
Chapter 1

The Charm++ Programming Model

Laxmikant V. Kale

Department of Computer Science, University of Illinois at Urbana-Champaign

Gengbin Zheng

National Center for Supercomputing Applications, University of Illinois at
Urbana-Champaign

1.1 Design Philosophy . 2
1.2 Object-based Programming Model . 3
1.3 Capabilities of the Adaptive Runtime System . 7
1.4 Extensions to the Basic Model . 10
1.5 Charm++ Ecosystem . 13
1.6 Other Languages in the Charm++ Family . 14
1.7 Historical Notes . 15
1.8 Conclusion . 16

Charm++ [131] is a C++ based parallel programming system developed at
the University of Illinois. It has been designed and refined in the context of
collaborative development of multiple science and engineering applications, as
the later chapters in this book illustrate. The signature strength of Charm++

is its adaptive runtime system, which allows programmers to deal with increas-
ingly complex supercomputers and sophisticated algorithms with dynamic and
evolving behavior. Its basic innovation is the idea of over-decomposition (ex-
plained further in Section 1.2): the programmer decomposes the computation
into objects rather than processors, and leaves the decision about which ob-
ject lives on which processor to the runtime system. Specifically, some of the
benefits of Charm++ to the programmer include:

• Processor-independent programming: The programmer decomposes the
computation into logical units that are natural to the application, un-
cluttered by the notion of what data is found on which processor, and
which computations happen on which processor.

• Asynchronous programming model with message-driven execution: Com-
munication is expressed in a highly asynchronous manner, without op-
portunities for the program to block the processor awaiting a remote
event. This model is supported by message-driven execution, where the
processor-level scheduler selects only those computations for which all
data dependencies have been satisfied.

1

2 Parallel Science and Engineering Applications: The Charm++ Approach

• Automatic communication/computation overlap: Without any explicit
programming effort, the Charm++ runtime ensures that processors are
not held up for communication, and that the communication is spread
more uniformly over time. This leads to better utilization of the com-
munication network, and to programs that are highly tolerant of com-
munication latencies.

• Load Balancing: The Charm++ runtime automatically balances load,
even for applications where the load evolves dynamically as application
progresses. It can handle both machine-induced and application-induced
load imbalances.

• Resilience: Charm++ applications can be automatically checkpointed
to disk, and restarted on a different number of processors, within mem-
ory limits. Further, Charm++ applications can be made automatically
tolerant of node failures, automatically restarting based on in-memory
checkpoints when the system detects a failure, on machines where the
schedulers will not kill a job if one node dies.

The purpose of this chapter is to introduce the basic concepts in
Charm++, and describe its capabilities and benefits for developing complex
parallel applications using it. The next chapter illustrates the process of de-
signing applications in Charm++ with choices and design decisions one must
make along the way. A more thorough tutorial on how to design Charm++

applications can be found elsewhere. For example, for online resources, see
http://charm.cs.illinois.edu.

1.1 Design Philosophy

To appreciate the features of Charm++, it is necessary to understand the
main design principles that were used as guidelines when developing it.

The first of these principles has to do with the question: what aspects of
the parallel programming task should the “system” automate. The design of
Charm++ is guided by the idea of seeking an optimal division of labor be-
tween the programmer and the system, i.e, we should let the programmers do
what they can do best, and automate those aspects that are tedious for the
programmer but relatively easy (or at least feasible) for a system to automate.
Some parallel programming systems are designed with the view that the sys-
tem should simply provide minimal mechanisms, such as basic communication
primitives, and get out of the way. This has the advantage that the applica-
tion developers are least constrained. An alternative is presented by the ideal
of a perfect parallelizing compiler: the programmers write (or better still, just
brings their own dusty deck) sequential code, and the system auto-magically

The Charm++ Programming Model 3

parallelizes it effectively for the target machine. The former approach is in-
adequate because it does not raise the level of abstractions, while the latter
has been seen to be unrealizable, despite valiant efforts. Seeking an optimal
division of labor between the application programmer and the system has led
to foundational design features in Charm++.

The second design principle is to develop features only in an application-
driven manner. This is to counter a common and natural tendency among
computer scientists toward a platonic approach to design, which one could call
design in a vacuum: features are developed because they appear beautiful to
their developers, without serious consideration of their relevance to a broad set
of applications. To avoid this, Charm++ evolved in the context of development
of parallel science and engineering applications, and abstractions or features
were added to it when the application use cases suggested them [118].

