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ABSTRACT
Solution of sparse triangular systems of linear equations is a
performance bottleneck in many methods for solving more
general sparse systems. In both direct methods and iterative
preconditioners, it is used to solve the system or refine the
solution, often across many iterations. Triangular solution
is notoriously resistant to parallelism, however, and existing
parallel linear algebra packages appear to be ineffective in
exploiting much parallelism for this problem. We develop
a novel parallel algorithm based on various heuristics that
adapts to the structure of the matrix and extracts paral-
lelism that is unexploited by conventional methods. By anal-
ysis and reordering operations, our algorithm can extract
parallelism of many different sparse matrix structures.
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1. INTRODUCTION
Solution of sparse triangular linear systems is an impor-

tant kernel for many numerical linear algebra problems, such
as linear systems and least squares problems, that arise in
many science and engineering simulations. It is used exten-
sively in direct methods, as well as many iterative methods
(such as Gauss-Seidel method) or in many preconditioners
for other iterative methods. Unfortunately, the parallel per-
formance of triangular solution is notoriously poor, so it is
a performance bottleneck for many of these methods.

For example, a Preconditioned Conjugate Gradient (PCG)
method with Incomplete-Cholesky as the preconditioner will
have a triangular solve with the preconditioner matrix in ev-
ery step. This operation costs in the order of the number of
non-zeros of the preconditioner matrix, which has the same
number of non-zeros as the coefficient matrix or more. Thus,
it takes about the same time as the Sparse Matrix Vector
product (SpMV) or more, accounting for 50% or more of
the floating point operations (assuming enough non-zeros so
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that the vector operations are negligible). Thus, if the trian-
gular solve does not scale (which is the case in most standard
packages), the parallel speed up of the PCG method is at
most 2 according to Amdahl’s Law, no matter how many
processors are used in a parallel machine. Therefore, scala-
bility of triangular solve is crucial.

Here, we devise an algorithm that uses various heuris-
tics to adapt to the structure of the sparse matrix, with
the goal of exploiting as much parallelism as possible. Our
data distribution is in blocks of columns, which is natural
for distributed-memory computers. Our analysis phase is
essentially a simple local scan of the rows and nonzeros and
is done fully in parallel, with limited information from other
blocks. The algorithm reorders the rows so that indepen-
dent rows are extracted for better concurrency. It also tries
to compute the rows that are needed for other blocks (prob-
ably on the critical path) sooner and send the required data.

We implement our algorithm in Charm++, since many
features of Charm++, such as virtualization, make the im-
plementation easier and enhance performance [1].

2. NEW TRIANGULAR PARALLELISM AP-
PROACH

In this section, we use examples to illustrate various op-
portunities for parallelism that we exploit in our algorithm
for computation of the solution vector x to an n×n lower tri-
angular system Lx = b using forward substitution. Figure 1
shows a sparse lower triangular matrix (of a linear system),
for which the computation of x8 (the left-hand side variable
corresponding to the 8th row) depends only on x1, so x8

can be computed as soon as x1 has been computed, with-
out having to await the availability of x2, . . . , x7. Similarly,
computation of x3, x6, and x9 can be done immediately and
concurrently, as they depend on no previous components.
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Figure 1: Sparse matrix example 1.
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Assume that the columns of L are divided among three
processors (P1, P2, P3) in blocks, as shown by the color
coded diagonal blocks (blue, green, gray) in Figure 1. Nonze-
ros below the diagonal blocks are colored red. If each pro-
cessor waits for all the required data, all work is done se-
quentially among processors and there is no overlap.

However, there are some sources of parallelism in this ex-
ample. Row 3 is independent, since it has no nonzeros in the
first two columns. Thus, x3 can be computed immediately
by P1 and sent to P2 earlier than x2. P1 can then process
l43 and send the result to P2. In this way, P1 and P2 can do
most of their computations in parallel. The same idea can be
applied to processing of l76 and l81, and more concurrency
is created. To exploit independent rows, they could be per-
muted to the top within their block, and then all rows are
processed in order. Thus, in our example rows 3, 6, and 9
can be completed concurrently. P1 then processes l43, sends
the result to P2, processes row 1 (in the original row order),
sends the result from l81 to P3, and finally completes row 2.
Similarly, P2 first processes row 6, sends the result from l76
to P3, receives necessary data from P1, and then processes
its remaining rows. P3 can process row 9 immediately, but
must await data from P1 and P2 before processing its other
rows.

Another common case that may provide opportunities for
parallelism is having some denser regions below the diagonal
block (e.g. Figure 2). If we divide that region among two ad-
ditional processors (P4 and P5), they can work on their data
as soon as they receive the required solution components.
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Figure 2: Sparse matrix example 3.

These three strategies — sending data earlier to achieve
greater overlap, identifying independent rows, and parallel
processing of dense offdiagonal regions — are the bases for
our algorithm.

3. TEST RESULTS
Figure 3 shows the scaling of our implementation for up to

512 cores of BlueGene/P using triangular matrices from in-
complete LU factorization with no fill (compared to the best
sequential algorithm). Since the matrices are small relative
to the number of cores used, the results represent strong
scaling of this approach. Furthermore, in our experiments,
the analysis time was comparable to the time of one solve
iteration, which is negligible.

Figure 4 compares the performance of our method with
that of HYPRE, which is a commonly used linear algebra
package. As shown, our method can exploit parallelism
on many matrices, whereas HYPRE’s scaling is poor in all
cases.

Note that some other algorithms, e.g. the DAG approaches,
have limited concurrency and thousands of barriers (even
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Figure 3: Scaling for no-fill incomplete-LU matrices.
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Figure 4: Comparison with triangular solver from
HYPRE.

for small matrices sometimes), so they cannot scale to many
cores of a distributed-memory machine. To understand why
our algorithm is much more scalable than DAG-based ones
(e.g. Level-set algorithm), we analyze the critical path (longest
communication chain) of the two approaches for a sample of
matrices (Table 1).

Matrix Our algorithm level-set algorithm
circuit5M 2 18
kkt power 3 17
Freescale1 18 216
Hamrle3 25 31083
Geo 1438 87 5823

Table 1: Critical path length comparison
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