
Energy Profile of Rollback-Recovery Strategies in

High Performance Computing

Esteban Meneses, Osman Sarood and Laxmikant V. Kalé

Parallel Programming Laboratory
Department of Computer Science

University of Illinois at Urbana-Champaign

Abstract

Extreme-scale computing is set to provide the infrastructure for the advances
and breakthroughs that will solve some of the hardest problems in science
and engineering. However, resilience and energy concerns loom as two of
the major challenges for machines at that scale. The number of components
that will be assembled in the supercomputers plays a fundamental role in
these challenges. First, a large number of parts will substantially increase
the failure rate of the system compared to the failure frequency of current
machines. Second, those components have to fit within the power envelope of
the installation and keep the energy consumption within operational margins.
Extreme-scale machines will have to incorporate fault tolerance mechanisms
and honor the energy and power restrictions. Therefore, it is essential to
understand how fault tolerance and energy consumption interplay. This pa-
per presents a comparative evaluation and analysis of energy consumption
in three different rollback-recovery protocols: checkpoint/restart, message
logging and parallel recovery. Our experimental evaluation shows parallel
recovery has the minimum execution time and energy consumption. Addi-
tionally, we present an analytical model that projects parallel recovery can
reduce energy consumption more than 37% compared to checkpoint/restart
at extreme scale.

Keywords: rollback-recovery, checkpoint/restart, message logging, parallel
recovery, energy consumption

Preprint submitted to Parallel Computing January 23, 2014

1. Introduction

The eventual arrival of extreme-scale supercomputers will help in solv-
ing some of the hardest problems in science and engineering. From high-
resolution climate modeling to patient-specific drug design, many high-impact
applications require a massive amount of computation that only very large
systems can provide. However, there are at least two major challenges that
have to be addressed to really make extreme-scale systems functional [1, 2].
The first problem is the significant increase in the failure frequency. As many
components have to be assembled together to provide all the required com-
puting power, large systems will inevitably have a high failure rate. It is
estimated that exascale machines will have a failure every few minutes [2].
Therefore, a fault tolerance mechanism has to be employed to allow applica-
tions run on large systems. The second problem is power management and
energy consumption. Power will be the driver in the design of architectures,
systems and applications for extreme-scale computing. Installations will have
strict power limits and all the layers of the system will have to meet that
power budget. Energy will also be a crucial consideration, given the high
cost of managing large systems. It will be fundamental to decrease the en-
ergy consumption. Reducing power consumption by one megawatt may save
around $1M/year even in a relatively inexpensive energy contract [2].

There are several promising fault-tolerance strategies to solve the re-
silience challenge at extreme scale. We present a set of three rollback-recovery
protocols and offer a comparative evaluation and analysis in terms of their
energy and power profiles. These protocols are organized as a hierarchy,
where each protocol is an incremental extension of the previous. The base
protocol is the traditional checkpoint/restart based on local storage [3, 4].
The tasks in the application periodically save their state and rollback to the
latest global checkpoint in case of a failure. The next method is a particu-
lar version of message logging [5] that requires messages to be stored, but
avoids a global rollback in case of a failure. Should a node fail, only the
tasks running on that node are rolled back. The rest of tasks will re-send
the messages to the failed tasks and make progress or wait idle until recovery
is finished. Finally, the third approach is called parallel recovery [6] that
extends message logging by allowing the migration of tasks after a failure to
accelerate their recovery.

This paper extends the material presented in our previous publication [7]
by refining the analytical formulation to model the energy consumption of

2

the different fault-tolerance protocols, extending the experimental results
on new and more accurate power-measuring hardware, and improving the
projections to extreme scale systems. The contributions of this paper are the
following:

• An analytical model to understand and represent the energy consump-
tion of three different rollback-recovery mechanisms (§ 3). This model
incorporates the main factors that affect the power draw in each mech-
anism. At the same time, the model is flexible enough to be extended
to more strategies and more factors.
• An experimental evaluation of the energy consumed by the three rollback-

recovery techniques (§ 4). We present results using several programs on
two different parallel programming models. These results were collected
on a cluster enhanced to provide the power draw of various components
at the millisecond level.
• Projections of the energy profile of the rollback-recovery strategies at

extreme scale (§ 5). These estimations highlight the advantage of using
local rollback protocols. For instance, on a machine with more than
512,000 sockets, the total energy consumed by a 24-hour job can be
reduced by more than 37% using parallel recovery, compared to check-
point/restart.

2. Rollback-Recovery

We conceive an application as a set of tasks Π. Each task holds a por-
tion of the application’s data and performs part of the computation. The
only mechanism for the tasks to share information is through message pass-
ing. Each message is associated with a particular method at the target task.
Upon reception of a message, a task executes the associated method until
completion. An application is run on a parallel architecture that is repre-
sented as a set of nodes Σ. The number of tasks is independent of the number
of nodes. The fraction |Π||Σ| is called the virtualization ratio. All nodes are con-
nected through a network that does not guarantee FIFO delivery between
pairs of nodes. A runtime system orchestrates the execution of the applica-
tion and is in charge of assigning tasks to nodes. In addition, the runtime
system can migrate tasks from one node to another. Fault tolerance and
load balancing are usually the main reasons for task migration. This com-
putational model is general enough to accommodate well established parallel
programming languages, such as MPI [8] and Charm++ [9].

3

Parallel Recovery

Message Logging

Checkpoint/Restart

Tasks can migrate at restart

Messages are stored and re-sent at restart

Tasks can be serialized at checkpoint

Figure 1: Organization of the three rollback-recovery protocols explored in this paper.
Each protocol adds an incremental set of features that potentially reduces energy con-
sumption in a faulty scenario.

The nodes in the system may fail according to the fail-stop model. That
means, after a node crashes, it ceases to communicate and does not come
back. Other node from a pool of spare nodes will replace the failed one.
Therefore, the number of nodes dedicated to an application is constant during
execution, regardless of the number of node failures. Nodes are assumed to
be homogeneous and fail according to an exponentially distributed random
variable. The system assembles all the nodes together and combines the
individual resilience descriptors into a single value that is commonly referred
as mean-time-between-failures (MTBF). This random variable represents the
failure frequency of a machine. The runtime system must employ a fault-
tolerance mechanism to allow an application run through failures. In this
paper, we examine rollback-recovery techniques [10]. These protocols are
based on the principle that a failure will force the system to roll back to a
previously stored consistent state, and recover from that state. A typical
realization of this principle is through checkpoint/restart, where the system
periodically stores its state. Should a node fail, the system rolls back to the
most recent valid checkpoint and restart.