1.2 Object-based Programming Model

It is important to note that although Charm++ is certainly a novel and
distinct parallel programming model, different than prevailing models such
as MPI, it is not a different “language” – code is still written in C++1.
Programmers are only required to provide declarations of the methods that
are meant to be invoked remotely, so that the system can generate code to
pack and unpack their parameters automatically. Beyond that, one uses the
C++ API provided to make calls into the Charm++ runtime system.

The basic innovation in Charm++ is that the computation is broken down
by the programmer into a large number of objects, independent of the number
of processors. These objects interact with each other through asynchronous
method invocations (defined below). In such interactions and communications,
it is the objects that are named explicitly and not the processors; the program
is mostly free of the concept of a processor. This empowers the adaptive run-
time system at the heart of Charm++ to place objects on processors as it
pleases, and to change the placement during the execution of the program.
This separation of concerns between the application logic and resource man-
agement is at the heart of many benefits that this programming model confers
on application developers.

These “migratable” objects, which are the units of decomposition in the
parallel program, are called chares2 in Charm++. Of course, a Charm++

1Although there exist bindings for C and Fortran, we will focus on the C++ bindings in
this chapter. Most of the applications in the book are written in C++. It is also, of course,
possible to write most of the application in C or Fortran by using Charm++ to express
all the parallel aspects, and calling sequential C and Fortran functions for the application
specific code.

2The ‘a’ in chare (\"tSAr\) is pronounced like the ‘a’ in father and the ‘e’ is silent.

4 Parallel Science and Engineering Applications: The Charm++ Approach

program may also include regular C++ objects — but the runtime system
does not need to pay attention to them. Each such sequential regular C++
object is “owned” by a single chare (Figure 1.1(a)). So, they migrate with the
chare if the runtime system decides to migrate the chare to another processor.
The programmer’s view of the overall computation is that of many such chares
interacting with each other, as shown in Figure 1.1(b).

Data members

Owned objects

Private method

Private method
Entry

method

Entry
method

(a) A single chare (C++ object) (b) Programmer’s view: Collection of inter-
acting chares

FIGURE 1.1: Chare: a message-driven object

Let us examine a chare in isolation first, as shown in Figure 1.1(a): it is
a C++ object comprising data elements and private or public methods. Its
public methods are remotely invocable, and so are called “entry” methods. It
is the existence of these entry methods that distinguishes a chare class from
a plain C++ class. Chares can directly access their own data members, and
cannot usually access data members of other chares. In that sense, a chare can
be thought of as a processor as well. Since, typically, multiple chares live on a
real processor, we can call them “virtual” processors. Consequently, we have
called our approach the “processor virtualization” approach [127]; however,
it is important to note that it is significantly different than (but related to)
the relatively recent idea of OS virtualization made popular for the “cloud”
infrastructure by VMWare and Xen systems.

Asynchronous method invocation: A running object may execute code
that tells the runtime system to invoke an entry method on a (potentially)
remote chare object with given parameters. The programmer understands
that such method invocation is asynchronous: all that happens at the point
where the call is made is that the parameters are packaged into a message,
and the message is sent towards the chare object in question. It will execute
at some undetermined point in future. No return values are expected from
an asynchronous method invocation. If needed, the called chare will send a
method invocation to caller at some time in the future.

The execution model, from the point of view of the programmer, is as

The Charm++ Programming Model 5

follows: an ongoing computation consists of a collection of chare objects and
a collection of entry method invocations that have been directed at these ob-
jects. The computation begins with construction of a designated main chare.
The user code in the constructor of the main chare may initialize the Read-only
variables . These should not be changed by user code afterwards. The run-
time system makes a copy of such variables available on each processor. The
constructor of the main chare typically contains user code that create chares
and collections of chares (see below), and thus seeds the overall computation.
On each processor, a message driven scheduler (Figure 1.2) in the runtime
system selects one of the entry method invocations targeted at some object
residing on its processor, unpacks the parameters for the invocation, and exe-
cutes the entry method on the identified object with the given parameters. In
the baseline model, it lets the method invocation continue to completion (see
Section 1.4 for exceptions), at which point control returns back to the run-
time scheduler. Since the asynchronous method invocations can be thought
of as messages, this aspect of the execution model is called message-driven
execution.

