Scalable and Asynchronous Algorithms for Block
Structured Adaptive Mesh Refinement

Akhil Langer and Laxmikant Kale

Parallel Programming Laboratory, Department of Computer Science
University of lllinois at Urbana-Champaign

Introduction to Adaptive Mesh Refinement (AMR) Typical Traditional Approach

Background on AMR
Applications (d Refinement levels of neighboring blocks differ by +1

CED d Refinement structure can be represented using a quad-tree (2D)/ oct-tree (3D)
Astrophysics
Climate Modeling
Uniform meshes Adaptively Refined Meshes Turbulence
g A A A ' Mantle Convection
Modeling
Combustion
Biophysics
and many more

Solving Partial Differential Equations (PDEs)

(d PDEs solved using discrete domain

1 Algebraic equations estimate values of unknowns at mesh points
d Resolution of mesh points determines error

—— - ———— - -

Existing Frameworks

Enzo-P 5

Chombo A set of blocks assigned to a process
PARAMESH

SAMRAI
FLASH

0.4 0.6 X . 0. . 0.4 0.6 0.8
X

High resolution required for Start with a coarse grid

(h;.ndlmf. d'f:_'CUIt ;eglons dient Iden;cl?/ regions that need finer pdest Tree meta-data replicated on each process Level-by-level restructuring Does not allow coarsening of
iscontinuities, steep gradients, resolution

shocks, etc.) Superimpose finer subgrids only deal.ll J O(#blocks) memory per-process -l ripple propagation si'bling blocks residing on
a CompL:tationally extremely costly on those regions and many more - High memory footprint - O(d) reductions different processors

Memory Bottleneck Synchronization overheads

AMR makes it feasible to solve problems that are intractable on uniform grid

Scalable Approach — Basic Design Highly Asynchronous Scalable Approach

Basic Design: Promote individual block as first-class entities, instead of a process The Highly Asynchronous Mesh

Block acts as a virtual process Block Naming Restructuring Algorithm

L overlap of computation with] Bitvector describing path from root to Based on local error estimate, blocks make
communication of other blocks on same block’s node refine, coarse or stay decisions o
physical process [One bit per dimension at each level refine and stay decisions communicated to <

Received message =y Refine

Required depth

Initial state

i Fd

(1 Run time handles communication (Easy to compute parent, children, siblings neighbors Local error condiion — Coarsén,
. s .t _ . oarsen Stay efine
between arbitrary blocks = using bit manipulation Decisions updated based on DFA, Termination detection @

. changes in decision are communicated

oo() o) 10() 11 3 refine, stay propagate along the mesh
\ irrespective of blocks refinement levels : B

0000 0001 0010 0011 1000 1010 1011 1100 1101 1110 1111 L When to stop?

FO OO = System quiescence indicates global
100100 100101 100110 100111 consensus on refinement decisions
Blocks proceed to next iterations
when quiescence detected, no need
to wait for blocks to be created
Messages directed to not yet created
blocks are buffered

Dynamic placement of blocks on physical Block is a unit of algorithm expression
processes L Simplifies implementation complexity

(1 Facilitates dynamic load balancing

Time complexity of
Quiescence detection: O(log P)

Algorithmic Benefits Performance Results

Typical Traditional Charm++ Approach Implementation Depth Range 4-9 — No Load Balancing

A roach - Depth Range 4:10 ——— o Di . .
PP Charm++ run-time system Depth Range 4-11 —— Distributed Load Balancing
Memory O(#Dlocks) per O(#blocks/P) per O Custom chare arrays

-- Ideal
SR EEa SEEss Dynamic Load Balancing
Mesh 0(d) reductions = 1 Quiescence detection O Blocks created and destroyed as
Restructuring | O(dlog?) time = J(log/?) time simulation progresses, creating
Synchronized Highly asynchronous load imbalance L
Neighbor O() data structure Hash table d DiStribUte.d load balancer 2bas 4096 8192 16384 32768 65536 131072
Look | Gossip protocol to spread Number of Processes Number of Processes
OOKUP O(log?) time (1) time : - . : .
load information + Mesh restructuring time on IBM BG/Q 2D Advection on IBM BG/Q with max-depth of 15

Implementation | Complex Simple, sloc: 1300 for probabilistic transfer of load Strong scaling (highly stressed) efficiency of 80%
2D, 1600 for 3D 1 O(log P) space, O(log P + d Remeshing decisions and communication: scalable at 16,384 cores
Advection #blocks/P) time d Termination detection time: logarithmic in #processes

Conclusion Future Work
Advection Benchmark i == =l Q Fully distributed (No O(P) or O (#blocks) Use work stealing in between the
method in 3D | _ I il data structures) distributed load balancing steps
O Advection of a tracer along a fluid | Niim T Scalable and asynchronous mesh 1 Benchmark at higher scales and for more
|iiiiiiiiii | i IHHHHHEHI ||||!!Hm : F restructuring algorithm applications
o i IHIMIE = e LS Asynchronous progress in computation
New approach is scalable and promises high
performance for much more deeply refined
computations than are currently practiced

W @)
N -

Steps per second
>

Remeshing Latency Time (ms)

(o2}

Student Research Symposium
IEEE High Performance Computing Conference (HiPC) 2013

