
PPL
U I U C

Ehsan Totoni

Triangular Solution

Structure-Aware Parallel Algorithm for Solution of Sparse Triangular Linear Systems

Used in solution of linear systems, least squares
 - Many times iteratively
 - Both direct and iterative methods
Example: Preconditioned Conjugate Gradient (PCG)
 - With Incomplete-Cholesky as preconditioner
 - Same number of non-zeros as coe�cient matrix or more
 - Usually, half of iteration’s operations is triangular solve
 -If triangular solve doesn’t scale:
 Parallel PCG’s speedup is at most (2)
 According to Amdahl’s law
Very resistant to parallelism!
 - Minimal concurrency
 Lots of structural dependencies
 - Small work per data
 Just one multiply-add for most entries!
Standard linear algebra packages very slow
 - E.g. HYPRE, SuperLU_DIST
 - Slower than sequential many cases
New algorithm to extract parallelism
 - By adapting to matrix’s sparse structure

3- Divide dense regions and send to other processors for
more parallelism

 - “Dense” only means enough non-zeros to amortize the cost
 - Broadcast needed x values when computed

Strong scaling evaluation:
 - Using real application matrices from Florida Collection
 - On 512 nodes of BlueGene/P (1 core per node used)
 - Speedups compared with best sequential code
 - Performance highly depends on structure of matrix

Comparison to HYPRE’s triangular solver:
 - Our algorithm is 35 times faster than HYPRE
 (blue curves are HYPRE) for “largebasis” on
 512 cores
 - SuperLU_DIST is even slower (not shown)

Laxmikant V. Kale
{totoni2, heath, kale}@illinois.edu

http://charm.cs.illinois.edu

Advisors:
Michael T. Heath

Data decomposition: blocks of columns
 - Typical dependencies between processors shown

P1 P2 P3

Independent rows

Early send

P4

P5

Broadcast

Analyze()

Solve()

As many times as needed:

Mark dependent rows

Place Independent rows
together (in backward

order)

Divide dense regions and
send to other processors

Receive messages

Compute independent
rows (with early send)

Receive messages if rows
pending

Algorithm:

Good

Moderate

Poor

Three strategies for more parallelism:
1- Reordering rows to �nd independent rows
 - Some rows of a processor don’t depend on other processors
 (no non-zero on left)
 - Also don’t depend on other rows that are dependant
 (no non-zero on those columns)

2- Early send of critical data
 - Processors typically depend on only some rows of others
 - So we process those rows �rst and send them earlier
 - Progress along critical path is accelerated

Implementation:
 - In Charm++, only 692 Source Lines Of Code (SLOCs)
 - Integration to an MPI package in progress
 Using Charm++ interoperability
 - Some other optimizations:
 Over-decomposition for more overlap
 Message priorities for faster critical path progress
 Message aggregation

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128 256 512

So
lu

tio
n

Ti
m

e
(s

)

Number of Cores

slu_Freescale1
slu_gsm_106857

slu_kkt_power
HYPRE-slu_kkt_power
HYPRE-slu_Freescale1

HYPRE-slu_gsm_106857
fem_hifreq_circuit

largebasis
HYPRE-fem_hifreq_circuit

HYPRE-largebasis

Comparison to Level-set algoritm
 - Barriers of level-set are bottlenecks
 - Longest chain of communication steps (critical path)
for a sample of matrices:

Matrix Our algorithm level-set algorithm
circuit5M 2 18
kkt power 3 17
Freescale1 18 216
Hamrle3 25 31083
Geo 1438 87 5823

Reference:
Structure-Adaptive Parallel Solution of Sparse Triangular Linear Systems,
Totoni et al., PPL Technical Report 12-42, 2012.
Code:
https://charm.cs.illinois.edu/benchmarks/triangularsolver.git

Our Parallel Algorithm Evaluation