Scheduler

Message Queue

FIGURE 1.2: Message-driven scheduler

One of the major benefits of message-driven execution is an automatic
and adaptive overlap between communication and computation. There is no
call in Charm++ that will block the processor waiting for some remote data.
Instead, control passes to some chare that already has some data waiting for
it, sent via the method invocation from a local or remote object. The time
an object is waiting for some communication from its remote correspondent
is thus naturally overlapped with computation for some other object that is
ready to execute.

A chare normally just sits passively. Whenever a method invocation (typ-
ically initiated asynchronously by some other chare) arrives at a chare, it
executes the method with the parameters sent in the invocation. This may
result in creation of some new asynchronous method invocations for other
chares (or even itself) that are handed over to the runtime system to deliver.
It changes its own state (i.e. values of its data member variables) as a result

6 Parallel Science and Engineering Applications: The Charm++ Approach

of the invocation. It then goes back to the passive state waiting for another
method invocation3.

The code inside each entry method can carry out any computation it wishes
using data completely local to its object. In addition, it can use data that has
been declared as read-only.

From the application’s point of view, a chare could be a piece of the do-
main (in “domain decomposition” methods used commonly in parallel CSE
applications). It may also be a data structure, or a chunk of a matrix, or a
work unit devoid of any persistent state. The programmer is responsible for
deciding how big the chare should be, viz. the grainsize of the chare. More on
that in the next chapter.

One can create a singleton chare instance dynamically, and the system will
decide on which processor to anchor it. All that happens at the call is that a
seed for the new chare is created, which captures the constructor arguments
for it; a seed-balancer dynamically moves the seeds among processors for load
balancing, until it is scheduled for execution on some processor by executing
its constructor, at which point we can assume that the chare has taken root
there. Chares can obtain their own global IDs (called proxies in Charm++),
and methods can be invoked asynchronously using these proxies. Parallel pro-
gramming based on such dynamic creation of individual chares is useful in a
variety of situations, including combinatorial search.

For applications in science and engineering, we need a further abstraction:
multiple chares may be organized into a collection, and each chare belonging
to a collection can be named (and accessed) by an index. For example, one
may have a one-dimensional array of chares. One can then broadcast method
invocations to all the elements of a collection, or to a single named one. These
collections are called chare arrays. However, they are not limited to be simple
arrays. The index structures may define collections that are multi-dimensional
sparse structures (e.g. a 6-dimensional array, with only a small subset of pos-
sible indices being instantiated as chares). They can also be indexed by other
arbitrary indices, such as strings or bit vectors, but such usage is not common
in current CSE (Computational Science and Engineering) applications.

A single program may contain multiple chare arrays. These may arise from
multiple application modules, or a single module whose algorithm is more
naturally expressed in terms of multiple chare arrays. To communicate with
chares belonging to a chare array, one must get hold of a “proxy” — an object
that stands for (or refers to) the whole collection. A proxy is returned when
a chare array is first created. So, the code A[i].foo(x,y); specifies asyn-
chronously sending a method invocation for the method foo with parameters
x,y to the i’th object of a 1-dimensional array referenced via its proxy A. The

3The model up to this point is similar to the “actor” model developed by Hewitt, Agha,
Yonezawa,and others, with the possible exception of the idea of an explicit “mailbox” that
an actor has access to. More important points of departure come in the features described
after this point, and in the reliance of Charm++ on its extensive adaptive runtime system.

The Charm++ Programming Model 7

call immediately returns, while the method invocation is packaged and sent
to the processor where the ith element resides.

Chare arrays support reductions and broadcasts over all its elements, but,
unlike in MPI-1 or MPI-2, these are both asynchronous non-blocking opera-
tions. (MPI-3 standard has now adopted non-blocking collectives). A broad-
cast can be initiated by any element or even from other chares not belonging
to the target chare array. In our example above, A.foo(z,t) will result in
asynchronous invocations of the foo method of all the member chares of A

— a broadcast. The system ensures that all the chares belonging to a chare
array receive the successive broadcasts in the same sequence. Reductions are
carried out via non-blocking “contribute” calls that allow other computations
to proceed while the result of the reduction (such as a global sum) is deliv-
ered to its intended target, via an entry method invocation or via a general-
purpose callback abstraction. In particular, the members of the chare array
over which the reduction is being carried out are free to execute other entry
methods while the reduction is in progress.

