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Triangular Solution

Structure-Aware Parallel Algorithm for Solution of Sparse Triangular Linear Systems

Used in solution of linear systems, least squares
 - Many times iteratively
 - Both direct and iterative methods
Example: Preconditioned Conjugate Gradient (PCG)
 - With Incomplete-Cholesky as preconditioner
 - Same number of non-zeros as coe�cient matrix or more
 - Usually, half of iteration’s operations is triangular solve
  -If triangular solve doesn’t scale:
   Parallel PCG’s speedup is at most (2)
   According to Amdahl’s law
Very resistant to parallelism!
 - Minimal concurrency
   Lots of structural dependencies
 - Small work per data
   Just one multiply-add for most entries!
Standard linear algebra packages very slow
 - E.g. HYPRE, SuperLU_DIST
 - Slower than sequential many cases
New algorithm to extract parallelism
 - By adapting to matrix’s sparse structure

3- Divide dense regions and send to other processors for 
more parallelism

 - “Dense” only means enough non-zeros to amortize the cost
 - Broadcast needed x values when computed

Strong scaling evaluation:
 - Using real application matrices from Florida Collection
 - On 512 nodes of BlueGene/P (1 core per node used)
 - Speedups compared with best sequential code
 - Performance highly depends on structure of matrix

Comparison to HYPRE’s  triangular solver:
 - Our algorithm is 35 times faster than HYPRE
   (blue curves are HYPRE) for “largebasis” on
   512 cores
 - SuperLU_DIST is even slower (not shown)
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Data decomposition: blocks of columns
 - Typical dependencies between processors shown
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Three strategies for more parallelism:
1- Reordering rows to �nd independent rows
 - Some rows of a processor don’t depend on other processors
  (no non-zero on left)
 - Also don’t depend on other rows that are dependant
  (no non-zero on those columns)

2- Early send of critical data
 - Processors typically depend on only some rows of others
 - So we process those rows �rst and send them earlier
 - Progress along critical path is accelerated

Implementation:
 - In Charm++, only 692 Source Lines Of Code (SLOCs)
 - Integration to an MPI package in progress
   Using Charm++ interoperability
 - Some other optimizations:
   Over-decomposition for more overlap
   Message priorities for faster critical path progress
   Message aggregation
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Comparison to Level-set algoritm
 - Barriers of level-set are bottlenecks
 - Longest chain of communication steps (critical path) 
for a sample of matrices:

Matrix Our algorithm level-set algorithm
circuit5M 2 18
kkt power 3 17
Freescale1 18 216
Hamrle3 25 31083
Geo 1438 87 5823

Reference:
Structure-Adaptive Parallel Solution of Sparse Triangular Linear Systems,
Totoni et al., PPL Technical Report 12-42, 2012.
Code:
https://charm.cs.illinois.edu/benchmarks/triangularsolver.git 

Our Parallel Algorithm Evaluation


