
Highly Asynchronous and Scalable Algorithms for
Distributed-Memory Adaptive Mesh Refinement at

Extreme Scales

Akhil Langer†, Laxmikant V. Kale

Parallel Programming Laboratory, Department of Computer Science
University of Illinois at Urbana-Champaign

{alanger, kale}@illinois.edu

Abstract—In this paper, we present our developments of a
novel approach for distributed memory Adaptive Mesh Refine-
ment (AMR). Our approach is highly asynchronous and fully
distributed that makes it suitable for extreme-level scaling. It
takes negligible memory to store mesh structure as compared to
the traditional approaches which are not scalable. It accomplishes
adaptive mesh restructuring in just 1 global collective call as
compared to O(d) calls in the traditional approaches. A new
distributed load balancer has been developed that led to an
improvement in performance by 18%. We present our scaling
results on up to 131, 072 cores of BG/Q supercomputer.

I. INTRODUCTION

Advanced numerical simulations on large meshes is a
computationally daunting task. Adaptive Mesh Refinement
(AMR) reduces the computation significantly by adaptively
refining the mesh in the zones of interest while keeping the
lesser or non-interesting zones at a coarser level. This allows
users to solve large problems (12 levels or more) that are
intractable on a uniform grid. AMR applications span a diverse
set of fields starting from computational fluid dynamics to
astrophysics, climate modeling, mantle convection modeling,
combustion, biophysics, turbulence and many others.

II. RELATED WORK

Paramesh[1], SAMRAI[2], FLASH[3], p4est[4], Enzo[5],
Chombo[6], deal.II[7] are some of the many existing frame-
works with parallel AMR implementation. We focus on the
oct-tree based formulations. In these implementations, typ-
ically a mesh is divided into blocks and these blocks are
distributed amongst the processes. The assignment is typically
done using a space-filling curve[8] so that blocks that are
spatially close to each other are assigned to the same or nearby
processes. To maintain the AMR restriction of neighboring
blocks to be within ±1 level of refinement of each other, re-
quires each process to replicate the entire refinement tree meta-
data so that the tree can be adapted dynamically. Therefore,
this traditional approach suffers from memory bottleneck. As
the size of the supercomputers is increasing, available memory
per core decreases and the total number of cores are increasing,
making it infeasible to store the entire tree structure on each
process.

†Student Author

Highly Asynchronous Scalable Approach 

Basic Design: Promote individual block as first-class entities, instead of a process 

0 1 

00 10 01 11 

Process i 

Block Naming 
 Bitvector describing path from root to 

block’s  node 
 One bit per dimension at each level 
 Easy to compute parent, children, siblings 

 using bit manipulation 

Block acts as a virtual process 
 overlap of computation with 

communication of other blocks on same 
physical process 

 Run time handles communication 
between arbitrary blocks 

Block is a unit of algorithm expression 
 Simplifies implementation complexity 

Dynamic placement of blocks on physical 
processes 
 Facilitates dynamic load balancing 

Waiting for 
boundary layers 

computing 

Fig. 1: Overdecomposition allows overlap of computation and
communication of blocks on the same physical process

In traditional approaches, the adaptive mesh restructuring
is accomplished through level-by-level - from the most refined
leaf octant to the least refined leaf octant - decision making
and mesh adaptation. This takes O(d) global reductions - 2 for
each refinement level (d is the depth of the refinement tree).
These synchronization overheads in the traditional approaches
inhibits their efficiency for large meshes and scalability at
extreme scale. We present our novel algorithms that addresses
all the bottlenecks in the traditional approach by proposing a
fully distributed and highly asynchronous design capable of
extreme scaling.

III. OUR APPROACH

Instead of a process, we model a block as a first class
entity - a basic schedulable unit that acts as a virtual processor.
Multiple blocks are assigned to the same processor. These
blocks can be at different refinement levels. Virtualization
allows overlap of computation with communication of other
blocks on the same physical process (Figure 1). A block can
be uniquely identified with a bit-vector corresponding to its
location in the refinement tree (Figure 2). It can be dynamically
placed on any physical process, thus facilitating dynamic load
balancing.