The chares belonging to a chare array are assigned to processors by the
runtime system (RTS) as shown in Figure 1.3; the RTS may change this
assignment at runtime as needed. A scalable location manager [153] keeps
track of which chares are on which processor, resulting in messages being
delivered quickly and with low overhead to the right processor.

Processor A

Processor B

Processor C

FIGURE 1.3: System view of chares

8 Parallel Science and Engineering Applications: The Charm++ Approach

1.3 Capabilities of the Adaptive Runtime System

The heart of the Charm++ system, and its signature strength, is its adap-
tive runtime system. The primary responsibilities of the runtime system are:

1. To decide which objects reside on which processor, when they are created

2. To schedule (i.e. sequence) the execution of all pending entry method
invocations on the targeted chare objects on each processor,

3. To keep track of current location of each chare, in spite of chare migra-
tions, in a scalable and low-overhead manner,

4. To mediate communication between chares by delivering entry method
invocations to the correct target object on the processor where it resides.
And, finally

5. To migrate chares across processors, if needed, in response to runtime
conditions.

The Charm++ programming model provides much flexibility to the run-
time system, in terms of placement of chares on processors, sequencing of
method invocations, and mediating and intercepting communication between
chares. The Charm++ adaptive runtime system (RTS), thus empowered,
leverages this flexibility to optimize performance as the program executes.
Here, we will briefly discuss its capabilities in balancing load dynamically,
tolerating faults, optimizing communications, and managing power.

Dynamic Load Balancing: Charm++ supports a large suite of load bal-
ancing strategies. Some of these strategies use measurements of computational
loads and communication graph between chares, which the RTS can readily
obtain because of its role in scheduling chares and mediating their commu-
nication. With Charm++, load balancing can be thought of as a two-phase
process: the programmer decomposes the work (and data) into chares. This
division does not have to be perfect: i.e. significant variation in the work/size
of chares is permissible, since there are typically tens of chares on each pro-
cessor core. At runtime, the RTS assigns and reassigns chares to individual
processors, to attain such goals as better load balancing, and/or minimiza-
tion of communication volume. As the number of chares is much smaller than
the number of underlying data-structures elements (e.g. grid points, or mesh
elements), the load balancing decisions are much faster than, say, applying a
graph partitioner such as ParMETIS to the entire underlying structure. Oc-
casionally, chares may have to be split or merged to keep their size within a
desired range; Charm++ supports dynamic creation and deletion of chare ar-
ray elements if needed. But this is not needed for most applications, and when

The Charm++ Programming Model 9

its needed, it is still simpler than a complete repartitioning of the application
data structures.

The suite of strategies provided with Charm++ includes some that ig-
nore communication volume and some that consider it. It also includes some
strategies that refine load balance, by moving a relatively small number of
objects from overloaded processors, and other schemes that comprehensively
repartition the object graph. For large machines, it includes strategies that
optimize placement with respect to the interconnect topology, and hierarchi-
cal strategies that significantly reduce decision time. Further, one can write
application-specific strategies (or new, general-purpose ones) using a relatively
simple plug-in architecture. Also, a meta-balancer that examines application
characteristics, to choose the appropriate strategy, and decide when to apply
it, has been developed recently.

Automatic Checkpointing: Parallel application developers often need to
write code for periodically checkpointing the state of their application to the
disk. Simulation runs are often long, and need to be broken down into seg-
ments that will fit within system-allowed durations; also, hardware failures
may cut short an ongoing simulation. Checkpoints allow one to handle such
situations without losing much computation. Since Charm++ already has the
capability of migrating objects to other processors (with users providing in-
formation to optimize the amount of data saved, if needed), the RTS can
leverage this capability to “migrate” copies of objects to the file system, along
with the state of the runtime system itself. This reduces the burden on the
programmer as they do not need to write additional checkpointing code. Fur-
ther, when restarting, they can use a different number of processors than what
was used for the original simulation, e.g., a job that was running on 10,000
cores can be restarted on 9,000 cores! This works automatically for baseline
Charm++ programs, and requires little extra programming for programs with
user-defined groups and node-groups (Section 1.4).