This paper explores three rollback-recovery strategies: checkpoint/restart,
message logging, and parallel recovery. They can be organized as a sequence
of incremental additions to the fundamental checkpoint/restart scheme. Fig-
ure 1 shows the three protocols and the features each of them adds to reduce
energy consumption when an application runs through failures.

2.1. Checkpoint/Restart

The most popular strategy to provide fault tolerance in HPC is check-
point/restart. The basic tenet of this protocol is to checkpoint, or save the
state of the application with certain periodicity, such that a failure will roll
back all the nodes to a previous state and resume the execution from that
state. The principle is simple and effective for the failure frequency of petas-

4

cale machines. There are several libraries implementing this protocol for
HPC systems [3, 4, 11, 12].

There are at least three main approaches to determine what is included in
a checkpoint [13]. In system-level checkpointing, the state of all the system
is stored. That includes the memory pages used by the application, but also
the rest of the hardware state (register, buffers, caches, etc). In contrast,
application-level checkpointing allows the programmer to write a checkpoint
method and define exactly what is saved. This approach enforces a more dis-
ciplined use of the checkpoint calls, by placing them at convenient locations
in the code (for instance, after global synchronization operations). Finally,
runtime-system-based checkpointing extends the previous approach by hav-
ing the runtime system automatically store the state of some structures. The
programmer has to implement the checkpoint routines and make the check-
point calls. However, there is a major role played by the runtime system at
checkpoint time. In some situations, the runtime system may decide not to
checkpoint if the failure frequency is lower than a threshold.

A checkpoint is called uncoordinated if the tasks are allowed to checkpoint
at their own pace. Such strategy does not incur any overhead in synchroniz-
ing the tasks for checkpoint, but the collection of checkpoints from all the
tasks may not be consistent. To alleviate that problem, either some messages
have to be stored, or there is a risk of having cascading rollbacks. This last
situation means that a failure may roll back the system several checkpoints
until a valid collection of checkpoints is found. A coordinated checkpoint, on
the contrary, requires the set of tasks to collaborate in deciding the time to
checkpoint or what to include in the checkpoint. Alternatively, the program-
mer can use globally synchronization points in the application to trigger the
checkpoint. This way, the set of checkpoints form a consistent global check-
point that can be safely used to restart from a failure.

There are several alternatives for the checkpoint storage. The traditional
approach has been to use the network shared file system. However, it is
clear this scheme will not scale very far and it quickly bottlenecks [1, 14, 15].
Therefore, an alternative approach is to use storage local to the nodes. One
strategy is called double-local checkpoint/restart [3], where either memory,
local disks or solid state drives (SSDs) are used to save the checkpoint. This
strategy requires each node to have a checkpoint buddy. At checkpoint, every
node saves its state in its own local storage and in the local storage of its
buddy. If a node crashes, the buddy provides the latest checkpoint to the
replacement node. All other nodes in the system roll back to the latest

5

checkpoint stored in their local storage.
In the rest of the paper we assume checkpoints are runtime-system-based,

coordinated and double-local. We build the next two fault tolerance strate-
gies on top of this checkpoint/restart scheme.

2.2. Message Logging

A node failure provokes the loss of the current state of the tasks running
on the failed node. To reconstruct that state, checkpoint/restart rolls back
the set of all tasks to a previous consistent checkpoint and resumes execution.
Rolling back the tasks that did not fail is unnecessary, provided that the
messages those tasks sent to the failed tasks can be somehow recovered.
This is the spirit of message logging. In principle, all messages between tasks
are stored and replayed in case of a failure. That means, only the tasks
on the failed node have to roll back, the rest of the system is free to keep
making progress or to wait idle. Message logging provides local recovery,
as opposed to global recovery in checkpoint/restart. This ability has a high
energy-saving potential.

In addition to store messages between tasks, message-logging protocols
usually require more mechanisms to work properly. To recover the failed
node correctly (i.e., bring its state to a consistent global state with the rest of
nodes), it is often necessary that the recovering node processes the messages
in the same order as it did before the crash. Even more, all non-deterministic
decisions must be executed with the same output during recovery. We use
the piece-wise deterministic (PWD) assumption [16] that states saving all
the output of the non-deterministic events is sufficient for a correct recov-
ery. These bits of information are called determinants. The only type of
non-determinism we consider in this paper is message reception. Thus, every
time a message is received, a determinant gets created. There are different
protocols to handle determinants and how they get stored and recovered.
The major message-logging protocols are called optimistic, pessimistic and
causal [17]. In this paper, we will use a variant called simple causal mes-
sage logging [5]. Additionally, we will also used the fast message logging
protocol [15] for programs with a high-level representation that allows the
suppression of determinants. The major concern in designing a message-
logging protocol is to keep small the performance overhead µ associated with
managing messages and determinants. The value of µ depends on several
factors. However, for the applications used in this paper, the aforementioned
protocols have a µ lower than 5%.

6

2.3. Parallel Recovery

A useful extension to message logging that aims to further reduce recovery
time is called parallel recovery [6]. The main idea of this strategy consists in
distributing the tasks on the failed node among other nodes during restart.
That way, if the application is tightly coupled and most nodes are idle during
recovery, the recovering tasks can recover on different nodes and in parallel.
A faster recovery provides a mechanism to achieve a faster execution in a
faulty environment. Therefore, the acceleration factor during recovery σ
aims to offset the performance overhead of message logging µ.

The design of parallel recovery assumes tasks can only migrate during
checkpoint or restart1. That means parallel recovery will accelerate a portion
of the execution and slow down another portion. More explicitly, if the
checkpoint period is τ and the failure occurs t units after the last checkpoint,
then parallel recovery accelerates the recovery of the portion t

τ
, but incurs a

performance penalization λ in the portion τ−t
τ

. The factor λ appears thanks
to the task migration for recovery. Some nodes will receive tasks to recover
and these tasks can only go back to their origin node until the next checkpoint
is reached.

