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We optimize a visual object detection application (that uses Vision Video Library kernels) and show that
OpenCL is a unified programming paradigm that can provide high performance when running on the Ivy
Bridge heterogeneous on-chip architecture. We evaluate different mapping techniques and show that run-
ning each kernel where it fits the best and using software pipelining can provide 1.91 times higher perfor-
mance, and 42% better energy efficiency. We also show how to trade accuracy for energy at runtime. Overall,
our application can perform accurate object detection at 40 frames per second (fps) rate, in an energy effi-
cient manner.

1. INTRODUCTION
Many computing platforms used by consumers are portable devices such as notebooks,
tablets, smart phones and more. Since these devices are usually battery powered,
achieving high energy efficiency is a crucial challenge. On the other hand, because
of their portability, mobile devices encounter many situations where they are expected
to understand their environment in a natural way. For example, many photo applica-
tions need to automatically adjust the focal range based on the size of faces looking at a
camera. In addition, gestures are frequently preferred to classical keyboard and mouse
based input. Furthermore, search engines can allow a query to be formulated using vi-
sual inputs without requiring the user to provide the semantic translation of the visual
content. Most natural interactions, such as the examples mentioned, require some us-
age of vision and video analytics algorithms. These tend to be floating-point intensive
and computationally demanding, but also regular, which make them good candidates
for parallelism.

Such data parallel algorithms adapt well to GPU type architectures, resulting in
higher performance and energy efficiency [Kumar et al. 2005]. However, general pur-
pose programming of GPUs requires knowledge of new programming paradigms, such
as CUDA and OpenCL, which decreases programmer productivity.

Traditionally, the GPU has been a peripheral component, used as a computational
aid to the CPU (which is needed for latency-oriented functions such as the operating
system). However, deploying stand-alone GPUs may not be desirable (or even practical)
for portable platforms for different reasons. First, using an extra chip increases the
system design and implementation cost significantly. Second, the extra chip, along
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with its associated overheads such as power supplies, increases the power and energy
consumption. Third, the off-chip connection between the CPU and the GPU may have
high performance and energy overheads.

A reasonable alternative for deploying a GPU is to put it on the same chip as the
CPU, and create a heterogeneous on-chip architecture. Advancements in system-on-
chip design and increases in the number of available on-chip transistors has made
hybrid architectures practical. Emerging examples such as Intel Ivy Bridge [Damaraju
et al. 2012], AMD Fusion [Foley et al. 2012] and NVIDIA Tegra 250 [NVIDIA 2011]
have implemented this idea.

For this study, we have chosen an application, object detection using ViVid [Dik-
men et al. 2012], as a representative of vision applications. The domain of our study
is on-chip hybrid architectures, which are most predominantly found in mobile plat-
forms. We believe that object detection is a representative mobile application because
it is fairly computationally demanding and it processes streamed visual input from a
camera. Similar to our study, most vision applications that would be utilized in mobile
devices (e.g. recognition, tracking, stabilization) consist of a pipeline of small number
of kernels, where kernels are the core compute intensive components of an application.
Of course, there is a large variety of kernels across the spectrum of vision applications.
However, from a computational perspective, the pipeline in this paper provides a good
mixture of kernels efficient on GPU, CPU or both. In addition, object detection is an im-
portant application for future portable devices, which has not yet been realized beyond
basic face detection. Notice that our focus on one application allows us to go deeper
into the details of individual kernels. We describe and evaluate the steps one might
take to improve performance and energy efficiency: (1) Code optimization, (2) Map-
ping strategies, (3) Dynamic Voltage and Frequency Scaling (DVFS) [Mudge 2001] and
(4) Algorithmic tradeoff of accuracy. We report the lessons learned, which would give
insight to application developers and system designers.

In this paper, we evaluate and analyze different programming paradigms and strate-
gies for energy efficiency. We implement and execute (on the Ivy Bridge architecture)
four different code versions of ViVid using 1) OpenCL, 2) OpenMP + auto-vectorization,
3) OpenMP + vector intrinsics, and 4) the OpenCV vision library. The OpenCL version
runs on both the CPU and the GPU, while the other versions only run on the CPU.
Our experimental results show that OpenCL does not deliver the performance that
can be attained when using lower level interfaces (e.g. vector intrinsics on CPU), but
provides a reasonable performance (Section 4). The OpenCL code processes 40 frames
per second (fps) for accurate object detection (Section 5), so it can be used for appli-
cations that require real-time object detection (33fps). Notice that the performance of
our OpenCL implementation is superior or similar to recent works using much more
capable discrete GPUs [Beleznai et al. 2011; Zhang and Nevatia 2008].

We also show that mapping each kernel to the device (CPU or GPU) where it exe-
cutes more efficiently and overlapping the computation of the kernels is the best ap-
proach. Our results show that with these heterogeneous platforms it is possible to
find mappings that, while executing relatively faster, are less energy efficient (this is
discussed in Section 5). In addition, it is possible to gain better energy efficiency by
sacrificing a small amount of accuracy algorithmically. For our application, we can re-
duce 20% of the energy consumed at the cost of an increase of only 1% miss-rate on
image detection (Section 5.3).

Note that manufacturers do not know how to design hardware and software of future
portable devices to support new interfaces (e.g. for human interaction). For instance,
specialized hardware accelerators and optimized vision libraries are considered. We
show that using a unified programming paradigm (e.g. OpenCL), vision applications
can deliver the required performance (for a typical number of frames per seconds) and
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energy efficiency on heterogeneous on-chip architectures. To the best of our knowl-
edge, the literature only considers large discrete GPUs with very different trade-offs
in performance and energy efficiency for these applications.

The rest of this paper is organized as follows. Section 2 describes our application and
experimental setup briefly. Section 3 evaluates and analyzes different optimizations
for our kernels using OpenCL for the CPU and the GPU. Next, Section 4 compares the
performance and programming effort of the OpenCL paradigm to others for the CPU.
After that, Section 5 evaluates the performance and energy consumption of different
kernels on either the CPU or GPU. It also optimizes the full application’s performance
and energy consumption using different mapping methods. Finally, Section 6 reviews
some related work and Section 7 concludes the paper.

2. ENVIRONMENTAL SETUP
2.1. ViVid
We focus our study on an object (e.g., face) detection algorithm [Dikmen et al. 2012]
for finding objects with a specific shape or appearance in unconstrained visual input.
This object detector is analogous to most practical approaches [Jones and Viola 2003;
Felzenszwalb et al. 2010] to this problem, which follow a common work-flow called
“sliding window object detection”. This process involves describing the visual infor-
mation inside small rectangular regions of the image or video frame hypothesized to
contain the object, and applying a decision function that yields a binary output indi-
cating the presence or absence of the object in each of such rectangles. Sliding window
detection is the most established approach for the unconstrained object detection prob-
lem. Other popular methods include generalized voting frameworks [Maji and Malik
2009] or contour matching [Ma and Latecki 2011]. In all cases, object detection is a very
computationally demanding application because image information needs to be eval-
uated densely over all the potential locations which may contain the object. ViVid’s
sliding window approach breaks up the problem into two distinct parts: 1) describing
the image information, and 2) classifying it. The image information is described by
correlating the gray-scale image with numerous 3×3 patterns and summarizing these
correlations in terms of spatially local histograms. The classification is achieved by
processing these histograms through linear support vector machines [Burges 1998].