AMR enforces that REFINE decisions are given higher
priority over STAY decisions , and STAY have a higher priority
over COARSEN decisions. In order to maintain the difference
of ±1 refinement level amongst neighbors, a block may have



Fig. 2: Bit-vector indexing scheme used for identifying blocks
in the refinement tree

to refine itself if any of its refined neighbor decides to refine,
even when its personal decision was to stay at the current
refinement level. This can trigger a chain reaction leading to
refinement of far-off blocks. For this adaptive restructuring of
mesh, we proposed a novel mesh restructuring algorithm that
minimizes the number of messages exchanged and reaches a
consensus on the refinement decisions by detecting a system
quiescence state. Our new design offers several benefits over
the traditional approach:

• O(#blocks
P ) per process memory complexity (by using

a distributed hash table) vs O(#blocks) in the tradi-
tional approach

• Asynchronous progress in computation

• O(d) global reductions for remeshing in the traditional
approach are reduced to just 1 quiescence detection (d
is the depth of the tree)

• Fully distributed load balancing that has O(logP +
#blocks

P ) time complexity vs centralized load balanc-
ing that has O(#blocks) space and time complexity
in the traditional approach

• Simplified expression of program logic

IV. RESULTS

We implemented our new design in Charm++[9] runtime
system, which supports dynamic collections of migratable
parallel objects in the form of chare arrays[10]. An element of
chare array is called a chare. Each chare is assigned one block
of the mesh. We therefore, use the words block and chare
interchangeably. Keeping the block as a unit of algorithmic
expression reduces the implementation complexity (refer to
[9] for source lines of code count of our implementation).
As the simulation progresses, blocks are refined or coarsened
leading to load imbalance. Our fully distributed load balancer
(referred to as Grapevine) uses partial information about the
global state of the system to perform good load balancing with
less overhead. The load balancing strategy uses gossip protocol
to spread the information and performs probabilistic transfer
of load (details in [11]). An efficiency of 80 % (as compared
to just 58% without load balancing) was obtained while strong
scaling a fixed-size 2D Advection benchmark (with maximum
of 15 levels) from 1, 024 to 16, 384 cores of the Blue Gene/Q
supercomputer. Our design promises high performance for

2048 4096 8192 16384 32768 65536 131072
Number of processes

4

8

16

32

64

128

St
ep

s 
pe

r 
se

co
nd

No Load Balancing
Distributed Load Balancing
Ideal

Fig. 3: Strong scaling results (steps per second) of Advection
AMR simulation on up to 128k cores of BG/Q The plot shows
the improvement in performance by using a distributed load
balancer

much more deeply refined computations than are currently
practiced and gives high efficiency at extreme scales. Complete
working code for the algorithms and benchmark are available
online [12] . Specific details of the algorithms can be found
in the paper [13]. We have made several algorithmic improve-
ments since the last publication. We did a major overhaul of the
code and developed algorithms to extend our implementation
to do 3d AMR simulations. Because of dynamic creation and
destruction of chares, there is frequent load imbalance in the
program runs. Centralized load balancing leads to a serial
bottleneck that compensates for any performance benefit due
to the created load balance. Hence, a distributed load balancer
was developed which led to a significant improvement in
performance. Additionally, we reduced the number of system
quiescence required for mesh restructuring from 2 to 1, by
buffering the messages directed to not yet created chares and
delivering them once they are created.

V. ONGOING WORK

Adaptive restructuring of the mesh, in our approach, is
done in two phases - the refinement decision making phase,
called phase 1 and the block creation and destruction phase,
called phase 2. Completion of both of these phases is detected
by system quiescence. Before proceeding to the next compute
iteration, it is required to wait for quiescence to ensure that the
new blocks have been created before the boundary messages
are sent to them. However, this requirement can be relaxed by
buffering the messages that are directed to chares that have not
yet been created. These messages are then delivered when the
chare gets created. With this approach, the second quiescence
requirement becomes redundant.