Figure 2 presents a sample execution and how recovery works with the
three different protocols examined in this paper. Part a) shows a system with
4 nodes and 6 tasks. This scenario depicts a failure on node Y after a few
messages have been exchanged from the last checkpoint. Part b) presents
the recovery using checkpoint/restart, where all the nodes roll back to the
previous checkpoint and resume execution. Note that recovery may proceed
differently than the original execution. Part c) shows message logging that
only requires node Y to roll back. In this case, the same delivery sequence
has to be reproduced. Determinants provide such guarantee. Part d) shows
parallel recovery that migrates task D to node X, accelerating the recovery
of tasks D and E.

3. Modeling Energy Consumption

Rollback-recovery mechanisms based on checkpoint/restart, like the three
protocols described in the previous section, face an important challenge re-

1This restriction is used to build a more efficient implementation and does not come
from the computational model.

7

Node W

Node X

Node Y

Node Z

m2

m1

m3

m4

m5

m2m1

m3

m4

m5

Node W

Node X

Node Y

Node Z

m1

m3
m5

m1

m3
m5

Task A Task B Task C Task D Task E Task F Failure

Recovery

Recovery Recovery

a) Sample Execution b) Checkpoint/Restart

c) Message Logging d) Parallel Recovery

Checkpoint

Figure 2: A sample execution and recovery with the three rollback-recovery
schemes.

garding the checkpoint frequency. If checkpoints are too frequent, the over-
head of saving the state of the application will negatively impact the per-
formance. Contrarily, if checkpoints are too infrequent, the amount of work
to recover after a failure may even prevent the system from making any
progress. Therefore, an optimal checkpoint period must be found. The sym-
bol τ will denote the amount of work that must be performed between two
consecutive checkpoints. For failures exponentially distributed, an optimal τ
is periodic [18]. The optimal value of τ depends on other factors, including
checkpoint time δ, and the MTBF of the system M . A popular approxima-
tion [19] is given by the formula τ =

√
2δM − δ. This expression provides

the optimal τ to reduce the overall execution time, considering the failures
that may occur during execution.

However, in minimizing the energy consumption of rollback recovery pro-
tocols, it is important to understand how execution time and energy con-
sumption are related and how they differ. Figure 3 shows an example run of
a stencil code that checkpoints its state to memory. The figure reports the
total power on one node into three components: base, CPU and memory.
The power reading granularity is one tenth of a second. The application pe-
riodically checkpoints its state, and at those points there is a visible decrease

8

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 100 120 140 160 180 200

P
ow

er
 (

W
)

Time (s)

Computation Checkpoint
Memory

CPU
Base

Figure 3: Different power levels in a sample execution with checkpoint/restart.

in the power of both CPU and memory. The whole execution alternates
between two different power levels, one for the computation and one for the
checkpoint. Therefore, the performance models to minimize execution time
in rollback-recovery protocols can not directly apply to energy consumption,
because of the different power levels at which computation and checkpoint
happen. In addition, recovery will introduce another source for power level
variation. While checkpoint/restart recovers at full power, message logging
and parallel recovery dramatically decrease the power level because they
only require a local recovery. Traditional performance models assume a pro-
gram executes at a constant power level. They would provide a suboptimal
checkpoint frequency if energy consumption has to be minimized instead of
execution time. For instance, the optimum checkpoint frequency for energy
consumption will be greater or equal to the optimum checkpoint frequency
for execution time.

Symbol Description Symbol Description

MS MTBF of each socket µ Message-logging slowdown
M MTBF of the system φ Message-logging recovery speedup
S Total number of sockets P Available parallelism during recovery
W Time to solution λ Parallel recovery slowdown
δ Checkpoint time σ Parallel recovery speedup
τ Optimum checkpoint period ψ Migration cost
R Restart time H High power of each socket
T Total execution time L Low power of each socket
E Total energy consumption

Table 1: Parameters of the energy consumption model.

9

We introduce an analytical model to estimate the total energy consump-
tion of rollback-recovery mechanisms. The model requires several parame-
ters, which are listed in Table 1. Usually, MS,M, S,W, δ and R are inputs
to the model. For simplicity, we will assume M = MS

S
. The model deter-

mines the optimal checkpoint period τ to either minimize T or E. We will
denote by τT and τE the optimum value of τ to minimize time and energy,
respectively. Message logging parameters are µ and φ, while parallel recov-
ery is represented by P, λ, σ, and ψ. Finally, the model considers two power
levels, H and L, depending on whether the system is doing computation or
checkpointing, respectively. We will assume L is also the idle power. Here
are the general formulas for execution time and energy consumption:

T = TSolve + TCheckpoint + TRecover + TRestart (1)

E = ESolve + ECheckpoint + ERecover + ERestart (2)

These formulas are separated into four different components, according to
the state in which the execution is. For each of the rollback-recovery proto-
cols, we provide approximations for each of the components in equations 1
and 2. Table 2 shows the equations for TC , TM , and TP , representing check-
point/restart, message logging and parallel recovery, respectively. Similarly,
the table lists the formulas for EC , EM , and EP .

Protocol Formulas

Checkpoint/
Restart

TC = W +
(
W
τ
− 1

)
δ + TC

M

(
τ+δ
2

)
+ TC

M
R

EC = WSH +
(
W
τ
− 1

)
δSL+ TC

M
ΩC + TC

M
RSL

ΩC = τ
τ+δ
· τ
2
SH + δ

τ+δ
(τSH + δ

2
SL)

Message
Logging

TM = Wµ+
(
Wµ
τ
− 1

)
δ + TM

M

(
τ
τ+δ
· τ
2φ

+ δ
τ+δ

(
τ
φ

+ δ
2

))
+ TM

M
R

EM = WµSH +
(
Wµ
τ
− 1

)
δSL+ TM

M
ΩM + TM

M
RSL

ΩM = τ
τ+δ
· τ
2φ

(H + (S − 1)L) + δ
τ+δ

(τ
φ

(H + (S − 1)L) + δ
2
SL)

Parallel
Recovery

TP = Wµ+
(
Wµ
τ
− 1

)
δ + TP

M

(
τ
τ+δ

(
τ
2σ

+ τ
2

(λ− 1)
)

+ δ
τ+δ

(
τ
σ

+ δ
2

))
+ TP

M
(R+ ψ)

EP = WµSH +
(
Wµ
τ
− 1

)
δSL+ TP

M
ΩP + TP

M
(R+ ψ)SL

ΩP = τ
τ+δ

(
τ
2σ

(PH + (S − P)L) + τ
2

(λ− 1)SH
)

+ δ
τ+δ

(
τ
σ

(PH + (S − P)L) + δ
2
SL

)
Table 2: Execution time and energy consumption formulas.

