
Actionable Performance Modeling for Future
Supercomputers

Laxmikant V. Kale and Osman Sarood‡
Eric Bohm, Nikhil Jain, Akhil Langer and Esteban Meneses

Department of Computer Science, University of Illinois at Urbana-Champaign
‡{kale,sarood1}@illinois.edu

1. INTRODUCTION
As we go beyond the current scale of computers to those

with peak capabilities beyond an ExaFLOP/s, it is becom-
ing clear that an introspective and adaptive runtime sys-
tem (RTS) will be essential, to deal with the complexities
generated by sophisticated applications and complex ma-
chines. The applications will incorporate adaptive numeri-
cal algorithms, such as dynamic adaptive mesh refinements,
and multi-time-stepping. The machines will exhibit static
and dynamic variability, including component failures/er-
rors. The RTS will need to make quick decisions by adjust-
ing machine configurations (e.g. processors used, power lev-
els of each component, etc.), runtime strategies (e.g. chang-
ing scheduling strategy, selecting load balancers, or param-
eterizing strategies) and application. For making such deci-
sions quickly, it needs simple but effective models of various
subcomponents of the parallel machine and the application
to predict how they will behave under a reconfiguration the
RTS is considering. Such fast models, which may sacrifice
some accuracy in return for extreme speed, are called Ac-
tionable Models in the rest of this paper.

The points we want to make in this position paper are:
introspective and adaptive RTS are both feasible and nec-
essary at exascale, and will be pursued by DOE’s x-stack
projects, exa-OS/R projects, as well other projects in the
broad HPC community. To make them successful, they need
to be complemented by development of fast modeling tech-
niques for various system/application components. Figure 1
gives a high level view of the suggeted infrastructure. The
instrumentor module will be responsible to interact with the
machine hardware and runtime system to retrieve instanta-
neous hardware and application characteristics. The RTS
will provide statistics about the execution time for the ap-
plication whereas hardware will provide information such as
the core temperatures, current frequency and power levels
at which the processors are operating. The instrumentor
will feed these characteristics to the appropriate actionable
model. Each actionable model uses these current character-
istics to make relevant predictions. Since multiple modules
can be interdependent, the global control system in Figure 1
is responsible for receiving the predictions from each of the
modules and deciding what are the best actions that can be
taken to improve application performance. The global con-
trol system is responsible to do a cost-and-benefit analysis
of the actions it decides to suggest. Based on these actions,
the RTS chooses the appropriate strategy and mechanism to
implement it. In the following section we lay out an agenda
for each module.

2. INDIVIDUAL MODELS
Application Evolution: Systems such as Charm++ [1],

Machine

Strategies and
Mechanisms

Global Control
System

Thermal
Module

Power
Module

Resilience
Module

Network
Module

Actionable Models

Instrumentor

Runtime System

Application

Application
Evolution

Figure 1: Interaction between actionable models,
runtime system, application and machine.

and Trilinos [2], support dynamic load balancing even on
current systems. However, they typically use very simple
models: either average measurements of the past behavior
of objects are used as predictions for future load, or some
simple metrics (sometime supplied by the user) based on
counts of application entities (e.g. number of particles in-
side a box) are used to predict performance. Further, de-
cisions about when to balance load and which of the many
possible strategies to use, each with its pros and cons, are
typically left to the application developer. These need to be
automated at extreme scale because leaving it to the appli-
cation developer to handle the load balancing decisions for
dynamic applications is inefficient. For this purpose, more
sophisticated models of evolution of load of individual ob-
jects are needed. Also needed are models that can predict
the load balancing cost which includes the cost of making
load balancing decisions, as well as the cost for data mi-
grations. An example of a preliminary attempt in this di-
rections is the “meta-balancer” [3] developed recently, which
uses linear models for load evolution, collects simple global
metrics asynchronously, uses data from earlier iterations for
estimating costs of balancing, and a simple and fast alge-
braic cost/benefit analysis to decide when to balance load.
Such approach needs to be made more sophisticated, and
combined with application behavior models to decide which
types of load balancers are most suited for the application
at that particular point in time.

Thermal: Recent work shows that restraining proces-
sor temperature is possible using Dynamic Voltage and Fre-
quency Scaling (DVFS) [4]. The runtime system can now
leverage the newly introduced power capping features that
allow restricting the package and memory power. However,
processor temperature is also affected by the level of cooling
in the machine room. Due to differences amongst chips, the
temperature-power relation for different chips might vary.

Similarly, the temperature of the cool air/water cooling all
the processors would not be the same. The job of the ther-
mal module would be to predict processor temperature given
a power level for the processor and the temperature of the
cool air/water that is used to cool that processor.