Other than object detection, there are numerous applications of computer vision on
mobile devices including video stabilization, panorama stitching, gesture recognition
etc. However, the data description followed by a data association work-flow is a com-
mon pattern. Typically, the data description part touches every pixel at least once
and builds a summarization of structures of interest (e.g. colors, gradients, textures).
The data association part measures the distance between the data summaries against
stored exemplars. In classification applications, these can be templates for objects,
and in segmentation applications these are usually cluster centers. The computational
stages in a mobile computer vision application may be computationally balanced or
particular stages may give rise to performance bottlenecks. In our selected object de-
tection algorithm, the data description and data association steps are well balanced in
terms of their computational load. Therefore, we believe it comprises a good case study
with challenges in both stages.

To build our object detector pipeline, we use the ViVid library2. ViVid includes sev-
eral atomic functions common to many vision algorithms. We have used ViVid success-
fully in event detection applications [Dikmen et al. 2008; Yang et al. 2009].

2http://www.github.com/mertdikmen/vivid

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4

For the purposes of this work, we extended ViVid by adding OpenCL equivalents
of several kernels. We use the C++ interface to orchestrate the calls to these OpenCL
functions or kernels.

2.2. Blockwise Distance
This kernel needs to find the maximum response (normalized cross correlation) of 100
filters on a small square image patch (in this application, 3× 3) centered at every pixel
of the image, while remembering which filter delivered this maximum at every pixel.
Algorithm 1 outlines the overall algorithm.

for each 3 by 3 image patch centered at a pixel do
for each filter j of 100 filters do

response = 0;
for each coefficient i of the 9 coefficients of filter[j] do

response += filter[j][i]*pixel[i];
end
if response > max response then

max response = response;
max index = j;

end
end

end
Algorithm 1: Filter kernel

2.3. Cell Histogram Kernel
Cell histogram kernel is the second stage of data description, where the low level infor-
mation collected by the filter kernel is summarized for small, non overlapping square
blocks of the image. A 100 bin histogram is populated for each of these blocks by ac-
cumulating the “max response” values in their respective bins (given by “max index”)
from every pixel inside the block. Note that this operation is different from well known
image histogramming problem, for which many parallel implementations exist. Our
approach differs in two important aspects: (1) the histogram bins represent a weighted
sum (not a simple count) and (2) we build many local histograms not a single global
one.

2.4. Pairwise Distance
This kernel is the data association step in our application. It finds the Euclidean dis-
tance between two sets of vectors, where one vector corresponds to the histogram pre-
viously generated and the other vector represents the template. This kernel measures
how close each descriptor is to the template of the object of interest. If the distance is
small enough, it shall output a detection response.

The kernel is structurally similar to the matrix multiply operation, which finds the
dot product between every row of one matrix and every column of another one. How-
ever, in pairwise distance, we compute the square of the two values’ differences, instead
of just multiplying them.

2.5. Ivy Bridge Architecture
For the experiments reported in this paper, we use the two different platforms shown
in Table I, both based on the Intel Ivy Bridge architecture. The first one is a 3.3
GHz quad-core used for Desktops and the second one is 1.7 GHz dual-core used for
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Ultrabooks. Both platforms have an integrated GPU that can be programmed using
OpenCL3. GPUs exploit Single Instruction Multiple Thread (SIMT) type of parallelism
by having an array of Compute Units (CUs). Each CU is assigned a work-group, where
work-items in each group run in lock-step, executing the same instruction on different
data. GPUs are designed to efficiently exploit data parallelism. Branchy codes may
run poorly on GPUs, as all the different paths in a control flow need to be serial-
ized. Note that the Ivy Bridge’s GPU is simpler than Nvidia [Lindholm et al. 2008]
or AMD/ATI [Zhang et al. 2011] GPUs. It has a small number of compute units and
simpler memory hierarchy, for instance.

Table I: Intel Ivy Bridge (Core i5 3350 & 3317U) processor speci-
fications

Platform Desktop Ultrabook
Processor Number i5-3550 i5-3517U
# of Cores 4 2
Base Clock Speed 3.3 GHz 1.7 GHz
Max Turbo Frequency 3.7 GHz 2.6 GHz
Base CPU peak 105.6 GFLOPs 27.2 GFLOPs
Max CPU peak 118.4 GFLOPs 41.6 GFLOPs
Cache Size 6 MB 3 MB
Lithography 22 nm 22 nm
Max TDP 77 W 17 W
Intel HD Graphics 2500 4000
GPU Execution Units 6 16
GPU Base Frequency 650 MHz 350 MHz
GPU Max Dynamic Frequency 1.15 GHz 1.05 GHz
Base GPU peak 31.2 GFLOPs 44.8 GFLOPs
Max GPU peak 55.2 GFLOPs 134.4 GFLOPs

The Ivy Bridge CPU contains multiple cores, where each core supports Advanced
Vector Extensions (AVX) that apply the same instruction on multiple data simultane-
ously. AVX supports 256-bit wide vector units that allow vector operations to operate
on 8 floating-point numbers simultaneously. Unless otherwise stated, the experiments
reported in the paper use the Ultrabook platform. For comparison purposes, we have
also run experiments on the Desktop platform and an Nvidia Fermi GPU.

For the evaluation, we use Intel SDK for OpenCL [Int 2013a] to run OpenCL codes.
We also wrote OpenMP code with and without vector intrinsics that we compiled us-
ing the intel ICC compiler and /O3 compiler flags. Table II summarizes the software
environment we use for the experiments. OpenCL is a unified programming paradigm,
used to write programs for heterogeneous platforms. OpenCL programs can use an ad-
dress space qualifier (such as global for global variables or local for local variables)
when declaring a variable to specify the memory region where the object should be al-
located. The OpenCL implementations for the GPU in the Ivy Bridge accesses memory
through the GPU-specific L3 cache and the CPU and GPU Shared Last Level Cache
(LLC). Accesses to global variables go through the GPU L3 cache and the LLC. Ac-
cesses to local memory (also referred as shared local memory because this local mem-
ory is shared by all work-items in a work-group) is allocated directly from the GPU

3http://www.khronos.org/opencl/
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L3 cache. Thus, GPU L3 cache can be used as a scratch-pad or as a cache. The size of
this memory is 64KB (obtained using the standard ”clGetDeviceInfo()” OpenCL call)
for both platforms, the Desktop and the Ultrabook. The CPU does not have hardware
support for local memory, so in principle codes running in the CPU do not benefit from
using local memory. Additional details can be found in [Int 2013b].

Table II: Software environment used for experiments

Operating System Windows 8 Build 9200
GPU driver Intel 9.17.10.2867
OpenCL SDK Intel 3.0.0.64050
Compiler Intel ICC 13.0.1.119

2.6. Evaluation methodology
For the experimental results, we measure the time of thousands of iterations of the ap-
plication and report the average. This is realistic for many vision applications, which
are expected to perform analysis (e.g. detection) over a continuous input of frames, fed
from the device camera. This setup is especially important for the Ivy Bridge GPUs,
since the running times have high variance in the first few iterations, but stabilize af-
ter some “warm up” iterations. For all the experiments reported here, our input image
size is 600 by 416 pixels.

For power and energy measurements, we use hardware energy counters available in
the Ivy Bridge architecture [David et al. 2010]. They measure three domains: “pack-
age”, “core” and “uncore”. Package means the consumption of the whole chip, including
CPU, GPU, memory controllers, etc. Core is CPU domain and Uncore is the GPU do-
main. For power measurement of the whole system, we plug a power meter to the
machine’s power input.