The equations in Table 2 assume the number of failures in an execution
can be approximated by T

M
. The equations for TC , TM , and TP all have

the similar expressions for TSolve and TCheckpoint. The only difference comes

10

from the associated overhead of message logging. These formulas, though,
markedly differ in the expression for TRecover. Message logging uses φ to
represent the speedup in recovery, while parallel recovery adds σ and λ during
recovery. The migration cost of distributing tasks in parallel recovery is
captured by ψ and added to the restart cost TRestart. The equations for EC ,
EM , and EP extend their execution time counterparts by adding appropriate
power levels to each component.

4. Experimental Evaluation

4.1. Setup

The testbed used in this paper is called the Energy Cluster. It has two
sections, named A and C. Section A contains 32-nodes (128 cores). Each node
has a single socket with a four-core Intel Xeon X3430 processor chip running
CentOS 5.7. Section C is a 20-node Dell PowerEdge R620 cluster. Each
node has a single socket containing the Intel Xeon E5-2620 Sandy-bridge
server with 6 physical cores @ 2GHz, 2-way SMT with 16 GB of DRAM.
The Package (CPU) corresponds to the processor die that includes the cores,
L1, L2, and L3 caches in addition to the memory controller. This processor
supports on board power measurement and capping through Intel’s Running
Average Power Limit (RAPL) interface [20]. RAPL is implemented using a
series of Machine Specific Registers (MSRs). These MSRs can be accesses to
get power readings for each of the supported power planes at a granularity
of 1 millisecond. Any power consumed other than the package and DRAM
domains is referred as the base power. It includes the power consumed by
all the remaining components (e.g. power supply, mother board, fans and
network cards). The base power of a machine does not fluctuate a lot. For
this cluster, the base power for each of the nodes came out to be between
38-44W. These base power measurements are taken from the built-in power
meters on the Power Distribution Unit (PDU) that powers the cluster. Each
section of the Energy Cluster is connected through a gigabit Ethernet switch.

The three fault-tolerance protocols presented in the previous sections were
implemented in the Charm++ runtime system [21]. Charm++ imple-
ments a parallel programming paradigm called migratable objects that fits
into our computational model of Section 2. In Charm++, an application is
over -decomposed into objects. The number of objects is usually independent
of the number of nodes on which the application will run. An adaptive run-
time system allows Charm++ distribute the objects among the nodes and

11

migrate objects from one node to another. That migration is traditionally
used to bring a better load balancing to the execution, reducing the total
time to completion. An extension to Charm++, called Adaptive Message
Passing Interface (AMPI) permits the execution of any MPI application on
the Charm++ runtime. In AMPI each MPI rank becomes an object that
enjoys all the benefits of Charm++, such as load balancing, fault tolerance
and general adaptivity of the system.

Table 3 presents a summary of all the applications used in the experimen-
tal evaluation of the different protocols. The program Wave2D runs a finite
difference method to compute pressure information on a two-dimensional
grid. Jacobi3D is a 7-point stencil that computes the transmission of heat
on a three-dimensional space. The Livermore Unstructured Lagrangian Ex-
plicit Shock Hydrodynamics (LULESH) is a code for modeling hydrodynam-
ics. This code describes the motion of materials relative to each other when
subject to forces in a three-dimensional space. The MPI programs NPB-BT
and NPB-SP correspond to the block-tridiagonal and scalar penta-diagonal
kernels from the NAS Parallel Benchmarks (NPB). To inject a failure in a
running application, we execute kill -9 PID, where PID represents a pro-
cess running on one physical core with multiple tasks.

Application Wave2D Jacobi3D LULESH NPB-BT NPB-SP

Language Charm++ Charm++ Charm++ MPI MPI
Domain Physics Physics Physics Linear Algebra Linear Algebra
Virtualization Ratio 32 32 32 4 4
Max Power (C/R) 108 103 105 102 95
Max Power (ML) 103 103 105 102 96

Table 3: List of features of applications used in the experiments.

4.2. Results

We ran Jacobi3D with the three protocols and analyze the power and
energy profile of each run. The program was run over a space of size 1500×
800 × 400, decomposed into blocks size 503 for a virtualization ratio of 32.
The program ran for a total of 1,600 iterations with checkpoints at iterations
400 and 1,200. A failure on one core was injected at time 41 seconds. We
used all the 20 nodes and 120 physical cores of the Energy Cluster Section C.
Figure 4 presents the results of this experiment. On the left column we show
the progress diagram of the execution, that shows the time at which certain
iteration was completed. The diagram for checkpoint/restart illustrates a

12

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 20 40 60 80 100

P
ro

gr
es

s
(it

er
at

io
n)

Time (seconds)

F
ai

l

Ckpt

Ckpt
Parallel Recovery

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 20 40 60 80 100

P
ro

gr
es

s
(it

er
at

io
n)

F
ai

l

Ckpt

Ckpt
Message Logging

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 20 40 60 80 100

P
ro

gr
es

s
(it

er
at

io
n)

F
ai

l

Ckpt

Ckpt
Checkpoint/Restart

 1000

 1500

 2000

 2500

 0 20 40 60 80 100

P
ow

er
 (

W
)

Time (seconds)

Memory
CPU

Base

Parallel Recovery

 1000

 1500

 2000

 2500

 0 20 40 60 80 100

P
ow

er
 (

W
)

Memory
CPU

Base

Message Logging

 1000

 1500

 2000

 2500

 0 20 40 60 80 100

P
ow

er
 (

W
)

Memory
CPU

Base

Checkpoint/Restart

Figure 4: Progress rate of different rollback-recovery strategies in a faulty scenario.

global recovery mechanism that rolls all the tasks back to the latest check-
point. In contrast, message-logging techniques only force a local recovery
of the failed tasks. The flat section of the progress rate in message logging
and parallel restart corresponds to the recovery of the work lost in a failure.
In this case, parallel recovery used a value for P equals to 4. The recovery
speedup achieved was 3.74. The final execution time for checkpoint/restart,
message logging, and parallel recovery was 103.13 s, 95.34 s, and 89.82 s,
respectively.

