the University of Illinois at Urbana Champaign. Table A.1 summarizes the

two clusters i.e. Energy Cluster and Power Cluster.

Component Energy Cluster Power Cluster

Processor Intel Xeon X3430 Intel Xeon E5-2620
Processor frequency (GHz) 2.4 2.0
Turbo frequency (GHz) 2.8 2.5
Cores per processor 4 6
TDP (W) 95 95
Interconnect switch Gigabit ethernet Gigabit ethernet
Memory per node (GB) 4 16

Table A.1: Summary of features of clusters used in this thesis.

Energy Cluster

Energy Cluster consists of 40 nodes (160 cores) installed in the Department of Computer

Science of the University of Illinois at Urbana-Champaign. Each node has a single socket

with a four-core Intel Xeon X3430 processor chip. Each chip can be set to 10 different

frequency levels (‘P-states’) between 1.2 GHz and 2.4 GHz. It also supports Intel’s Tur-

boBoost [82], allowing some cores to overclock up to 2.8 GHz. The operating system on

the nodes is CentOS 5.7 with lm-sensors and coretemp module installed to provide

core temperature readings, and the cpufreq module installed to enable software-controlled
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DVFS. The cluster nodes are connected by a 48-port gigabit ethernet switch. We use a

Liebert power distribution unit installed on the rack containing the cluster to measure the

machine power after a 1 second interval on a per-node basis. We gather these readings

for each experiment and integrate them over the execution time to come up with the total

machine energy consumption.

The Computer Room Air Conditioner (CRAC) is an air cooler fed by chilled water from

a campus plant. It achieves the temperature set-point prescribed by the operator by ma-

nipulating the flow of chilled water. The temperature of the exhaust air coming from the

machine room is compared to the set-point and the water flow is adjusted accordingly.

Power Cluster

This testbed is a 20-node Dell PowerEdge R620 cluster installed at the Department of

Computer Science, University of Illinois at Urbana-Champaign. Each node is an Intel R©

Xeon R© E5-2620 Sandy-bridge server with 6 physical cores @ 2GHz, 2-way SMT with 16GB

of DRAM. The package/CPU corresponds to the processor die that also includes the cores,

L1,L2 and L3 caches amongst other components. The package power for this cluster can be

capped in the range 25W to 95W (71 integer power levels) while the memory power can be

capped between 8W to 35W (28 integer power levels).
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APPENDIX B
Benchmark Descriptions

To evaluate the benefits of the schemes proposed in this dissertation, we used a variety of

parallel applications. These applications come from various domains and are implemented

using different languages. This appendix describes each of the applications used in this

thesis.

Jacobi2D

A 5-point stencil application that computes the transmission of heat over a discretized 2D

grid. The global 2D grid is divided into smaller blocks that are processed in parallel. It is

an iterative application where all processors synchronize at the end of each iteration. As

is the case in a stencil computation, each grid point is the average of the neighboring 5

points. Neighboring blocks communicate the ghost layers with each other so that averaging

computations are done for all cells inside each block. This application is implemented in

Charm++ using a 2D chare array.

Wave2D

This benchmark is a finite differencing method that computes the pressure information over

a discretized 2D grid. The entire space is divided into smaller blocks that are divided among

the processors. As in any other parallel stencil computation, neighboring blocks exchange

ghost layers to do computation. The computation updates all cells in the grid using the

previous two values of the neighboring cells using a 5-point stencil. This benchmark is
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implemented using Charm++ where each block is represented as an array element of a 2D

chare array.

Mol3D/LeanMD

This mini-application is a molecular dynamics application that emulates the communication

pattern of a real world application NAMD [83]. It computes the interaction forces based

on Lennard-Jones forces amongst particles in a 3D space. It does not include any long

range force calculation. The object decomposition is achieved using a scheme similar to

NAMD. The 3D space is divided into hyperrectangles, called cells or patches in NAMD’s

nomenclature, each containing a subset of particles. A compute object is responsible for the

force calculations between each pair of cells. In each computation of the application, each

cell sends its particle data to all computes objects attached to it and receives the updates

from those computes objects. This mini-application is implemented using Charm++ where

the set of cells and computes objects are represented by chare arrays.

Lulesh

Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH) was origi-

nally defined and implemented by Lawrence Livermore National Laboratory (LLNL) as one

of five challenge problems in the DARPA UHPC program and has since become a widely

studied proxy application in DOE co-design efforts for exascale [56]. LULESH is a highly

simplified application, hard-coded to only solve a simple Sedov blast problem with analytic

answers. It represents the numerical algorithms, data motion, and programming style typi-

cal in scientific C or C++ based applications. It approximates the hydrodynamics equations

discretely by partitioning the spatial problem domain into a set of volumetric elements de-

fined by a mesh. Each node represents a point of intersection on the mesh. It is an iterative

application that exchanges ghost layers with neighboring elements. Although LULESH is

implemented using many parallel programming models, we use a Charm++ implementation

that uses a 3D chare array.
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NPB Parallel Benchmarks

The NAS Parallel Benchmarks (NPB) are a small set of programs designed to help evaluate

the performance of parallel supercomputers. The benchmarks are derived from compu-

tational fluid dynamics (CFD) applications and consist of five kernels and three pseudo-

applications in the original ”pencil-and-paper” specification (NPB 1) [84–86]. Problem sizes

in NPB are predefined and indicated as different classes. In this thesis we use AMPI imple-

mentations of FT and MG.

FT: This benchmark is a 3D partial differential solver that uses FFT. It is a communication

intensive code that does several long distance communication operations. The benchmark

problem is to solve a discrete version of the original PDE by computing the forward 3-D

discrete Fourier transform (DFT) of the original state array.

MG: is a simplified multigrid kernel, that solves a 3-D Poisson PDE. The Class B problem

uses the same size grid as Class A but a greater number of inner loop iterations.

Adaptive Mesh Refinement (AMR)

We use an efficient oct-tree based Charm++ implementation of AMR. This implementation

is fully distributed and highly asynchronous which removes several centralized bottlenecks

and synchronization overheads present in competing implementations [74]. Instead of a

process, it models a block as a basic schedulable unit that acts as a virtual processor.

This virtualization allows overlap of communication and computation. This benchmark

allows dynamic placement of a block on any physical processor that facilitates dynamic load

balancing.
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[81] L. Kalé and S. Krishnan, “Charm++ : A portable concurrent object oriented system
based on C++,” in Proceedings of the Conference on Object Oriented Programmi ng
Systems, Languages and Applications, September 1993.

[82] “Intel turbo boost technology,” http://www.intel.com/technology/turboboost/.
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