The new Intel Turbo Boost Technology 2.0 [Rotem et al. 2012] makes the measure-
ments complicated on this architecture. In a nutshell, it accumulates “energy budget”
during idle periods and uses it during burst activities. Thus, the processor can pos-
sibly go over the Thermal Design Power (TDP) for a while. It takes it a few seconds
to reach that limit and several seconds to go back to the TDP limit. This can change
the performance and power of the processor significantly. One might turn this feature
off for accurate measurements. However, it is an advanced strength of the architec-
ture that can enhance the user experience significantly (e.g. for interactive use), so
it should not be ignored. For our measurements, we run each program for around 10
seconds (which seems to be a valid common use case) and average the iteration times
and power consumption.

We used the machine peak performance numbers reported in the Intel documenta-
tion4. However, those values are computed using the maximum frequency value and
AVX vector units, but, as mentioned, the processor cannot be at the maximum fre-
quency for a long time. Thus, in many cases, peak performance numbers are upper
bounds of the actual peak performance.

3. OPTIMIZATION OF KERNELS IN OPENCL
In this Section, we describe the optimizations we applied to the OpenCL kernels de-
scribed in Section 2.1. Then, in Section 3.4, we analyze the performance impact of each

4http://download.intel.com/support/processors/corei7/sb/core i7-3700 d.pdf
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optimization. The OpenCL codes run in both the CPU and the GPU, but it is possible
that an optimization that works well for the GPU would hurt the performance when
running on the CPU or vice versa. From now on, we will refer to the Blockwise Distance
Kernel as filter, the Cell Histogram Kernel as histogram, and the Pairwise Distance
kernel as classifier.

3.1. Filter Kernel
Here, we describe the optimizations that we applied to the filtering algorithm shown
in Figure 1.

3.1.1. Parallelism. We exploit parallelism by dividing the image across multiple work-
groups with several work-items. Then, each work-item runs the 100 filters on its image
block. We use 16 by 16 work-group size following Intel OpenCL SDK’s recommendation
(considering also our working set memory size). In addition, we use the Kernel Builder
(from the Intel OpenCL SDK) tool’s work-group size auto-tuning capabilities to make
sure this is the best size.

3.1.2. Loop Unrolling. We completely unroll the inner loop, which has 9 iterations.

3.1.3. Vectorization. This transformation tries to exploit the CPU’s AVX vector units.
Without vectorization, this kernel calculates the response of every filter on a three-by-
three image patch, keeping track of the maximum one. This requires nine multiply-
add operations, followed by an update guarded by an if statement. In this form, the
inner loop cannot be fully vectorized. Since AVX supports 8 operations at a time, we
can vectorize eight of the multiplies and partially vectorize the sum reduction, but still
need to run one sequentially. Thus, to enable efficient vectorization, instead of working
on one filter at a time, one can consider eight of them at the same time. Note that the
number of filters (100) is not a multiple of eight so we need to handle the last four
filters separately. Each pixel value needs to be replicated (broadcast) in a vector to
participate in the vector operations.

This transformation needs a reorganization of the filter coefficients’ data structure
in the memory. Originally, a filter’s nine coefficients are located in consecutive mem-
ory locations (Figure 1(a)). However, we need the first coefficients of eight filters to be
together to be able to load them in a SIMD vector (Figure 1(b)). Figure 1 illustrates
these layouts using different colors for different filters, and numbers for different el-
ements of a filter. Thus, effectively, we are transposing each 8 × 9 sub-matrix of eight
filter coefficients to an 9×8 one. This transformation is generally useful for vectorizing
various filters of different sizes since the number of coefficients most probably does not
match the SIMD size. Note that this transformation can be thought of as a customized
instance of the Array of Structures (AoS) to Structure of Arrays (SoA) transformation.

1 2 ... 9 1 ...

1 1 1 ... 2 2 ...

#9 floats

#8 floats

(a) original coefficient layout

1 2 ... 9 1 ...

1 1 1 ... 2 2 ...

#9 floats

#8 floats

(b) vectorized coefficient layout

Fig. 1: change of coefficient data layout for vectorization
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3.1.4. Local Memory. This optimization is specific to the GPU. The filter kernel oper-
ates on an image and the 100 filter coefficients. The filter coefficients occupy 3.5KB
that we copy (using all the work-items in parallel) to the local memory. Each work-
group also copies the image block it needs. This optimization may hurt performance
when the code runs on the CPU due to the copying overheads. This is evaluated in
Section 3.4.

3.2. Cell Histogram Kernel
The parallelism is achieved through a scatter operation. Every work-item in a work-
group accumulates a subset of the values inside the image block to their respective
histogram bins. Note that this is a potential race if two or more work-items in the
same work-group try to increment the same histogram bin. This race can be avoided
if the language and the hardware allow for “atomic add” directives for floating point
numbers. However, these atomic operations serialize memory accesses and can hurt
the performance significantly.

We allow this race in our OpenCL kernel because our Monte Carlo simulations have
shown that the probability of such a race is low given the distribution of filter indexes
in natural image patches. Therefore we do not expect the race conditions to change the
shape of the histograms drastically, and we have validated this through experiments.
Unlike scientific applications, media programs do not need full accuracy in many cases,
and we should exploit this for better performance and energy efficiency.

3.3. Classifier Kernel
3.3.1. Parallelization. Parallelizing this code is similar to a tiled matrix multiply, where

a work-group is responsible for a tile of the output matrix (as with the filter, we use
16x16 tiles).

3.3.2. Loop Unrolling. We manually unroll the innermost loop, which has 16 iterations.

3.3.3. Vectorization. Vectorizing this code is easy as operations are done in an element
by element fashion, with elements in consecutive memory locations. After accumulat-
ing differences in a vector, a sum reduction is required (which we implement as a dot
product with an identity vector).

3.3.4. Local Memory. All the work-items load the two blocks of elements they want to
work on in parallel in the local memory.

3.4. Performance evaluation
In this Section, we evaluate the performance impact of each of the optimizations. Fig-
ure 2(a) shows the execution time for filter when running on the CPU or the GPU.
The bars show the cumulative impact of the different transformations. Thus, Un-
roll+Vec+LocalMem corresponds to the execution time after all the optimizations have
been applied. As Figure 2(a) shows, after applying all the above optimizations, this ker-
nel runs more than 10 times faster on the GPU than the original non-optimized code.
It now takes only 8.46ms. It also made it 6.4 times faster on the CPU (takes 25.5ms for
the same image). Loop unrolling speeds up this kernel for both the CPU and the GPU.
Vectorization speeds up filter for the CPU significantly. Also, even though the GPU
does not have CPU-like vector units, execution times decreases by about 16% (this is
discussed in Section 3.4.3). We also note that the use of the local memory for the filter
coefficients does not have a significant overhead on the CPU. Thus, the same kernel
code can be used for both architectures.

Figure 2(b) shows the results for the classifier. As the figure shows, both unroll and
vectorization improve the performance significantly. However, the use of local memory
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(b) Classifier kernel

Fig. 2: Execution time of kernels with different optimizations (on
Ultrabook); *- percentage of peak performance.

degrades performance for both devices. Hence, we did not use the local memory for
classifier and, again, the same code is used for both the CPU and the GPU.

To assess the utilization of the CPU and GPU, we measured the MFLOPs for both
filter and classifier. Numbers on top of the bars in Figures 2(a) and 2(b) show the
performance of each code as a percentage of the peak performance of the machine. Our
numbers show that filter runs at 45% and 42% of the peak performance on the CPU and
GPU, respectively. Classifier runs at 49% and 9% on the CPU and GPU, respectively.
Thus, filter utilizes both the CPU and GPU very well, while classifier only has that
level of utilization on the CPU. The inefficiency of GPUs for certain workloads has
been discussed in related work [Lee et al. 2010]. However, 9% utilization might be
considered high for certain workloads on the GPU.