The right column in Figure 4 shows the total power of the machine for
the same execution. During recovery, checkpoint/restart does not reduce
the power level, because recovery is global. However, message logging and
parallel recovery dramatically decrease their power consumption because the
rest of tasks on other nodes are waiting idle while the failed tasks catch up.
That alone decreases the total energy consumption and in the end check-
point/restart, message logging and parallel recovery use 218.96 kJ, 193.96 kJ,
and 190.97 kJ, respectively. The values predicted by the energy consump-
tion model of Section 3 for this particular scenario are 220.69 kJ, 195.65 kJ,

13

and 191.45 kJ, for checkpoint/restart, message logging, and parallel recov-
ery, correspondingly. All projected values lie within 1% error margin with
respect to the experimental values. Note that message logging outperforms
checkpoint/restart even considering the message logging slowdown (µ). This
is the result of message logging having a speedup during recovery (φ) due to
the immediate availability of messages while recovering.

We ran the MPI programs using the AMPI extension on 25 nodes (100
cores) of the Energy Cluster Section A. In both cases (BT and SP), the
program used periodic checkpoints. A failure was inserted in the middle of
one checkpoint period. Each failure point was carefully calibrated for each
protocol. We measured the total energy consumption for each protocol in
the faulty interval. The results are shown in Figure 5(a) and it presents
the energy consumption of message logging and parallel recovery relative to
checkpoint/restart. Parallel recovery manages to execute through the failure
with the minimum amount of energy consumed. For this particular case,
both benchmarks show similar results, with message-logging using around
70% of checkpoint/restart and parallel recovery using close to 63%.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3

NPB-BT NPB-SP

R
el

at
iv

e
E

ne
rg

y
C

on
su

m
pt

io
n

Checkpoint/Restart
Message-Logging
Parallel Recovery

(a) Energy consumed in a faulty checkpoint
period.

 2

 4

 6

 8

 10

2 4 8 16 32

P
ar

al
le

l R
ec

ov
er

y
S

pe
ed

up
 (

σ)

Available Parallelism during Recovery (P)

Wave2D
LULESH
Jacobi3D

(b) Parallel recovery speedup.

Figure 5: Potential for parallel recovery. The higher the virtualization ratio, the more
room for acceleration during recovery and less energy consumed.

Finally, we ran the three Charm++ programs on 120 cores of the En-
ergy Cluster Section C to understand how much speedup is achievable with
different applications. Figure 5(b) shows the speedup in recovery (σ) and
the available parallelism P increases. Some programs benefit more than oth-
ers from parallel recovery. Wave2D shows the highest speedup, reaching

14

almost a factor of 10. LULESH and Jacobi3D reach up a factor of 6 and 4,
respectively.

5. Extreme-Scale Projections

The previous section highlighted the potential of message logging and
parallel recovery in decreasing the energy consumption of an execution. In
this section we provide a set of projections of how the fault-tolerance proto-
cols would perform in different circumstances. The most fundamental factor
is scalability. Hence, we offer figures for a varying number of sockets as the
measure for system size. The socket count ranges from 8,192 to 524,288, given
that a large-scale machine is expected to have at least 200,000 sockets [1].
The parameters of the analytical model of Section 3 are materialized with
appropriate values, shown in Table 4. We simulate a job running for 24 hours
and weak scaling through the socket count range. Each socket has an MTBF
of 10 years, a reasonable value according to literature estimates [1, 15, 22].
The checkpoint and restart time are based on the algorithm described in
Section 2 and the match expectations at large scale [1]. The parameters
for message logging and parallel restart are based on empirical evidence we
have collected [5, 7, 15]. Finally, the power levels H and L are based on
the experimental results of Section 4. Although the values of these last two
parameters directly affect the performance of the different protocols, their
relative value is what matters the most for the contrast we will present.

Parameter W MS δ R µ φ P σ λ ψ H L

Value 24h 10 years 180s 30s 1.05 1.2 8 P P+1
P

δ
P

100W 50W

Table 4: Baseline values of parameters in the model.

The first comparison we present appears in Figure 6 where the relative
energy consumption between the three protocols is shown. Figure 6(a) shows
the energy consumption using the optimum checkpoint period to minimize
execution time, τT . Similarly, Figure 6(b) presents the same comparison but
using τE, the optimum checkpoint period to minimize energy consumption.
Both figures show the scalability of message logging and parallel restart. A
larger socket count brings higher benefits in terms of energy consumption.
That means, strategies based on local recovery can tolerate higher failure
frequencies. In Figure 6(a), checkpoint/restart only performs better at 8,192
sockets. At the extreme end of the scale, message logging manages to reduce

15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

8K 16K 32K 64K 128K 256K 512K

R
el

at
iv

e
E

ne
rg

y
C

on
su

m
pt

io
n

(u
si

ng
 τ

T
)

Number of Sockets

Checkpoint/Restart
Message−Logging
Parallel Recovery

(a) Energy consumption using τT . Both
message logging and parallel recovery per-
form better than checkpoint/restart after
16,384 sockets.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

8K 16K 32K 64K 128K 256K 512K

R
el

at
iv

e
E

ne
rg

y
C

on
su

m
pt

io
n

(u
si

ng
 τ

E
)

Number of Sockets

Checkpoint/Restart (τT)
Checkpoint/Restart
Message−Logging
Parallel Recovery

(b) Energy consumption using τE . Similar
to the τT counterpart, message logging and
parallel restart manage to bring big benefits
compared to checkpoint/restart.

Figure 6: Comparison of energy consumption of fault-tolerance methods. Message logging
and parallel recovery offer an energy efficient solution as systems scale. When compared
to checkpoint/restart, message logging can reduce energy consumption more than 19%,
and parallel recovery more than 37%, using τE .

energy consumption by more than 20%, whereas parallel recovery achieves
more than 38% reduction. Using τE does not fetch any additional significant
benefit for message logging and parallel restart in this scenario (19% and
37%, respectively), as depicted in Figure 6(b). For comparison purposes, the
original τT checkpoint/restart curve is plotted, presenting just a marginal
difference with its τE counterpart.