Power: As we move towards the exascale era, the thrust
is shifting from attaining high energy efficiency towards de-
veloping an exascale system with a power budget of 20MW.
The latter has been a much harder challenge. Therefore, the
focus now is to maximize performance under a given power
budget. The thermal design power (TDP) of a processor die
or a memory subsystem refers to the maximum amount of
power that it can draw. Power requirements of data centers
are calculated using the TDP of its subsystems. However, in
practice, the power draw of subsystems very rarely reaches
the TDP during the course of execution of an application.
Nonetheless, respective TDP has to be kept aside for each
of the subsystems. Recent microprocessor architectures such
as IBM Power6 [5], Power7 [6], AMD Bulldozer [7], and In-
tel’s Sandy Bridge [8] provide a very attractive option of
limiting the power drawn by the processor die. Addition-
ally, motherboards are also supporting limiting the memory
power draw. These features have been studied recently [9] to
propose what is called an over provisioned system in which
the application’s optimal configuration which includes the
number of nodes, processor power, and memory power, is de-
termined in such a way that the applications performance is
maximized under a given power budget. Over-provisioning
exploits the fact that applications do not yield a propor-
tional improvement in performance as the processor/mem-
ory power is increased, and therefore the power can instead
be used to add more nodes and strong scale the applica-
tion [10].

Future supercomputers will exploit this idea to maximize
their power efficiency i.e. flops/watt. Execution on a pro-
cessor can be broken down into a series of sequential exe-
cution blocks (SEB), each with no remote dependency in-
side. Different SEBs will have different power characteris-
tics. The Modeling system will profile the power character-
istics of SEBs either during runtime or offline and generate
a table of the execution time (and other characterizer’s such
as energy consumption) of these SEBs for different proces-
sor and memory powers. Runtime model development can
leverage the availability of large number of processors by do-
ing paratmetric runs of SEBs at different power levels, and
use parallel implementations of machine learning models to
build these tables. Different strategies can then be used
to optimally allocate power to SEBs within an application.
Additionally, job schedulers will use the application’s power
characteristics to schedule jobs and assign compute resources
to them in a manner that maximizes the overall power ef-
ficiency of the data center while still maintaining fairness
amongst jobs. This will require that the jobs have the run-
time capability to shrink and expand to the scheduler speci-
fied number of nodes. Whenever a job terminates, scheduler
will re-optimize resource allocation to the running and wait-
ing jobs. Optimizing resource allocation will require solving
linear programs which we have ascertained to be solvable,
even for exascale resource optimization, within few seconds
using the state-of-the-art linear program solvers [11, 12].

Shrinking and expanding a job at run-time is also use-
ful in other contexts, such as HPC in cloud environments,
or in Adaptive Mesh Refinement [13] applications, where
the computational load changes drastically as the simula-
tion progresses. Predictive power models are very useful in
them.

Resilience: The mean-time-between-failures (MTBF) of
current supercomputers can be anywhere from 2-10 hours [14,
15]. Optimistic estimations predict that the MTBF for an
exascale machine will be between 35-40 minutes [16]. Ma-
chine reliability is fast becoming a limiting constraint for
future machines. This implies that failures would become
a norm for future large-scale machines and faulty environ-
ments should be embraced. Up to now, HPC researchers
have mainly focussed on developing efficient fault tolerance
protocols with little attention on improving the reliability of
a machine. Failure rate of a compute node doubles with ev-
ery 10◦C increase in temperature [17, 18, 19, 20]. Given that
applications consume different amounts of power, they end
up heating the CPU and memory to different temperature
levels. In our recent work [21], we use temperature capping
to model the effect of core temperatures on the MTBF of a
system. Restraining core temperatures can empower a data
center operator to choose a reliability level [21]. This im-
provement in reliability resulting from temperature capping
can significantly improve the execution time of an applica-
tion at large scale [21].

The MTBF for a processor and hence for a system, de-
pends on multiple factors [22]. Our existing model includes
the effects of core temperatures. This can be extended by
incorporating other variables into it. An extended model
will take into account the instantaneous core temperatures
and the thermal history of the machine in order to predict
the MTBF of a system. Using this estimated MTBF, the
runtime system can recalculate the optimum checkpointing
period over the course of execution. The cost of incorpo-
rating such a model is minimal. The temperature readings
for each core can be read very cheaply using the coretemp
module installed in the kernel.

Network: Offline analysis of network behavior via com-
plex models and simulation is a well researched topic [23,
24, 25]. Recent work has used offline analysis of network
and application communication pattern to predict task map-
pings used during job startup resulting in improved perfor-
mance [26, 27]. Further, simplified models, based on opti-
mizating metrics such as hop-bytes and maximum dilation,
have been deployed to reassign tasks during application ex-
ecution [28, 29, 30]. As applications become more complex,
and exhibit dynamic and irregular behavior, it is natural for
runtime to monitor the application as well as the network,
and take actions to maximize performance.

