
LRTS: A Portable High Performance Low-level
Communication Interface

Yanhua Sun1 Laxmikant(Sanjay) V. Kále1

1University of Illinois at Urbana-Champaign

sun51@illinois.edu

April 15, 2013

Yanhua Sun U of Illinois at Urbana-Champaign 1/24

Motivation

What the vendors provide

Modern supercomputers, especially networks, are complicated

What the programming models require

Global address space models
Message passing model
Message driven (active message) models

A minimum set of functions to implement runtime systems

Yanhua Sun U of Illinois at Urbana-Champaign 2/24

Motivation

What the vendors provide

Modern supercomputers, especially networks, are complicated

What the programming models require

Global address space models
Message passing model
Message driven (active message) models

A minimum set of functions to implement runtime systems

Yanhua Sun U of Illinois at Urbana-Champaign 2/24

Motivation

What the vendors provide

Modern supercomputers, especially networks, are complicated

What the programming models require

Global address space models
Message passing model
Message driven (active message) models

A minimum set of functions to implement runtime systems

Yanhua Sun U of Illinois at Urbana-Champaign 2/24

Outline

Goal of LRTS

Charm++ architecture on LRTS

Core APIs and extended APIs

Performance of micro benchmarks and NAMD

Future work

Yanhua Sun U of Illinois at Urbana-Champaign 3/24

Goals of LRTS

Goal
= Completeness + Productivity + Portability +
Performance

Yanhua Sun U of Illinois at Urbana-Champaign 4/24

Goal of LRTS

Completeness

Sufficient to run Charm++

Productivity

Require no knowledge of Charm++ to port
Charm++ developers : easy to add new features (Replica)

Portability

Functions should not dependend on specific machines

Performance

Space for optimization

Yanhua Sun U of Illinois at Urbana-Champaign 5/24

Charm++ Architecture

Applications

Libs Langs

CHARM++ Programming Model

Converse Runtime System

DCMF TCP/IP MPI uGNI
more

machine
layers

Machine
Implementation

Yanhua Sun U of Illinois at Urbana-Champaign 6/24

Charm++ Architecture

Applications

Libs Langs

CHARM++ Programming Model

Converse Runtime System

DCMF TCP/IP MPI uGNI
more

machine
layers

NAMD
ChaNGa
openAtom
Contigation

Charm++
MSA
Chrisma
all libraries

Yanhua Sun U of Illinois at Urbana-Champaign 7/24

Charm++ Architecture

Applications

Libs Langs

CHARM++ Programming Model

Converse Runtime System

DCMF TCP/IP MPI uGNI
more

machine
layers

NAMD
ChaNGa
openAtom
Contigation

Charm++
MSA
Chrisma
all libraries

SDAG
Chare Chare Array
 entry methods

Yanhua Sun U of Illinois at Urbana-Champaign 8/24

Charm++ Architecture

Applications

Libs Langs

CHARM++ Programming Model

Converse Runtime System

DCMF TCP/IP MPI uGNI
more

machine
layers

NAMD
ChaNGa
openAtom
Contigation

Charm++
MSA
Chrisma
all libraries

SDAG
Chare Chare Array
 entry methods
load balancing
projections

message scheduler
threads
seed load balancer

communication
converse initialization
Converse queues

Yanhua Sun U of Illinois at Urbana-Champaign 9/24

Charm++ Architecture Based on LRTS

Applications

Libs Langs

CHARM++ Programming Model

Converse Runtime System

DCMF TCP/IP MPI uGNI
more

machine
layers

NAMD
ChaNGa
openAtom
Contigation

Charm++
MSA
Chrisma
all libraries

SDAG
Chare Chare Array
 entry methods
load balancing
projections

message scheduler
threads
seed load balancer

machine specific
init
communication

LRTS
converse initialization
Converse queues
non/SMP implementation
commom broadcast

Yanhua Sun U of Illinois at Urbana-Champaign 10/24

Charm++ Naming Rules

CkFoo (most used for Charm++ programmers)

CmiFoo (converse programs)

LrtsFoo (only for vendors)

Yanhua Sun U of Illinois at Urbana-Champaign 11/24

Messaging Flow

Non SMP mode - one process per core (hardware thread)
SMP mode - one thread per core (hardware thread)

Intra-node communication by passing pointers
Dedicated communication thread

Communication thread
sending message
queue

Thread 0
Message
queue

Thread 1
Message
queue

s Network

Node 1 Node 0

Yanhua Sun U of Illinois at Urbana-Champaign 12/24

Messaging Flow

Non SMP mode - one process per core (hardware thread)
SMP mode - one thread per core (hardware thread)

Intra-node communication by passing pointers
Dedicated communication thread

Communication thread
sending message
queue

Thread 0
Message
queue

Thread 1
Message
queue

s Network

Node 1 Node 0

Yanhua Sun U of Illinois at Urbana-Champaign 12/24

Messaging Flow

non SMP mode - one process per core (hardware thread)
SMP mode - one thread per core (hardware thread)

Intra-node communication by passing pointers
Dedicated communication thread

Communication thread
sending message
queue

Thread 0
Message
queue

Thread 1
Message
queue

s Network

Node 1 Node 0

Receive message Receive message

Yanhua Sun U of Illinois at Urbana-Champaign 13/24

Core APIs

required to run Charm++

Startup and Shutdown

void LrtsInit(int *argc, char ***argv, int *numNodes, int
*myNodeID)

void LrtsExit()

void LrtsBarrier()