Note that a more optimized code usually results in faster and more energy-efficient
execution. In fact, in our experiments we observed that the programs were consuming
the same or similar power before and after the optimization. Thus, decreasing execu-
tion time almost directly results in lower energy consumption in this case.

Table III summarizes our results about which optimizations were effective on each
device. Note that the OpenCL filter kernel that we use in the following sections uses
the local memory optimization, since it does not hurt performance, and this allows us
to have a single code version for both devices.

Table III: Effective optimizations for filter and classifier kernels
on Ultrabook

Kernel GPU CPU Same code?Unroll SIMD Local-Mem Unroll SIMD Local-Mem
filter yes yes yes yes yes no yes
classifier yes yes no yes yes no yes

Next, we discuss the performance results, specifically the impact of using local mem-
ory, branching effects, and vectorization in more detail.

3.4.1. Local memory usage. Our results in Figures 2(a) and 2(b) show that the use of
local memory is important for the filter kernel but undesirable for the classifier.
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Using the local memory is essential for the filter kernel on the GPU. The reason
is that a small set of constant data (the filter coefficients) are needed for the whole
execution (all the iterations of the outer loop). Relying on the GPU L3 cache is not
effective because the data from the image that is being accessed at the same time
might replace the filter coefficient in the cache.

On the other hand, using the local memory is detrimental for the classifier kernel
on the GPU of our Ivy Bridge Ultrabook. However, using the local memory for the
classifier improves the performance on the smaller GPU (HD Graphics 2500 device)
of the Desktop platform by 35%, even though the architecture is essentially the same
(the Desktop GPU has only 6 CUs, while the Ultrabook GPU has 16 CUs).

To understand the differences in performance (in the absence of performance coun-
ters), we used the memory streaming micro-benchmark of uCLbench package [Thoman
et al. 2011] that measures the effective bandwidth to memory. This benchmark allo-
cates arrays in memory (either local or global), that are accessed by all the work-items
repeatedly. Our experimental results show that the effective bandwidth of local mem-
ory is less for the Ultrabook GPU than for the Desktop GPU (7.8 GB/s for the Ultrabook
vs. 10.3 GB/s for the Desktop) when local arrays are accessed. On the other hand, the
effective bandwidth of global memory is about the same for both machines (7 GB/s for
the Ultrabook vs. 7.4 GB/s for the Desktop) when global arrays are accessed. Notice
that the working set of the classifier is just the data that we are placing on the lo-
cal memory and fits in the 64KB of the GPU L3 cache. Thus, since the Desktop has
a higher effective bandwidth when accessing the data in the local memory, the local
memory optimization reduces execution time. However, in the Ultrabook the band-
width is similar and the use of local memory introduces some copying overheads.

Using local memory for the code running on the CPU introduces some extra copying
overhead. While this overhead is not visible for filter because of the small size of the
filter coefficients data structure, it adds a significant overhead to the classifier kernel,
due to the larger size of the data structure allocated in local memory.

3.4.2. Loop Unrolling and Branch Overhead. Unrolling results in a significant perfor-
mance improvement in both kernels, classifier and filter, for both the CPU and GPU.
In the CPU unrolling decreases loop overhead and increases Instruction Level Paral-
lelism. In the GPU, unrolling reduces the number of branches.

Branches on the GPU can have a significant impact on performance, specially in the
case of divergent branches where work-items (threads) of a CU take different paths,
and each branch path has to be serialized. On the other side, non-divergent branches,
where all the work-items follow the same path, are usually fast.

To assess the impact of non-divergent branches on the Ivy Bridge integrated GPU,
we modified the filter kernel, and replaced the “if” condition that finds the maximum
filter response with additions that sum the filter responses (notice that this branch,
although data dependent, is mostly non-divergent, as work-items execute on neighbor-
ing pixels that tend to be similar and hence the maximum response filter is mostly
the same for all the work-items). This change made this code run 13% faster on the
integrated GPU. We also ran both codes (with and without the “if” statements) on the
Fermi Nvidia GPU and found that the code without the branches had only 3% im-
provement. In addition, we used the “branch overhead” benchmark of uCLbench pack-
age [Thoman et al. 2011] to assess the difference in performance between divergent
and non-divergent branches. In this benchmark, different cases of branch divergence
are compared. For example, a branch might be taken by all the work-items, a subset of
them or only one. The experimental results show that the Ivy Bridge’s integrated GPU
is performing much better for non-divergent branches, as benchmarks can be up to 10
times slower on the Ivy Bridge’s integrated GPU when branches are divergent.
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Overall, our experiments show that non-divergent branches have a higher effect
on the Ivy Bridge GPU than on a Fermi GPU. Thus, loop unrolling (that removes
non-divergent branches) is an important optimization for this platform. Other non-
divergent branches, such as the “if” associated with the max operator cannot be re-
moved with loop unrolling, and would benefit from a better hardware support for non-
divergent branches.

3.4.3. Vectorization. Vectorization speeds up both the codes for the CPU, as it makes
it easier for the compiler to generate code using the AVX vector extensions in the Ivy
Bridge. When running on the GPU, classifier is about 2.8 times faster with vectoriza-
tion, despite the fact that vector units need to be emulated on the GPU, which might
have some overheads. One reason is that the vector code has more unrolling on the
GPU implicitly. Thus, to assess the effect of further unrolling, we unrolled the non-
vectorized code’s outer loop as much as it is beneficial (and “jam” it into the inner loop,
which is already unrolled). This code runs faster, but still 1.8 times slower than the
SIMD version. The other reason for the difference in performance is found by looking
at the code generated by the compiler for both versions (with and without SIMD). For
the code with SIMD, the compiler generates different memory load instructions with
better alignment, which is important for performance.

As mentioned, filter kernel runs only slightly (13%) faster on the GPU when vector-
ization is applied.

4. COMPARISON WITH OTHER PROGRAMMING PARADIGMS
In this section, we assess if OpenCL is a suitable paradigm for the CPU, since it is
desirable to have a single programming paradigm for both types of devices.

For that, we compare the programming effort and execution times of the OpenCL
filter code versus implementations of the same code written with other programming
models for the CPU. Filter code is chosen for the comparison because it is a compute
intensive kernel, based on a convolution operation used by many computer vision ap-
plications.

We run the experiments of this section on the Desktop’s CPU, since it is more power-
ful and will reflect the effects better. In addition, the Ultrabook’s CPU does not support
SSE vector instructions. Note that for all the experiments we use 4 byte “float” preci-
sion numbers (which are enough for the filter kernel).

4.1. OpenMP with Compiler Vectorization
Since OpenMP is well suited to exploit data parallel computation in multicores, we
compare the OpenCL code with an OpenMP implementation. Although one could ex-
pect perfect speedups, our results show an overhead of 8% with respect to perfect
scaling. This is due to the overhead of spawning and joining threads for every loop
invocation on a different image.

To exploit the machine’s potential, we need to exploit the CPU’s vector units. The
simplest way is to have the compiler do this task. The Intel compiler that we use (Sec-
tion 2.5) can vectorize this code, but needs the “/fp:fast” flag, to enable optimizations
that can cause minor precision loss in vectorization of reductions. In addition, by look-
ing at the assembly code, we realized that it did not generate aligned loads, which was
fixed by using Intel compiler intrinsic function ( assume aligned()).