Additionally, in phase 1, not all blocks need to wait for
system quiescence to know their final decision. For example,
a block all of whose neighbors are currently at the same
refinement level and whose personal decision is also to stay at
the current refinement level, then irrespective of the neighbors



decision = 
REFINE?

proceed to next 
iteration

refine()

decision = 
STAY?

yes

no

All neighbors at 
same or coarser 
refinement level?

decision = 
COARSEN?

wait for 
quiescence 
detection

no

yes

yes

no

yes/
no

Fig. 4: Reducing the overhead of phase 1 by allowing chares
to proceed to next iteration when they need not wait for
quiescence

final decision, the block will not change its decision and hence
can proceed to the next compute iteration. This and other rules
shown in Figure 4 allow us to overlap computation with the
decision making process of the remaining blocks. Additionally,
only the blocks that need to wait for quiescence to know their
final decision need to participate in the quiescence detection.
This requires a modular quiescence detector in which the
quiescence of only a selected set of chares and specific remote
method calls needs to be detected. We are working on these
ideas and on the measurement of the performance improvement
due to them.

VI. CONCLUSION

Our approach is highly asynchronous and has led to several
algorithmic advancements in a very important computational
science application. We have demonstrated our results on two
major supercomputers, BG/Q and Titan. Currently, two major
AMR production codes namely, Enzo (renamed Cello) and
Chombo, are being rewritten to incorporate these algorithms
into their code.

REFERENCES

[1] P. MacNeice, K. M. Olson, C. Mobarry, R. deFainchtein, and C. Packer,
“PARAMESH : A Parallel Adaptive Mesh Refinement Community
Toolkit.,” Computer Physics Communications, vol. 126, pp. 330–354,
2000.

[2] A. M. Wissink, R. D. Hornung, S. R. Kohn, S. S. Smith, and N. Elliott,
“Large Scale Parallel Structured AMR Calculations Using the SAMRAI
Framework,” in Supercomputing, ACM/IEEE 2001 Conference, pp. 22–
22, IEEE, 2001.

[3] A. Dubey, L. B. Reid, and R. Fisher, “Introduction to FLASH 3.0,
with Application to Supersonic Turbulence,” Physica Scripta, vol. T132,
p. 014046, 2008.

[4] C. Burstedde, L. C. Wilcox, and O. Ghattas, “p4est: Scalable Algorithms
for Parallel Adaptive Mesh Refinement on Forests of Octrees,” SIAM
Journal on Scientific Computing, vol. 33, no. 3, pp. 1103–1133, 2011.

[5] B. Oshea, G. Bryan, J. Bordner, M. Norman, T. Abel, R. Harkness,
and A. Kritsuk, “Introducing Enzo, an AMR Cosmology Application,”
Adaptive mesh refinement-theory and applications, pp. 341–349, 2005.

[6] P. Colella, D. Graves, T. Ligocki, D. Martin, D. Modiano, D. Ser-
afini, and B. Van Straalen, “Chombo Software Package for AMR
Applications-Design Document,” 2000.

[7] W. Bangerth, R. Hartmann, and G. Kanschat, “deal. IIA General-
Purpose Object-Oriented Finite Element Library,” ACM Transactions
on Mathematical Software (TOMS), vol. 33, no. 4, pp. 24–es, 2007.

[8] H. Sagan, Space-filling Curves, vol. 2. Springer-Verlag New York, 1994.
[9] L. Kale, A. Arya, N. Jain, A. Langer, J. Lifflander, H. Menon, X. Ni,

Y. Sun, E. Totoni, R. Venkataraman, and L. Wesolowski, “Migratable
objects + active messages + adaptive runtime = productivity + perfor-
mance a submission to 2012 HPC class II challenge,” Tech. Rep. 12-47,
Parallel Programming Laboratory, November 2012.

[10] O. S. Lawlor and L. V. Kalé, “Supporting dynamic parallel object ar-
rays,” Concurrency and Computation: Practice and Experience, vol. 15,
pp. 371–393, 2003.

[11] H. Menon and L. Kale, “Epidemic Algorithm for Distributed Load Bal-
ancing,” in International Conference on Supercomputing 2013 (Under
Review), (Eugene, Oregon, USA).

[12] “AMR Algorithm and Benchmark Source Code,”
2012. Source code and scripts available at
git://charm.cs.illinois.edu/benchmarks/amr.git.

[13] A. Langer, J. Lifflander, P. Miller, K.-C. Pan, , L. V. Kale, and
P. Ricker, “Scalable Algorithms for Distributed-Memory Adaptive Mesh
Refinement,” in Proceedings of the 24th International Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD
2012). To Appear, (New York, USA), October 2012.