With the help of runtime, application’s communication
graph can be captured and modeled. Different communica-
tion phases and patterns can be identified, and actions can
be taken to improve performance. Based on information on
application’s behavior and the topology of allocated nodes,
one can predict performance implication of parametrization
and use of various communication algorithms, optimized
communication libraries, and special hardware. In addition,
the congestion traits of a network can be captured with help
from the runtime, e.g. by running periodic ping-pong in the
background or using feedback from the hardware, to capture
any variation in network’s behavior due to the application
or other jobs. Based on this information, a runtime is capa-
ble of using basic modelling to great effect. A runtime may
choose to change the overlaying tree used for a collective, se-
lect a different scheme for the same collective, temporarily
discard certain nodes, reroute messages etc.

Effort: A significant portion of the effort required to
bring this vision to fruition will be in the RTS, presumably
being developed as a part of the x-stack effort and OS/R
effort. Developing actionable models requires expertise in

multiple domains, and so we estimate 3 FTEs and 4 gradu-
ate assistants as the effort level needed.

3. REFERENCES
[1] Laxmikant Kale, Anshu Arya, Nikhil Jain, Akhil

Langer, Jonathan Lifflander, Harshitha Menon, Xiang
Ni, Yanhua Sun, Ehsan Totoni, Ramprasad
Venkataraman, and Lukasz Wesolowski. Migratable
Objects + Active Messages + Adaptive Runtime =
Productivity + Performance A Submission to 2012
HPC Class II Challenge. Technical Report 12-47,
Parallel Programming Laboratory, November 2012.

[2] Michael A. Heroux, Roscoe A. Bartlett, Vicki E.
Howle, Robert J. Hoekstra, Jonathan J. Hu,
Tamara G. Kolda, Richard B. Lehoucq, Kevin R.
Long, Roger P. Pawlowski, Eric T. Phipps, Andrew G.
Salinger, Heidi K. Thornquist, Ray S. Tuminaro,
James M. Willenbring, Alan Williams, and Kendall S.
Stanley. An overview of the Trilinos project. ACM
Trans. Math. Softw., 31(3):397–423, 2005.

[3] Harshitha Menon, Nikhil Jain, Gengbin Zheng, and
Laxmikant V. Kalé. Automated load balancing
invocation based on application characteristics. In
IEEE Cluster 12, Beijing, China, September 2012.

[4] Osman Sarood Phil Miller Ehsan Totoni and
Laxmikant Kale. ‘cool’ load balancing for hpc data
centers. IEEE transactions on computers special issue
on energy efficient computing, 2012.

[5] Brad Behle, Nick Bofferding, Martha Broyles, Curtis
Eide, Michael Floyd, Chris Francois, Andrew Geissler,
Michael Hollinger, Hye-Young McCreary, Cale Rath,
et al. IBM Energyscale for POWER6 Processor-based
Systems. IBM White Paper, 2009.

[6] Martha Broyles, Chris Francois, Andrew Geissler,
Michael Hollinger, Todd Rosedahl, Guillermo Silva,
Jeff Van Heuklon, and Brian Veale. IBM Energyscale
for POWER7 Processor-based Systems. white paper,
IBM, 2010.

[7] Advanced Micro Devices. BIOS and Kernel

DeveloperâĂŹs guide (BKDG) for AMD Family 15h
Models 00h-0fh Processors. January 2012.

[8] Barry Rountree, Dong H Ahn, Bronis R de Supinski,
David K Lowenthal, and Martin Schulz. Beyond
DVFS: A First Look at Performance Under a
Hardware-enforced Power Bound. In IEEE 26th
International Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW),
2012.

[9] T. Patki, D. Lowenthal, B. Rountree, M. Schulz, and
B. Supinski. Exploring Hardware Overprovisioning in
Power-Constrained, High Performance Computing. In
Proceedings of the International Conference on
Supercomputing, pages 222–231, 2013.

[10] Osman Sarood, Akhil Langer, Laxmikant Kalé, Barry
Rountree, and Bronis de Supinski. Optimizing Power
Allocation to CPU and Memory Subsystems in
Overprovisioned HPC Systems. In Cluster Computing
(CLUSTER), 2013 IEEE International Conference on,
pages 1–8. IEEE, 2013.

[11] Gurobi Optimization Inc. Software, 2012.
http://www.gurobi.com/.

[12] IBM CPLEX Optimization Studio. Software, 2012.
http://www-01.ibm.com/software/integration/
optimization/cplex-optimization-studio/.

[13] Akhil Langer, Jonathan Lifflander, Phil Miller,
Kuo-Chuan Pan, Laxmikant V Kale, and Paul Ricker.
Scalable Algorithms for Distributed-Memory Adaptive
Mesh Refinement. In Computer Architecture and High
Performance Computing (SBAC-PAD), 2012 IEEE
24th International Symposium on, pages 100–107.
IEEE, 2012.