Furthermore, with the hope that the compiler would generate better code, we gener-
ate another code version where we applied, at the source level, the transformation we
applied to vectorize the OpenCL filter kernel (Section 3.1).
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4.2. OpenMP with Manual Vectorization
We vectorized the code manually using vector intrinsics that map directly to assembly
instructions. A disadvantage of this approach is that the code is not portable as it is
tied to a specific machine’s instruction set and a compiler. Furthermore, it is close to
the assembly level and hence, the programming effort including code readability and
debugging will suffer. Nonetheless, if the performance difference can be very high, one
might prefer paying the cost. We wrote three versions: using AVX and SSE, using only
SSE and using only AVX.

4.2.1. AVX+SSE. The Ivy Bridge architecture supports the AVX and SSE instruction
sets. AVX instructions can work on eight floating point elements, while SSE ones can
only handle four elements. We use SSE, since AVX does not have an instruction equiv-
alent to SSE’s “ mm comigt ss” (that compares two values and returns a 1 or a 0 de-
pending on which one is larger), which simplifies the coding. Thus, we use AVX for
multiply and add operations and SSE for conditional comparisons. Note that mixing
AVX and SSE instructions can have significant translation penalties on Ivy Bridge [avx
2011]. However, we use “/Qxavx” flag to ask the compiler to generate AVX counterparts
whenever possible. In addition, we use Intel vTune Amplifier to make sure these penal-
ties are avoided. Since this kernel needs to find which filter resulted in the maximum
response value, we compare the max response against each response value. A sam-
ple comparison is shown below, where we permute the result vector and compare the
lowest index element using the “ mm comigt ss” intrinsic.
__m128 p_tmp = _mm_extract_ps(response1 , 0x1);
if(_mm_comigt_ss(p_tmp , max_response )) {

max_response = ptmp;
best_filter = filter_ind +1;

}

Note that we provide code snippets to be able to compare the complexity of different
methods. We refer the interested reader to Intel’s documentations to fully understand
the details.

4.2.2. SSE. We implemented an SSE version to evaluate AVX versus SSE and mea-
sure the effect on performance of SIMD width.

4.2.3. AVX. We also implemented a version that only uses AVX instructions. The im-
plementation compares all the responses in parallel, gathers the sign bits in an integer
mask and examines each bit separately. If the maximum response needs to be updated,
we use a permutation instruction to broadcast the new maximum to the register, re-
peat the comparison and update the integer mask. There is a small complication be-
cause of “ mm256 permute ps” instruction’s semantics. Since it can only choose from
each four element half of the register separately, we need to consider each half of the
responses separately and copy it to the other one. Thus, the initialization code for com-
paring four elements of responses is shown below:
// low 128 half
// copy low to high
__m256 response1 = _mm256_insertf128_ps(

response ,
_mm256_extractf128_ps(response , 0), 1);

__m256 cpm = _mm256_cmp_ps(
response , max_response , _CMP_GT_OS );

int r = _mm256_movemask_ps(cpm);

After that, we will have four tests of the mask with possible updates similar to the
one below:
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if(r&(1<<1)) {
best_filter = filter_ind +6;
int control = 1|(1 < <2)|(1 < <4)|(1 < <6);
max_response = _mm256_permute_ps(

response1 , control );
r=_mm256_movemask_ps( _mm256_cmp_ps(

max_response , max_response , _CMP_GT_OS ));
}

4.3. OpenCV Library Calls
OpenCV [Bradski 2000] is an open source library consisting of many low level image
processing algorithms, as well as many high level algorithms frequently used in com-
puter vision. It is by far the most utilized common code base for vision research and ap-
plications. We constructed the object detection algorithm using standard library data
structures and function calls to OpenCV in order to compare what is achievable in
terms of performance using the standard C++ interface. We link against the standard
distribution of the OpenCV binaries, which is not multithreaded5.

The filter kernel can be constructed simply by 100 calls to the OpenCV 2 dimensional
filtering function. Between each OpenCV filtering function call, we do a pass over the
output array to determine if the current filter response value is higher than the maxi-
mum value observed and replace the assignments in the output array accordingly. The
classifier kernel can be simply constructed by taking the norm of the differences for
every pair of rows in the two input matrices. Row isolation, vector differencing and
vector norms are all standard library calls in OpenCV. The histogram kernel is not
achievable through standard library calls, but the ViVid call can be used on standard
OpenCV data types with minimal changes.

Our experimental results show that the OpenCV implementation of the filter kernel
runs 15 times slower than the OpenCL version of ViVid running on the CPU of the
Ultrabook. Notice that our OpenCL code runs in parallel (two cores of the Ultrabook),
while the OpenCV code runs sequential. Also, the OpenCV code that we use has hard-
coded SSE2 intrinsics (we verified by looking at the library code), while our OpenCL
code uses the AVX vector instructions (when running on the CPU). However, these two
points still do not justify the big difference in performance. This substantial difference
in performance appears because the OpenCV code does not take advantage of local-
ity, as we need to re-load the image 100 times. In our OpenCL code, each image pixel
is loaded only once, as the 100 filters are applied to each pixel before moving to the
next one. Notice that experimental results for classifier show that the OpenCV code is
also significantly slower than our OpenCL code. The reason is that while the OpenCV
library has an efficient matrix multiplication call, what we need is a customized oper-
ator (the square of the two value’s differences or Euclidean distance), which needs to
be realized in an inefficient manner (as mentioned above).

While the code using the library calls is very concise and straightforward, the non-
perfect adoption of OpenCV library primitives for our algorithm results in performance
degradation. This is because each library call has some overhead, and no optimization
is possible across library primitives. Vision applications can benefit significantly from
specific low level optimizations based on the expected input and output structures,
as well as computational patterns of individual kernels. Thus, current vision libraries
are unable to solve the entire parallel programming problem for vision applications, as
the resulting code is not fast enough for production use. However, ease of use has made

5Some OpenCV functions can be made multithreaded by linking against Intel Thread Building Blocks [Rein-
ders 2007]
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these libraries, such as OpenCV, very good candidates for application prototyping and
development.

4.4. Performance and Effort Comparison
4.4.1. Performance Comparison. Figure 3 shows the execution time and the percent-

age of peak performance obtained by different schemes running on the Desktop plat-
form (results in the Ultrabook are similar as these experiments are mainly concerned
with vectorization). In the schemes evaluated, orig-novec corresponds to the baseline
OpenMP code where compiler vectorization is disabled; orig-auto corresponds to the
OpenMP code auto-vectorized by the compiler; trans-auto is the OpenMP code trans-
formed for vectorization at the source level (like in the OpenCL code in Section 3.1) and
automatically vectorized by the compiler; the three code versions using intrinsics are
labeled SSE, AVX+SSE and AVX; OpenCL corresponds to the OpenCL code optimized
as discussed in Section 3.1.
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Fig. 3: Performance comparison of filter kernel in different
paradigms (on Desktop); *- percentage of peak performance.

As the figure shows, the auto-vectorized codes (orig-auto and trans-auto) run sig-
nificantly slower than the OpenCL code (26.06 ms and 40.93 ms versus the 9.74 ms
time of the OpenCL code). Checking the generated assembly code of orig-auto, we see
that the compiler has generated vector code but it is not as efficient as our manual
code since it could not perform our transformation automatically (which is expected).
The figure also shows that the performance of trans-auto improves only slightly with
respect to orig-novec, because, although simple, the compiler cannot analyze the trans-
formed code. Thus, auto-vectorization, although easy to use, is not a good solution in
terms of performance, even for the simple loops of our filter kernel.