One relevant aspect of the implications of failures on HPC systems comes
from the reliability standards of chip manufacturers. Figure 7(a) shows the
relative energy consumption of parallel recovery with different values for MS,
ranging from 5 to 80 years. A higher value of MS decreases the benefit of par-
allel recovery because it reduces the failure rate and the potential for parallel
recovery to consume less energy during recovery. A drop in socket reliability
from 10 to 5 years causes a dramatic increase in energy consumption benefits
of parallel recovery for roughly 20%. At that point, energy consumed can
be reduced by more than a half avoiding traditional checkpoint/restart and
using accelerated recovery.

Figure 7(b) presents the difference parallel recovery makes on energy con-
sumption. Greater values of σ improve the energy consumption of parallel
recovery, but there are diminishing returns for values greater than 16. That

16

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

8K 16K 32K 64K 128K 256K 512K

R
el

at
iv

e
E

ne
rg

y
C

on
su

m
pt

io
n

Number of Sockets

Checkpoint/Restart
Par. Rec. (MS=80 years)
Par. Rec. (MS=40 years)
Par. Rec. (MS=20 years)
Par. Rec. (MS=10 years)
Par. Rec. (MS=5 years)

(a) Effect of different values of MS on en-
ergy consumption. The higher the failure
rate, the more relative benefits of parallel
recovery with respect to checkpoint/restart.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

8K 16K 32K 64K 128K 256K 512K

R
el

at
iv

e
E

ne
rg

y
C

on
su

m
pt

io
n

Number of Sockets

Checkpoint/Restart
Par. Rec. (σ=4)
Par. Rec. (σ=8)

Par. Rec. (σ=16)
Par. Rec. (σ=32)
Par. Rec. (σ=64)

(b) Effect of different values of σ on en-
ergy consumption. The more speedup dur-
ing parallel recovery, the higher the benefits.

Figure 7: Factors affecting the performance of parallel recovery. Less reliable chips benefit
parallel recovery. A drop of MS from 10 to 5 years increases parallel recovery’s benefits by
20%. A parallel speedup value of 16 is good enough to maintain increased benefit along
the range of socket count.

means, achieving an acceleration factor of 16 in parallel recovery should be
enough to provide a benefit close to the maximum possible. In addition,
all the different values of σ show scalability across the socket count range.
Therefore, it is not necessary to scale the parallel speedup as the system
grows to keep the same benefit.

The ratio between base and maximum power, denoted by ρ, is worth ex-
ploring. Intuitively, the smaller the value of ρ, the more benefits message
logging and parallel recovery should have over checkpoint/restart. That is
based on the local recovery ability of these two protocols. If the difference
between staying idle and executing is higher, then there is more room to
reduce energy consumption. Figure 8(a) presents several values for ρ and the
relative energy consumption for each value using parallel recovery. Interest-
ingly, the difference is marginal across the different values of ρ. A smaller
value of ρ simply forces checkpoint/restart to checkpoint more frequently and
keep energy consumption to a minimum. However, a higher checkpoint rate
implies a higher checkpoint overhead and ultimately a higher execution time.
Therefore, even when checkpoint/restart manages to maintain a similar fig-
ure with different values of ρ, it sacrifices execution time for a smaller value
of ρ.

17

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

8K 16K 32K 64K 128K 256K 512K

R
el

at
iv

e
E

ne
rg

y
C

on
su

m
pt

io
n

Number of Sockets

Checkpoint/Restart
Par. Rec. (ρ=0.1)
Par. Rec. (ρ=0.3)
Par. Rec. (ρ=0.5)
Par. Rec. (ρ=0.7)
Par. Rec. (ρ=0.9)

(a) Effect of different values of ρ. There is
little difference between the different values,
but it comes at a cost of higher execution
time in checkpoint/restart.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

8K 16K 32K 64K 128K 256K 512K

R
el

at
iv

e
E

ne
rg

y
C

on
su

m
pt

io
n

Number of Sockets

Checkpoint/Restart
Par. Rec. (δ=0.75 m)
Par. Rec. (δ=1.5 m)

Par. Rec. (δ=3 m)
Par. Rec. (δ=6 m)

Par. Rec. (δ=12 m)

(b) Effect of different checkpoint duration.
A greater checkpoint time increases the ben-
efit of parallel recovery.

Figure 8: Understanding the effect of different parameters in the model and its overall
benefit is fundamental in deciding what factors should be explored when designing fault
tolerance mechanisms. The ratio of base to maximum power does not have a high impact
on energy consumption, but it does on execution time. Higher values of checkpoint time
may cause checkpoint/restart to collapse.

Figure 8(b) explores the relative benefit of parallel restart with different
checkpoint durations, ranging from 0.75 minutes to 12 minutes. If the value
of δ grows, so does the checkpoint period τ . That means, a failure will make
the system recover more work. Since parallel recovery benefits of more work
to recover, then it has a better contrast to checkpoint/restart. At the extreme
scale, a checkpoint time of 12 minutes causes checkpoint/restart to collapse,
being unable to make progress in that case. Parallel recovery can still finish
execution.

6. Discussion

This paper aims to provide some insight about the interaction between
fault tolerance and energy consumption. Providing effective resilience at ex-
treme scale is imperative. However, different mechanisms show a variety of
power and energy profiles. These differences help to disprove one traditional
thinking about energy consumption: minimize execution time will minimize
energy consumption. That statement is not true, at least in a faulty envi-
ronment. It heavily depends on what fault tolerance mechanism is in place
and under what conditions. The analytical model presented in Section 3

18

provides the theoretical foundations to understand why. For instance, mes-
sage logging incurs performance overhead that may lead to longer execution
times compared to checkpoint/restart. But, message logging recovers from a
failure using a fraction of the energy checkpoint/restart uses. If the failure
rate is not too high, message logging may have longer execution time but less
energy consumed than checkpoint/restart [15].