Fault tolerance: One can also make a Charm++ application continue to
run in spite of individual nodes crashing in the middle of the execution!
Charm++ offers multiple alternative schemes for this purpose. The most ma-
ture, and probably most useful for applications today, is the double check-
pointing scheme, which stores a checkpoint of each object locally and on a
buddy node. An automatic failure-detection component checks the “heart-
beat” of each node in a scalable and low-overhead manner. When a node fails,
the system effects a recovery by automatically and quickly restoring the state
of the last checkpoint. How quickly? We have measured restarts in hundreds
of milliseconds for a molecular dynamics benchmark on over 64k cores [260]!
Even on applications with very large checkpoints, it usually takes no more
than a few seconds. One can use spare processors or make do with remaining
processors on failure. For large runs, running with a few spares is inexpensive
and simplifies the load balancing the system must do after restart.

A more advanced scheme based on message-logging with parallel restart

10 Parallel Science and Engineering Applications: The Charm++ Approach

has also been developed [37, 36, 175]. With the double-checkpoint scheme (as
with any other checkpoint-restart scheme), when a node fails, all the nodes
must be rolled back to their checkpoints, wasting energy and wasting a lot
of computation. With our message-logging schemes, when a node fails, only
its objects restart form the checkpoint, while the others wait. The restarting
objects can recover in parallel on other processors, thus speeding recovery. It
does require storing of messages at the senders, which can add to memory
overhead. Many strategies aimed at reducing this overhead have been devel-
oped [176]. This scheme is expected to be more important beyond Petascale,
when node failures are likely to be frequent.

Power Management: Power, energy and temperature constraints are be-
coming increasingly important in parallel computing. Charm++, with its in-
trospective runtime system can help by monitoring core temperatures and
power draw, and automatically changing frequencies and voltages. It can rely
on its rate-aware load balancers (i.e. strategies that take into account the
different speeds of different processors) to optimize either execution time or
energy, while satisfying temperature and total-power constraints. As an illus-
tration [219, 220], we were able to reduce cooling energy in a machine room
by increasing the A/C thermostat setting; of course, that may lead to some
chips overheating. However, the Charm++ runtime system monitored chip
temperatures periodically, and lowered the frequencies of chips that were get-
ting too hot, while increasing them if they were cold enough. This creates a
load imbalance which would slow the whole application down, as the rest of
the processors wait for data from the processor whose frequency was lowered.
However, the runtime is able to rebalance load by migrating objects after such
frequency changes. These power-related features are available only in experi-
mental versions of Charm++ at the time of this writing, but are expected to
be more broadly available in near future.

Communication optimizations: The Charm++ runtime system is contin-
ually observing the communication patterns of the application, since it is de-
livering messages to chares. It can replace communication mechanisms based
on the observed patterns. For example, algorithms for collective communica-
tion can be changed at runtime, between iterations of an application, based
on the size of messages, number of nodes, and machine parameters [144].

1.4 Extensions to the Basic Model

In section 1.2 we described the basic Charm++ programming model, con-
sisting of chares, indexed collections (arrays) of chares, asynchronous method
invocations, broadcasts and reductions. This baseline description is very useful

The Charm++ Programming Model 11

for developing an intuition about the programming model, and its underlying
operational semantics (or execution model). A few important extensions to
the base model, which enrich the programming model without changing its
essential character, are noted below. These “extensions” are as mature and
old as Charm++ itself, and are in common use in applications today.

Supporting “blocking” calls: Charm++ supports two additional kinds of
methods, specifically tagged as such, that do allow “blocking” calls. They do
not block the processor; only the affected entry method is paused, and control
is returned to the scheduler. These are called Structured Dagger methods
and threaded methods, as explained below.

A Structured Dagger (also abbreviated sdag) entry method allows users
to define a DAG (directed acyclic graph) between computations within a chare,
and asynchronous method invocations expected by the chare. This typically
allows one to express the life cycle of a chare object more clearly than a baseline
program would. An important statement in the structured-dagger notation is
the so-called when statement, which specifies (1) that the object is ready to
process a particular entry method invocation, and (2) what computation to
execute when this method invocation arrives.