With respect to the vector codes using intrinsics, AVX is the fastest code, and is
46% faster than the OpenCL code. As expected, SSE is the slowest of the codes using
intrinsics, due to the shorter vector units. However, the SSE code is the shortest, as
the number of filters (100) is now an exact multiple of the SIMD width (4 elements).
Thus, wider SIMD units increase the overheads of handling boundaries. Finally, the
AVX+SSE is only 8% faster than the OpenCL counterpart.
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For comparison purposes, we implemented, using AVX, a filtering kernel without
branches and comparisons (that does not find the index of the best filter). It uses a
small “reduction tree” method to perform fewer SIMD max operation to find the max-
imum from the eight responses. Our AVX version is just 5% slower than this one,
showing that we have alleviated most of the comparison overheads by comparing in
parallel and pushing other instructions inside the “if” statements.

4.4.2. Programming Effort Comparison. To quantify the programming effort of each
paradigm, we use the Halstead’s productivity metrics [Halstead 1977; Weyuker 1988;
González and Fraguela 2010]. In Halstead’s Elements Software Science [Halstead
1977], a program is considered as a string of tokens, which can either be operands
or operators. The operands are either constants or variables, while the operators are
symbols or their combination that can affect the value or ordering of operands. Let η1
be the number of unique operators, η2 the number of unique operands, N1 the number
of occurrences of operators, and N2 the number of occurrences of operands. Derived
metrics that can be used to quantify programming complexity are defined as follows:

Program Volume: V = (N1 +N2) log2(η1 + η2)

Program Difficulty: D = 1
2
η1N2

η2

Programming Effort: E = DV
Table IV shows these metrics for different implementations of the filter kernel. The

last column of Table IV shows the number of Source Lines of Code (SLOC). The Table
shows that performance is correlated with effort; higher performance requires more
programming effort, which is to be expected. AVX has the highest performance and
effort, while compiler auto-vectorization has the least of both. From these numbers,
OpenCL Programming Effort and Program Volume metrics are similar to those of AVX-
SSE; both deliver also similar performance. The table shows that η1 is almost the same
for all the code versions, while η2 is 61 for orig-auto and around 100 for all the others.
These additional variables appear as a consequence of unrolling, that has been applied
to all code versions but orig-auto. N1 and N2 are also larger in AVX because it needs
some code to handle the leftovers after loop unrolling. In addition, the code to compute
the index of the filter with the maximum response is more complex, as described in
Section 4.2.3.

Notice that all these metrics do not fully capture the complexity of each code. They
are based on the number of operators and operands, but do not take into account the
complexity of each operator. For example, addition is much simpler than a vector in-
trinsic function of AVX. Thus, these metrics may be highly optimistic for the vector
implementations.

Table IV: Software metrics for different implementations of the
filter kernel

Paradigm η1 η2 N1 N2 V E SLOC
orig-auto 23 61 230 214 2838 114504 68
SSE 23 102 494 467 6694 352458 133
AVX-SSE 23 101 682 645 9228 677725 187
AVX 24 106 903 836 12211 1155752 212
OpenCL 22 99 691 625 9105 632307 162
OpenCV 12 25 59 63 635 9609 15
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Overall, OpenCL provides a good balance in programming effort and performance.
It is much faster than the auto-vectorized versions and it is close to the low level in-
trinsics versions. It is 1.8 times slower than the AVX code with “ninja optimizations”
but the effort is significantly less (1.8 times less Halstead Effort). Therefore, program-
ming in OpenCL is effective for the CPU as well as the GPU, and bringing the GPU
on the die did not impose significant programming effort (since the same code runs on
the CPU as well). Thus, OpenCL has the advantage that a single programming model
can be used to run in both CPU and GPU. It is possible that the code versions that
run the fastest will be different among platforms, but the programming effort does not
increase significantly, because the different versions need to be tried in both platforms
in the optimization and tuning process anyways.

Note that we do not claim OpenCL is performance portable across platforms in gen-
eral. We believe that given the data parallel nature of vision algorithms, in many cases,
the same baseline algorithm can be written for CPU and GPU in OpenCL. However,
tuning transformations need to be evaluated separately for each device. For this study,
our target of the OpenCL tuning was the GPU, but the experimental results show that
the transformations also worked for the CPU, resulting in the same kernel codes.

4.5. Possible Hardware and Software Improvements
Vision and video analytics (and their filtering kernels) are important applications for
heterogeneous on-chip architectures. Thus, we list a set of possible improvements to
the hardware and system software that vendors might consider for this class of appli-
cations.

The first one is related to the algorithms that the compiler can recognize and vector-
ize automatically. We observed that neither the Intel compiler nor the OpenCL com-
piler can generate efficient vector code for the max reduction (and finding the index
corresponding to max) used in the filter kernel. When we examined the assembly code,
we found out that the OpenCL compiler generates permutations and comparisons sim-
ilar to our AVX+SSE version. However, the compiler should be able to automatically
generate more efficient code [Ren et al. 2006; Maleki et al. 2011], following a similar
approach to the one in the AVX code evaluated in Figure 3.

The second one deals with a common operation in this type of kernels. We have
observed that multiply and add operations are used together extensively. Thus, Fused-
Multiply-Add can improve the performance significantly. The “FMA” vector extension
addresses this point, which is available in some new processors (such as the ones using
Intel Haswell micro-architecture).

Our transformation optimizes filter kernels significantly but they could become even
faster with more hardware support. Finding the maximum and corresponding index
in a vector is a reduction across the elements of a single SIMD vector, or a horizontal
max operation (in Intel’s terminology). In current SSE and AVX standards, there are
a few horizontal operations, such as an addition that just reduces two adjacent ele-
ments. This could be further extended to perform a full reduction, which will improve
multimedia applications in general [Corbal et al. ; Talla et al. 2003; Bik et al. 2006]. In
fact, to estimate how much improvement we can achieve with a reduction instruction,
we replaced the instructions to find the maximum response in our AVX kernel with
just a horizontal add instruction. This improved the performance by more than 34%.
Thus, more targeted hardware support can lead to significant improvements in future
machines.

5. APPLICATION PERFORMANCE AND ENERGY
This section evaluates and analyzes the execution time and energy consumption of
the kernels described in Section 2.1 and optimized in OpenCL in Section 3. We also
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Fig. 4: Execution time and power consumption of kernels (on Ul-
trabook); *- percentage of peak performance.

evaluate and analyze different mappings for our application on CPU and GPU for
better performance and energy efficiency.

Figure 4(a) shows the execution time of each kernel on the CPU and GPU. full-app
shows the results for all the three kernels running on either the CPU or the GPU.
The GPU is about 3 times faster for the filter kernel and 2.3 times faster for the his-
togram one. However, it is more than 1.3 times slower for the classifier kernel. Note
that classifier performs less floating point operations per data element (see related
work for analysis of data-parallel kernels on CPU and GPU [Lee et al. 2010]). For the
full application, the GPU is slightly faster (less than 8%) than the CPU.

Figure 4(b) shows the power consumption of the processor for each individual kernel
and for the full application running on either the CPU or the GPU. Each setting is
labeled after the running code and the architecture it is using. For instance, “class-
G” means that classifier kernel is running on the GPU. Each setting has three power
consumption bars. We also show power numbers in idle state. The red (left) bar is the
power consumption of the whole processor chip (CPU, GPU, memory controller, etc.),
while the green (middle) bar is just the CPU’s consumption and the blue (right) one is
just the GPU’s. Note that we report the average power consumption over a period of
execution (see Section 2.6).

We mostly consider the power consumption of the whole package (the red bar), as it
corresponds to the cost one would pay. However, the power breakdown can give insights
about some important aspects of the system. For instance, when the code is running
just on the GPU, the CPU is still consuming considerable power. The reason is that the
CPU and the ring interconnect are in the same voltage and frequency domain [Rotem
et al. 2012] and the interconnect cannot be idled, since the GPU needs to connect to
the last level cache (LLC). Addressing this issue may lead to significant savings in
power consumption when the application is only using the GPU. The reason is that,
for instance, the CPU domain consumes 3W (with probably a notable part contributed
by the cores) from the 11.5W total package power when the classifier is running on the
GPU. On the other side, it consumes only 0.7W in idle state.