Despite the fact that message logging techniques (including parallel re-
covery) have to deal with message storage and determinism management,
these protocols do not significantly increase the power draw. Figure 4 shows
on the right column the power levels of the three protocols compared in
this paper and there is no evidence message logging draws more power than
checkpoint/restart. The extra operations performed by message logging have
an impact on performance, though. That effect is captured by parameter µ
in the performance model of Section 3. This finding is important to ensure
message logging and parallel restart will honor the power limitations and not
push the power envelope beyond the capacity of the installation.

The ratio between idle and maximum power plays a crucial role in the
relation between execution time and energy consumption. Figure 8(a) shows
the effect on energy consumption of different base to maximum power ratios.
Although checkpoint/restart manages to keep relatively the same difference
with respect to parallel recovery, it does it by increasing the checkpoint fre-
quency and sacrificing execution time. A smaller value of this ratio benefits
message logging and parallel restart, because these two protocols exploit that
ratio to decrease energy consumption. Table 5 presents a list of different ar-
chitectures and an approximation of their respective ratios. For the Intel
chips, we experimentally measured the power levels running Wave2D. The
NVIDIA data can be found elsewhere [23]. The goal to decrease the base
power has been a constant in the design of new chips. That leads to a smaller
base to maximum power ratio that can be better incorporated by message
logging and parallel recovery. Similarly, a GPU architecture has a small ratio
and hybrid architectures (processors and accelerators) will be more appeal-
ing to protocols that are based on local recovery. Our performance model
directly applies to hybrid architectures.

Figure 7(b) shows the effect of increasing the parallel recovery speedup.
This ability comes from the fact that the application can be over-decomposed
into small chunks of work. Parallel programming paradigms that allow this
type of decomposition will be able to accelerate recovery and decrease energy
consumption. What is more important is that the parallelism does not need

19

Architecture
Release Base Max Base/Max
Date Power Power Ratio

Intel Xeon E5520 Q1,09 60 125 0.48
Intel Nehalem i7 860 Q3,09 52 151 0.34
Intel Sandy Bridge i7 2600 Q1,11 21 101 0.21
NVIDIA GTX280 Q2,08 56 224 0.25

Table 5: Comparison of base and maximum power for different architectures.

to scale with the system size. In fact, a parallelism degree of 16 seems to
be a good value to provide big benefits. Additional parallelism only brings a
marginal benefit.

The type of failures this paper deals with is one-node failures. Although
this might look a little restrictive, there is enough evidence a vast majority
of failures only affect one node [4, 24]. A different type of failures that
may become more relevant in the future is correlated failures, where several
components fail in tandem given the particular architecture of the machine.
For instance, nodes plugged to the same power supply will fail together given
a failure of the common power supply. These type of considerations can
be incorporated into a message-logging protocol to decrease the protocol’s
overhead and further decrease energy consumption [15].

7. Related Work

Literature on the interplay of energy consumption and fault tolerance for
HPC is scarce. To the best of our knowledge, the work by Diouri et al [25, 26]
is the only related work. In a first study [25], they presented the power
draw and energy consumption of three building blocks of fault tolerance
protocols: checkpointing, task coordination, and message logging. Their
results show that neither of these tasks significantly increases the power draw
of a node. However, message logging increases the total energy consumed by
a program due to the overhead it incurs. Their initial work was later extended
into ECOFIT [26], a framework for predicting the energy consumption of an
application using certain fault tolerance protocol on a particular architecture.
ECOFIT calibrates the power of each of the four fundamental operations
(checkpointing, coordination, logging, and recovery) and then estimates the
total number of these operations in an execution. They evaluated three types
of protocols: coordinated, uncoordinated and hierarchical.

20

Our philosophy differs from theirs in that we consider coordinated pro-
tocols are the most viable way for fault tolerance in HPC. In particular,
coordinated application-level checkpoint is supported by most of the fault
tolerance libraries available for HPC [3, 4, 12]. The advantages of such check-
point variant are a smaller checkpoint size (because often time it is possible
to checkpoint when the state of the application is minimal), and a low cost at
checkpoint (since most HPC applications have global synchronization points
that hide the coordination cost). In addition, we emphasize the importance
of recovery, both experimentally and analytically. The more efficient the re-
covery, the better the fault tolerance protocol. Parallel recovery is a good
example of that.

8. Conclusions

This paper presents a comparative evaluation of three rollback-recovery
mechanism according to their energy profile. We present an analytical model
to describe the energy consumption of each protocol and to make projections
for large-scale systems under different conditions. We also show experimental
results that support our model predictions.

We conclude the following:
• The reasoning minimize execution time will minimize energy consump-
tion is invalid in the context of faulty machines. Message logging is
a good example of that. It incurs performance overhead due to the
additional function it performs (storing messages and determinants),
but recovery is significantly more efficient in energy terms.
• Neither message logging nor parallel recovery significantly increase power

draw. Our empirical results support that claim. These protocols may,
though, increase energy consumption in a failure-free execution due to
the performance overhead of the message logging protocol.
• Parallel recovery can reduce both execution time and energy consump-

tion in a faulty scenario. It achieves that by accelerating recovery
through parallel re-execution of tasks. In an HPC environment, paral-
lel recovery satisfies the requirements of both users (minimum execution
time) and system administrators (minimum energy consumption).
• The analytical model predicts a substantial reduction in energy con-

sumption by using parallel recovery. For a large-scale system with
more than 512,000 sockets, parallel recovery will be able to reduce
the total energy consumption by more than 37%, compared to check-
point/restart.

21

Acknowledgments

This research was supported in part by the US Department of Energy
under grant DOE DE-SC0001845. We thank Prof. Tarek F. Abdelzaher of
the University of Illinois at Urbana-Champaign for granting us access to the
testbed used in this paper.

References

[1] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally,
M. Denneau, P. Franzon, W. Harrod, J. Hiller, S. Karp, S. Keckler,
D. Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely,
T. Sterling, R. S. Williams, K. Yelick, Exascale computing study: Tech-
nology challenges in achieving exascale systems (2008).