Just to give a flavor of how sdag code looks like, we present a snippet of
code below. This comes from a molecular dynamics example, discussed briefly
in the next chapter. But that is not important here; we are just illustrating
the structure of sdag code. The “run” method of this chare includes a time
step loop. In each time step t, the run method waits for two invocations of
coordinates method, and when both are available executes some sequential
object methods atomically. The sequential code calculates forces on each set
of atoms C1 and C2 due to the other set of atoms, and sends the resultant
forces back. Since this is not usual C++ code, sdag entries are specified in a
separate file, which is translated into C++ code. One can thus think of sdag
code as a script for describing data-dependent behavior of a chare. Typically,
it describes the entire life cycle of a chare, as signified by the name, “run”
method, in this particular case.

1 entry void run() {

2 for (t=0; t<steps; t++) {

3 when coordinates(vector <Atom > C1),

4 coordinates(vector <Atom > C2)

5 serial {

6 calculateInteractions(C1 , C2);

7 sendForcesBack ();

8 }

9 }

10 };

When a threaded method is invoked the runtime system creates a
lightweight user-level thread and starts a method invocation inside this thread.
A threaded entry method can block waiting for a future [99], or for a return
value from a synchronous method invocation. Correspondingly, the system al-

12 Parallel Science and Engineering Applications: The Charm++ Approach

lows users to define entry methods that return a value, as well as a simple
future abstraction. One can create a future, set value to it, or access value
from it (which is a blocking call). If a thread tries to access the value of a
future, and the value is not set yet, the thread is blocked, and control is trans-
ferred to the Charm++ scheduler. Later, when the value is set, the thread is
added back to the scheduler’s queue, so it can be resumed in its turn.

Array Sections: A subset of chares belonging to a chare array can be orga-
nized into a section, somewhat like an MPI sub-communicator. One can invoke
broadcasts and reductions over sections as well. The system organizes efficient
spanning trees over the subset of processors that house elements belonging to
a section. It ensures that the broadcasts and reductions are carried out cor-
rectly even when element chares migrate to other processors, and reorganizes
the spanning trees periodically, typically after a load balancing phase.

Processor-awareness: Another extension has to do with awareness of pro-
cessors by the programmer. In the model described so far, there is no need for
the programmer to know anything about the processors, including which pro-
cessor is the current location of a particular object. However, there are some
situations in which an “escape valve” into processor-aware programming is
needed. This is especially true for libraries, or performance oriented optimiza-
tions. For example, many objects on the same processor may request the same
remote data; it makes sense in this situation to use a shared processor-level
software cache; Requests for remote data can go via this cache object, and if re-
quested data was already obtained due to another chare’s request, unnecessary
remote communication is avoided. For such purposes, Charm++ provides a
construct called chare-group. Just like an array of chare objects, a chare-group
is a collection of chares. However, (1) there is exactly one member mapped
to each processor, and (2) unlike regular chares, chare group members are
allowed to provide public methods that are invoked directly, without needing
the packaging and scheduling of method invocations. Also, given the group ID,
the system provides a function that returns a regular C++ pointer to the local
(branch) chare of the group. With these two features, chares can communi-
cate using low-overhead function calls with the member (“branch”) of a group
on their processor. Note that such group objects also allow additional data
sharing mechanisms [228] beyond the read-only variables mentioned earlier.

So far, we intentionally left the notion of what we mean by a “processor”
only loosely defined. In Charm++, for processor-aware programming, there
is a notion of PE (processing element). A PE corresponds to a single sched-
uler instance; a Charm++ application may associate a PE with a hardware
thread, a core, or a whole or a part of a multicore node, based on command-line
options. If a PE includes multiple hardware resources (say cores), the paral-
lelism within a PE is managed by the user orthogonally, by using pthreads,
openMP, or Charm++’s own task library (called CkLoop). Associating a PE
with a hardware thread is a common practice in current Charm++ applica-

The Charm++ Programming Model 13

tions, and it obviates the need to deal with an additional level of parallelism,
so we will assume this in our description.

Of course, the group construct and other such low-level features should
be used sparingly. As a design guideline, one should strive to avoid using
processor-aware programming as much as possible, and push it into low-level
libraries when needed. The example in the above paragraph, involving multi-
ple requests for remote data, is a common enough feature that a new library,
CkCache, has been developed as a common library for use by multiple appli-
cations. The system libraries for implementing asynchronous reductions are
another example. Although one could implement a spanning tree over all the
chares of a chare-array, it is much more efficient to do a processor (and node)
based spanning tree, collecting inputs from all the local chares first.