As shown in Figure 4(b), the GPU consumes more power than the CPU in all cases
(e.g. comparing left bars of filter-G and filter-C) except classifier, which is not unex-
pected since GPU has higher peak performance as well (See Table I). However, GPU’s
power consumption varies depending on the workload. For instance, classifier con-
sumes around 11.6W, while the filter consumes about 18.2W (around 36% difference).
This is because the filter keeps the GPU almost fully occupied while the classifier does
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not have full utilization. On the other hand, the CPU’s consumption has less than 0.5W
variation across the board, even with its complex architecture and power management
schemes. The reason is that all the kernels can keep it occupied, partly because of its
adapting architecture and partly because it is not very powerful.

So far, we have seen that the GPU is faster but it consumes more power. Since one
factor is in favor of energy but the other is against it, we need to look at the energy
metric. Figure 5 compares the energy consumption of the different kernels and full
application on the CPU and the GPU. For the full application, the package consumes
slightly more energy when running on the GPU (less than 7%), while it varies across
different kernels. If we look at the package consumption, the GPU consumes 36% less
energy for histogram kernel and 46% less for the filter kernel. However, it consumes
20% more energy than the CPU for the classifier kernel. This, as pointed by others,
contradicts the general belief that the GPU architecture is more energy efficient for
every highly parallel kernel [Lee et al. 2010]. The net energy is in favor of the CPU,
since the classifier kernel is time consuming on the GPU.

In a nutshell, running the three kernels in ViVid on the integrated GPU of the Ivy
Bridge Ultrabook is faster but consumes more power and energy. On our Desktop sys-
tem, with the same input size, the GPU is about 5 times slower and 3 times less energy
efficient than the CPU for full-app, because it is small (so not very powerful in com-
putation) but keeps the resources of the system busy. Thus, the balance of the system
needs to be considered for portable devices that run vision applications. Comparing
across platforms (but same processor type), the CPU of the desktop machine is about
2.5 times faster than the Ultrabook one for the full-app, but 19% less energy efficient.

5.1. Mapping Strategies
After understanding the different trade-offs between GPU and CPU for each kernel,
the natural question is how to utilize the heterogeneous system for an application to
achieve better performance and energy efficiency. Other than just running the code
only on the CPU or the GPU, one could also try to map different kernels to the device
where they run more efficiently. Figures 6(a), 6(b), and 6(c) show the execution time,
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power and energy of different approaches, respectively. CPU and GPU correspond to
running all the kernels in the CPU or in the GPU. Specialized corresponds to an exe-
cution where the filter and histogram are mapped to the GPU (where they run faster
and more energy efficient) whereas the classifier is mapped to the CPU (where it is
faster and more energy efficient). In specialized, when the GPU is executing filter or
histogram, the CPU is idle and vice versa (when the CPU runs the classifier, the GPU
is idle). Overlap corresponds to an execution similar to software pipelining. It can be
applied to streaming applications where parallelism can be exploited across multiple
input images or frames, like multiple frames of a video. When using overlap, filter and
histogram form the first stage of the pipeline operating on a frame in the GPU, while
classifier is the second stage of the pipeline running on the CPU and operating on
the GPU’s results. Note that with overlap, since the CPU’s work takes around 3 times
more than the GPU, the GPU will be idle for about two-thirds of the execution time.
Note that the strategies so far will under-utilize either the CPU or the GPU because
of data dependencies. Therefore, one could split the image between the CPU and the
GPU for maximum utilization, shown as split in the figures. Since the execution time
of the application is almost the same for the CPU or the GPU, we split the image in
half for our experiments.

When analyzing these strategies, one needs to keep in mind that this architecture
has a dynamic power management scheme (Intel Turbo Boost 2.0 technology). It de-
termines a fixed power budget at each time based on the temperature and assigns
frequencies to the CPU and the GPU accordingly [Rotem et al. 2012]. Thus, for exam-
ple, the CPU and the GPU are slower when they are running together as opposed to
when the other is idle.

Figure 6(a) shows the execution time of different strategies for the full application.
Specialized is more than 25% faster than just running on the CPU (20% faster than
the GPU), as one would expect. Split is about 39% faster than CPU, but it could be up
to twice faster if the system did not have dynamic power management. Overlap obtains
the best performance by running the kernels on the best type of processor, but trying to
keep them more busy by software pipelining. It should be noted that, for our Desktop
system, split did not result in any performance improvement comparing to CPU. This
is because the GPU is much slower (5 times than the CPU) and the overheads of using
it dominate. Thus, the balance of the heterogeneous systems seems important for these
applications.

Figure 6(b) illustrates the power consumption of different strategies. Specialized
has the least consumption, while split consumes the most. As one expects, overlap
consumes more than specialized, but less than split, because its resource utilization is
in between the two. Note that power consumption does not necessarily correspond to
execution speed here.

Figure 6(c) shows the energy consumption of each strategy for an input image. spe-
cialized and overlap consume the least energy because they run each kernel where it
runs the best. On the other hand, using only the CPU or the GPU is not energy effi-
cient. Note that split is a very fast method but it consumes much more power also, so
it is not the most energy efficient in the end. specialized and overlap are 35% and 42%
more energy efficient than GPU only method respectively. They are also 19% and 28%
more energy efficient than split respectively.

Summary. Overall, our results show that to minimize energy consumption in these
heterogeneous devices, one should try to exploit parallelism across devices and each
kernel should be mapped to the device where it is more energy-efficient. Execution
time should not be the only factor used to determine how to map an application, be-
cause the different devices have different power consumptions, resulting in different
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Fig. 6: Running full application on CPU or GPU or utilizing both
using different approaches; *- percentage of peak performance.

overall energy (e.g. specialized is slower than split, but more energy-efficient). Thus,
our overlap approach where parallelism is achieved through software pipelining seems
the best strategy for these type of on-chip heterogeneous architectures. However, a cou-
ple of points need to be considered when choosing this strategy. First, it is desirable to
have pipeline stages with similar execution times, as the execution time of this scheme
is determined by the execution time of the longest kernel. Note that our application’s
stages do not have similar execution times but this strategy is still the best. Second,
this approach requires to have more on-the-fly data. In our case, since the pipeline only
has two stages we have two frames on-the-fly (as opposed to one). In addition, since
kernels execute in different devices, the frames need to move from device to device (in
contrast with the split mechanism, where the data always stay in the same device).
Since most of the vision applications (including ours) are very compute-intensive, data
movement usually is amortized easily by the numerous computations required per
data element.

Our performance is superior or similar to recent works using much more capable
discrete GPUs [Prisacariu and Reid 2009; Beleznai et al. 2011; Zhang and Nevatia
2008]. However, notice that real time vision applications need to run at a certain num-
ber of frames per second. For instance, we can run at around 40 frames per second
(fps) with overlap and 31 fps with split, while 10 fps might be enough for many object
detection purposes. Applications requiring real-time object detection (33 fps) can use
the OpenCL code on this architecture. The extra available computation power can be
used for more analysis or for other applications (e.g. if vision is only the interface for
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some other purpose). Note that when maximum performance is required (e.g. needed
fps cannot be reached), one might need to trade energy efficiency for performance (e.g.
specialized versus split, when overlap cannot be used).