Yanhua Sun U of Illinois at Urbana-Champaign 14/24

Core APIs - P2P communication

Sending messages

CmiCommHandle LrtsSendFunc(int destNode, int destPE, int size,
char *msg, int mode);

Different protocols for message size

Buffering scheme in machine layer

LrtsAdvanceCommunication

void LrtsAdvanceCommunication(int whileidle);

Sending buffered messages

Polling network

void handleOneRecvedMsg(int size, char *msg)

Yanhua Sun U of Illinois at Urbana-Champaign 15/24

Core APIs - P2P communication

Sending messages

CmiCommHandle LrtsSendFunc(int destNode, int destPE, int size,
char *msg, int mode);

Different protocols for message size

Buffering scheme in machine layer

LrtsAdvanceCommunication

void LrtsAdvanceCommunication(int whileidle);

Sending buffered messages

Polling network

void handleOneRecvedMsg(int size, char *msg)

Yanhua Sun U of Illinois at Urbana-Champaign 15/24

Core APIs - P2P communication

Sending messages

CmiCommHandle LrtsSendFunc(int destNode, int destPE, int size,
char *msg, int mode);

Different protocols for message size

Buffering scheme in machine layer

LrtsAdvanceCommunication

void LrtsAdvanceCommunication(int whileidle);

Sending buffered messages

Polling network

void handleOneRecvedMsg(int size, char *msg)

Yanhua Sun U of Illinois at Urbana-Champaign 15/24

Extended APIs - Memory

Memory Management

void* LrtsAlloc(int n bytes)
void LrtsFree(void *msg)

Pinned memory pool - uGNI

L2Atomic queues for freed messages

Yanhua Sun U of Illinois at Urbana-Champaign 16/24

Extended APIs - Persistent Messages

Persistent messages

Communication partners and sizes do not change

RDMA support (uGNI, PAMI, Ibverbs)

void LrtsSendPersistentMsg(PersistentHandle h, int destNode,
int size, void *msg)

Yanhua Sun U of Illinois at Urbana-Champaign 17/24

Extended APIs - Persistent Messages

Persistent messages

Communication partners and sizes do not change

RDMA support (uGNI, PAMI, Ibverbs)

void LrtsSendPersistentMsg(PersistentHandle h, int destNode,
int size, void *msg)

Yanhua Sun U of Illinois at Urbana-Champaign 17/24

Extended APIs - Collectives

void LrtsBroadcast()
common implementation + specific

Spanning Tree
Hypercube

All asynchronous functions

Yanhua Sun U of Illinois at Urbana-Champaign 18/24

Extended APIs - Collectives

void LrtsBroadcast()
common implementation + specific

Spanning Tree
Hypercube

All asynchronous functions

Yanhua Sun U of Illinois at Urbana-Champaign 18/24

Status of LRTS

Cray machines with uGNI : XE, XK, XC

Sun etal, A uGNI-Based Asynchronous Message-driven Runtime System
for Cray Supercomputers with Gemini Interconnect, IPDPS 2012
Sun etal, Optimizing Fine-grained Communication in a Biomolecular
Simulation Application on Cray XK6, SC 2012

IBM machines : BlueGene/P with DCMF; BlueGene/Q with PAMI

Kumar etal, Acceleration of an Asynchronous Message Driven
Programming Paradigm on IBM Blue Gene/Q, IPDPS 2013

Machines supporting MPI

Infiniband clusters

Yanhua Sun U of Illinois at Urbana-Champaign 19/24

Performance - Latency on BGQ

 2

 4

 6

 8

 10

 12

PAMI-LRTS SMPPAMI SMPPAMI-LRTSPAMI

T
im

e
(u

s)

Charm++ architectures

32 Bytes
1024 Bytes
8192 Bytes

Yanhua Sun U of Illinois at Urbana-Champaign 20/24

Performance - Bandwidth on BGQ

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

PAMI-LRTS SMPPAMI SMPPAMI-LRTSPAMI

B
an

d
w

id
th

(G
B

y
te

s/
se

c)

Charm++ architectures

1024 Bytes
32K Bytes
1M Bytes

Yanhua Sun U of Illinois at Urbana-Champaign 21/24

Application Performance

NAMD Apoa1(92k atoms) with PME every 4 steps on BGQ

 2

 4

 6

 8

 10

 12

PAMI-LRTS SMPPAMI SMPPAMI-LRTSPAMI

T
im

es
te

p
(m

s/
st

ep
)

Charm++ architectures

32 Nodes (2048 hw threads)
64 Nodes (4096 hw threads)

Yanhua Sun U of Illinois at Urbana-Champaign 22/24

100M-atom Simulation on State-of-art Machines

Best performance on Blue Waters is 8.9ms/step with 25k nodes

13ms/step on Titan with 18k nodes

17.9ms/step on Bluegene/Q with 16K nodes

Yanhua Sun U of Illinois at Urbana-Champaign 23/24

Conclusion and Future work

Conclusion

LRTS interface simplifies the runtime implementation on new
hardware

LRTS maintain good performance

Future work

Message buffering and scheduling

Fault tolerance interface

Implement other runtime system - Unistack

Yanhua Sun U of Illinois at Urbana-Champaign 24/24

Conclusion and Future work

Conclusion

LRTS interface simplifies the runtime implementation on new
hardware

LRTS maintain good performance

Future work

Message buffering and scheduling

Fault tolerance interface

Implement other runtime system - Unistack

Yanhua Sun U of Illinois at Urbana-Champaign 24/24