[2] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, D. Barkai,
T. Boku, B. Chapman, X. Chi, A. Choudhary, S. Dosanjh, T. Dun-
ning, R. Fiore, A. Geist, R. Harrison, M. Hereld, M. Heroux, K. Hotta,
Y. Ishikawa, Z. Jin, F. Johnson, S. Kale, R. Kenway, D. Keyes,
B. Kramer, J. Labarta, A. Lichnewsky, B. Lucas, S. Matsuoka,
P. Messina, P. Michielse, B. Mohr, M. Mueller, J. Shalf, D. Skinner,
M. Snir, T. Sterling, R. Stevens, F. Streitz, B. Sugar, A. V. D. Steen,
J. Vetter, P. Williams, R. Wisniewski, K. Yelick, The international ex-
ascale software project roadmap 1.

[3] G. Zheng, L. Shi, L. V. Kalé, FTC-Charm++: An In-Memory
Checkpoint-Based Fault Tolerant Runtime for Charm++ and MPI, in:
2004 IEEE Cluster, San Diego, CA, 2004, pp. 93–103.

[4] A. Moody, G. Bronevetsky, K. Mohror, B. R. de Supinski, Design, mod-
eling, and evaluation of a scalable multi-level checkpointing system, in:
SC, 2010, pp. 1–11.

[5] E. Meneses, G. Bronevetsky, L. V. Kale, Evaluation of simple causal
message logging for large-scale fault tolerant HPC systems, in: 16th
IEEE Workshop on Dependable Parallel, Distributed and Network-
Centric Systems in 25th IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2011)., 2011.

22

[6] S. Chakravorty, L. V. Kale, A fault tolerance protocol with fast fault
recovery, in: Proceedings of the 21st IEEE International Parallel and
Distributed Processing Symposium, IEEE Press, 2007.

[7] E. Meneses, O. Sarood, L. V. Kale, Assessing Energy Efficiency of Fault
Tolerance Protocols for HPC Systems, in: Proceedings of the 2012 IEEE
24th International Symposium on Computer Architecture and High Per-
formance Computing (SBAC-PAD 2012), New York, USA, 2012.

[8] S. O. Marc Snir, etc, MPI: The Complete Reference, Vol. 1, The MIT
Press, 1998.

[9] L. Kalé, S. Krishnan, CHARM++: A Portable Concurrent Object Ori-
ented System Based on C++, in: A. Paepcke (Ed.), Proceedings of
OOPSLA’93, ACM Press, 1993, pp. 91–108.

[10] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, D. B. Johnson, A survey of
rollback-recovery protocols in message-passing systems, ACM Comput.
Surv. 34 (3) (2002) 375–408.

[11] P. H. Hargrove, J. C. Duell, Berkeley lab checkpoint/restart (blcr) for
linux clusters, in: SciDAC, 2006.

[12] L. Bautista-Gomez, D. Komatitsch, N. Maruyama, S. Tsuboi, F. Cap-
pello, S. Matsuoka, FTI: High performance fault tolerance interface for
hybrid systems, in: Supercomputing, 2011, pp. 1 –12.

[13] M. Schulz, Checkpointing, in: Encyclopedia of Parallel Computing,
2011, pp. 264–273.

[14] E. N. Elnozahy, R. Bianchini, T. El-Ghazawi, A. Fox, F. Godfrey, A.
Hoisie, K. McKinley, R. Melhem, J. S. Plank, P. Ranganathan and J.
Simons, System resilience at extreme scale, Defense Advanced Research
Project Agency (DARPA), Tech. Rep. (2008).

[15] E. Meneses, Scalable message-logging techniques for effective fault tol-
erance in HPC applications, Ph.D. thesis, Dept. of Computer Science,
University of Illinois, http://charm.cs.uiuc.edu/papers/13-17/ (2013).

[16] R. Strom, S. Yemini, Optimistic recovery in distributed sys-
tems, ACM Trans. Comput. Syst. 3 (3) (1985) 204–226.
doi:http://doi.acm.org/10.1145/3959.3962.

23

[17] L. Alvisi, K. Marzullo, Message logging: pessimistic, optimistic, and
causal, International Conference on Distributed Computing Systems
(1995) 229–236.

[18] M. Bougeret, H. Casanova, M. Rabie, Y. Robert, F. Vivien, Checkpoint-
ing strategies for parallel jobs, in: Supercomputing, SC ’11, ACM, New
York, NY, USA, 2011, pp. 33:1–33:11. doi:10.1145/2063384.2063428.
URL http://doi.acm.org/10.1145/2063384.2063428

[19] J. T. Daly, A higher order estimate of the optimum checkpoint interval
for restart dumps, Future Generation Comp. Syst. 22 (3) (2006) 303–
312.

[20] Intel, Intel-64 and IA-32 Architectures Software Developer’s Manual ,
Volume 3A and 3B: System Programming Guide, 2011.

[21] L. Kalé, S. Krishnan, Charm++ : A Portable Concurrent Object Ori-
ented System Based on C++, in: Proceedings of the Conference on
Object Oriented Programmi ng Systems, Languages and Applications,
1993.

[22] K. Ferreira, J. Stearley, J. H. Laros, III, R. Oldfield, K. Pedretti,
R. Brightwell, R. Riesen, P. G. Bridges, D. Arnold, Evaluating the vi-
ability of process replication reliability for exascale systems, in: Su-
percomputing, ACM, New York, NY, USA, 2011, pp. 44:1–44:12.
doi:10.1145/2063384.2063443.
URL http://doi.acm.org/10.1145/2063384.2063443

[23] S. Hong, H. Kim, An integrated gpu power and performance model, in:
ISCA, 2010, pp. 280–289.

[24] E. Meneses, X. Ni, L. V. Kale, A Message-Logging Protocol for Multicore
Systems, in: Proceedings of the 2nd Workshop on Fault-Tolerance for
HPC at Extreme Scale (FTXS), Boston, USA, 2012.

[25] M. Diouri, O. Gluck, L. Lefevre, F. Cappello, Energy considerations
in checkpointing and fault tolerance protocols, in: 2nd Workshop on
Fault-Tolerance for HPC at Extreme Scale (FTXS 2012), Boston, USA,
2012.

24

[26] M. el Mehdi Diouri, O. Glück, L. Lefèvre, F. Cappello, Ecofit: A frame-
work to estimate energy consumption of fault tolerance protocols for
HPC applications, in: CCGRID, 2013, pp. 522–529.

25