[14] E. N. Elnozahy, R. Bianchini, T. El-Ghazawi, A. Fox,
F. Godfrey, A. Hoisie, K. McKinley, R. Melhem, J. S.
Plank, P. Ranganathan and J. Simons. System
resilience at extreme scale. Defense Advanced
Research Project Agency (DARPA), Tech. Rep., 2008.

[15] Marc Snir, William Gropp, and Peter Kogge. Exascale
Research: Preparing for the Post Moore Era.
https://www.ideals.illinois.edu/bitstream/
handle/2142/25468/Exascale%20Research.pdf, 2011.

[16] Peter Kogge, Keren Bergman, Shekhar Borkar, Dan
Campbell, William Carlson, William Dally, Monty
Denneau, Paul Franzon, William Harrod, Jon Hiller,
Sherman Karp, Stephen Keckler, Dean Klein, Robert
Lucas, Mark Richards, Al Scarpelli, Steven Scott,
Allan Snavely, Thomas Sterling, R. Stanley Williams,
and Katherine Yelick. Exascale computing study:
Technology challenges in achieving exascale systems,
2008.

[17] Chung hsing Hsu, Wu chun Feng, and Jeremy S.
Archuleta. Towards efficient supercomputing: A quest
for the right metric. In In Proceedings of the
HighPerformance Power-Aware Computing Workshop,
2005.

[18] Wu-chun Feng. Making a case for efficient
supercomputing. volume 1, pages 54–64, New York,
NY, USA, October 2003. ACM.

[19] Wu-chun Feng. The Importance of Being Low Power
in High-Performance Computing. Cyberinfrastructure
Technology Watch Quarterly (CTWatch Quarterly),
1(3), August 2005.

[20] Ericsson. Reliability Aspects on Power Supplies.
Technical ReportDesign Note 002, Ericsson
Microelectronics, April 2000.

[21] O. Sarood, E. Meneses, and L. Kale. A Cool Way of
Improving the Reliability of HPC Machines. In
Supercomputing 2013 In Submission, 2013.

[22] J. Srinivasan, S.V. Adve, P. Bose, and J.A. Rivers.
Lifetime reliability: toward an architectural solution.
Micro, IEEE, 25(3):70–80, 2005.

[23] Gengbin Zheng, Gunavardhan Kakulapati, and
Laxmikant V. Kalé. Bigsim: A parallel simulator for
performance prediction of extremely large parallel
machines. In 18th International Parallel and
Distributed Processing Symposium (IPDPS), page 78,
Santa Fe, New Mexico, April 2004.

[24] Kathryn Berkbigler, Graham Booker, Brian Bush, Kei
Davis, and Nicholas Moss. Simulating the Quadrics
Interconnection Network. In High Performance
Computing Symposium 2003, Advance Simulation
Technologies Conference 2003, Orlando, Florida, April
2003.

[25] K.D. Underwood, M. Levenhagen, and A. Rodrigues.
Simulating red storm: Challenges and successes in
building a system simulation. In Parallel and
Distributed Processing Symposium, 2007. IPDPS
2007. IEEE International, pages 1 –10, 2007.

[26] Abhinav Bhatele, Nikhil Jain, William D. Gropp, and
Laxmikant V. Kale. Avoiding hot-spots on two-level

direct networks. In Proceedings of 2011 International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’11, pages
76:1–76:11, New York, NY, USA, 2011. ACM.

[27] Venkatesan T Chakaravarthy, Naga Praveen Kumar
Katta, Monu Kedia, Yogish Sabharwal, Aruna
Ramanan, and Ramakrishnan Rajamony. Mapping
Strategies for the PERCS Architecture. In 19th annual
IEEE International Conference on High Performance
Computing (HiPC 2012), December 2012.

[28] Abhinav Bhatele, Todd Gamblin, Steven H. Langer,
Peer-Timo Bremer, Erik W. Draeger, Bernd Hamann,
Katherine E. Isaacs, Aaditya G. Landge, Joshua A.
Levine, Valerio Pascucci, Martin Schulz, and
Charles H. Still. Mapping applications with collectives
over sub-communicators on torus networks. In
Proceedings of the ACM/IEEE International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’12. IEEE
Computer Society, November 2012 (to appear).
LLNL-CONF-556491.

[29] Torsten Hoefler and Marc Snir. Generic topology
mapping strategies for large-scale parallel
architectures. In Proceedings of the international
conference on Supercomputing, ICS ’11, pages 75–84,
New York, NY, USA, 2011. ACM.

[30] Abhinav Bhatele. Topology Aware Task Mapping. In
D. Padua, editor, Encyclopedia of Parallel Computing
(to appear). Springer Verlag, 2011.