One might need more compute-power for future applications. Our experiments show
that scaling the number of GPU’s CUs is effective. As noted in Subsection 2.5, the
Ultrabook’s GPU has 16 CUs, while the Desktop’s GPU has 6 CUs, with similar ar-
chitecture and frequencies. For all the kernels (as well as the full application), we see
more than twice speedup on the Ultrabook one, which supports the scalability of the
architecture for these applications.

5.2. Saving Energy with DVFS
We saw that we can reach a detection rate that is more than enough for many ap-
plications. Thus, one might consider Dynamic Voltage Frequency Scaling (DVFS) for
saving energy. However, Ivy Bridge processor’s DVFS does not seem to be effective for
these compute-intensive codes. We applied DVFS to our application and we could only
save at most 5% of the energy, while sacrificing 9% performance. The reason is that
it makes the runtime so much longer (for compute-intensive codes) that it offsets the
power savings. Thus, running the application for a while and then idling the processor
seems to be the best solution for saving energy. In this case, savings will depend on
sleep and wakeup latencies of the processor in the specific usage.

However, we expect DVFS support to improve significantly in future devices, as
vendors consider it in earlier steps of the processor design. For instance, when Near
Threshold Voltage (NTV) processors become available, DVFS will save much more en-
ergy [Dreslinski et al. 2010]. This will be very important for energy efficiency of many
vision applications similar to ours.

5.3. Trading Accuracy for Energy
The visual descriptor we use is based on a model where the appearance of each 3 × 3
patch is characterized by finding its closest neighbors in a pre-determined dictionary
of 3 × 3 patch templates (filters). Naturally, larger dictionaries can capture wider va-
rieties in appearances of patches. In the case of detection problems, this results in an
increased modeling power for discriminating the appearance of the objects of inter-
est, versus the appearance of all other structures in natural images. However, as the
size of the dictionary grows, more training samples are necessary to fully utilize the
dictionary’s modeling potential. Thus for a given dataset, one can expect the detec-
tion performance to saturate at a large enough dictionary size, which we observe at
around 150-200 item dictionaries in our example application. Figure 7(a) shows the
miss rate of our object detection algorithm as a function of dictionary size (from pre-
vious work [Dikmen et al. 2012]). We chose 100 filters (dictionary size of 100) in this
paper since it provides enough accuracy for most applications [Dikmen et al. 2012].

However, since energy is a major constraint in portable devices, one might want to
trade some accuracy for energy savings when the battery charge is low. In our appli-
cation, accuracy is determined by the dictionary size (number of filters) as mentioned.
Furthermore, the work of the algorithm also depends on the dictionary size. Thus, the
number of filters might be a “knob” for the system to save energy according to the
energy status of the device (battery charge) at runtime.

Figure 7(b) shows the relative energy consumption when using different dictionary
sizes. From this figure and Figure 7(a), one can conclude that we can save approxi-
mately 20% energy by going from 100 filters to 70 filters, which increases miss rate
only by around 1%. This is a good tradeoff of energy and accuracy for many situations.
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Fig. 7: Accuracy vs. energy consumption

In a nutshell, we have considered four different techniques for better energy effi-
ciency: 1) item Program optimization, 2) Heterogeneity, 3) DVFS, and 4) Decreasing
accuracy.

6. RELATED WORK
Previous works have shown that the use of heterogeneous architectures can improve
performance and decrease energy consumption [Kumar et al. 2005]. In addition, map-
ping algorithms have been studied for heterogeneous systems [Luk et al. 2009; Liu
et al. 2012; Jiménez et al. 2009; Ma et al. 2012]. Other forms of heterogeneity, such as
off-loading virtual machine services (e.g. garbage collection) to smaller cores [Cao et al.
2012], has also been studied. However, the focus is mostly on mapping across different
applications. In addition, integrated GPUs have not been considered.

A few programming paradigms such as OmpSs [Planas et al. 2013] or starPU [Au-
gonnet et al. 2011] provide a unified programming paradigm for the CPU and the GPU
and automatically perform load balancing and move the data as needed between the
different nodes and GPUs. We restricted ourselves to OpenCL, since it is the only one
supported by the integrated GPU in the Ivy Bridge machines. In addition, these works
focus on programmability and performance, but not energy efficiency. Also, they focus
on large systems, rather than on-chip heterogeneous systems. Moreover, they do not fo-
cus on pipeline applications. Furthermore, as we have shown, automatic vectorization
does not achieve high performance in our case.

The new architectures with on-chip GPUs are becoming increasingly more popular
in industry. These platforms include Intel’s Ivy Bridge [Damaraju et al. 2012], AMD
APU [Foley et al. 2012], and NVIDIA Tegra 250 [NVIDIA 2011]. Evaluation studies
also show their advantages in performance and energy efficiency [Doerksen et al. 2012;
Rattanatranurak et al. 2012; Spafford et al. 2012; Daga et al. 2011].

With regards to computer vision, it is known that GPU is very effective [Allusse et al.
2008; Babenko and Shah 2008; Fung and Mann 2008; Prisacariu and Reid 2009; Mistry
et al. 2011], because of the data parallel nature of most vision computations. However,
as shown, integrated GPU’s have different trade-offs and a GPU-only solution is not
efficient here [Lee et al. 2010]. Our code has very high performance comparatively, and
we gain much better or similar fps detection rate compared to recent works on object
detection, which use much more capable discrete GPUs [Beleznai et al. 2011; Zhang
and Nevatia 2008]. For example, 41 fps had been reported using a desktop machine
with an Nvidia GTX 260 GPU card [Beleznai et al. 2011], while we achieve 40 fps on a
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portable device with an integrated on-chip GPU (although comparison is complicated,
since the algorithms and machines are different).

Furthermore, trading accuracy for energy or performance has been considered,
but in different contexts [Sharrab and Sarhan 2012; Bergman 2010]. For example,
Bergman [Bergman 2010] shows how to limit the processing times for rendering graph-
ics by an OpenGL API library. This method sacrifices frame rate or image quality for
less energy consumption. In addition, Sharrab and Sarhan [Sharrab and Sarhan 2012]
adapt the video rate for computer vision applications considering both accuracy and
power consumption. To gain insight about the accuracy of object detection algorithms,
we encourage the reader to go through surveys on similar topics [Zhang and Zhang
2010; Kong et al. 2005; Dollar et al. 2012].

7. CONCLUSIONS
Driven by user demand, the computer industry is focused on battery operated portable
devices, which are energy constrained. In addition, better user experience requires nat-
ural interfaces using vision and video analytics applications. However, energy efficient
execution of these compute-intensive workloads is challenging.

We showed that heterogeneous on-chip architectures can be very effective, using a
visual object detection application. We optimized each kernel for CPU and integrated
GPU of the Ivy Bridge architecture using different techniques. For example, we vec-
torized the filter kernel using a data layout transformation.

Furthermore, we showed that a unified programming paradigm such as OpenCL
provides a good balance between performance and programmer productivity. This is
because the same code runs efficiently on both the CPU and the GPU.

In addition to productivity and performance, energy efficiency is a main concern. By
comprehensive evaluation, we showed that it is best to map each kernel where it runs
the best. Thus, existing methods, which only use the GPU or try to gain maximum
utilization of both the CPU and the GPU naively, are inefficient (even for highly par-
allel vision workloads). In a nutshell, running each kernel on the best processor type,
and using software pipelining is both faster and more energy efficient. This is because
these heterogeneous on-chip architectures have a fixed chip power budget, which is
allocated by a dynamic power management scheme to each processor. If parallelism
through software pipelining is not possible, splitting the input among CPU and GPU
might be faster, but specializing each processor for suitable tasks can be more energy
efficient.
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