Since objects may be migrated by the runtime system to other processors,
Charm++ also supports a special callback method that gets called after the
object has been re-incarnated on another processor; this can be used to up-
date any processor-specific information, such as pointers to local branches of
groups, stored by the objects.

1.5 Charm++ Ecosystem

Charm++ is a mature and stable parallel programming system. Thanks to
the popularity of applications such as NAMD, it is used by tens of thousands
of users worldwide (The biomolecular simulation code NAMD, described in
Chapter 4, has 45,000 registered users, as of December 2012). Charm++ is
available on most national supercomputer installations in the US. Charm++

runs on almost all the parallel computer types that are widely known, includ-
ing Cray machines, IBM Blue Gene series machines, Linux Clusters, Windows
clusters etc. It supports multiple network types including proprietary net-
works on supercomputers, as well as commodity networks including Ethernet
and Infiniband. Charm++ is regression-tested via a nightly build system on
dozens of combinations of compilers, operating systems, processor families and
interconnection networks.

The maturity of Charm++ is also reflected in the ecosystem of program
development and analysis tools available for it. Projections is a sophisticated
performance visualization and analysis tool. CharmDebug is a more recent and
highly sophisticated debugging tool. In addition, the LiveViz library can be
used to collect application or performance data during application run and
visualize it as the program is running. The CCS (Converse Client-Server) li-
brary that underlies LiveViz also allows one to develop interactive parallel
applications, whereby queries or messages can be injected into a running com-
putation, either to examine specific attributes of a running simulation, or to
effect changes in the execution of the application.

14 Parallel Science and Engineering Applications: The Charm++ Approach

There are several online resources for learning Charm++ and working
with it. The software, manuals, tutorials and presentations, are available at
http://charm.cs.illinois.edu. An active mailing list (charm@cs.illinois.edu) is
used for reporting bugs and discussing programming issues and upcoming
features. There is an annual workshop on Charm++ and its applications in
Urbana Illinois; the presentations from the workshop (startin in the year 2002),
most including the video of the presentations, are also available online.

1.6 Other Languages in the Charm++ Family

Charm++ is just one instance of a broader programming paradigm based
on message-driven execution, migratable work and data-units, and an intro-
spective and adaptive runtime system. Although Charm++ is the earliest
member of this family of programming languages there are a few others that
we have developed that deserve a mention here. All of these are built on top of
Charm++, as Charm++ turns out to be an excellent backend for developing
new abstractions within this broad paradigm.

XMAPP is the name we have chosen for the abstract programming model
that underlies Charm++ as well as all the other languages described below.
XMAPP is characterized by a few defining attributes:

• Over-decomposition: the interacting entities, be they units of work or
units of data (or a mix of the two, as in Charm++), into which the
computation is decomposed by the programmer in such models are in-
dependent of the number of processors, and typically their number is
much larger than the number of processors.

• Processor-independence: the interaction/communication between enti-
ties is in terms of names of those entities and not in terms of processors.

• Migratability: these entities can be migrated across processors during
program execution, either by the runtime system, or the application
itself, or both.

• Asynchrony: collectives and other communication-related operations are
designed so that their implementations do not block the processor.

• Adaptivity: the runtime system takes responsibility of balancing load by
leveraging its ability to migrate objects.

Adaptive MPI (AMPI) is an implementation of the MPI standard on top
of Charm++. In MPI, the computation is expressed as a collection of pro-
cesses that send and receive messages among themselves. With AMPI, each

The Charm++ Programming Model 15

MPI process is implemented as a user level thread. These threads are em-
bedded inside Charm++ objects, and are designed to be migratable across
processors with their own stack. As with Charm++, multiple “processes” (i.e.
MPI ranks) are typically mapped to a single core. Standard MPI calls, such as
those for receiving messages, provide natural points to allow context switching
among threads within a core, thus avoiding complexities of preemptive con-
text switching. AMPI programs have shown to have comparable performance
(somewhat slower for fine-grained messaging, but comparable for most ap-
plications) as the corresponding MPI program, even when no AMPI-specific
features are being used. Those features, such as over-decomposition (and adap-
tive overlap of communication with computation), asynchronous collectives,
load balancing, and fault tolerance, provide the motivation for using AMPI
instead of plain MPI implementations.

MSA (Multiphase Shared Arrays) [51, 179] is a mini-language on top of
Charm++ that supports the notion of disciplined shared memory program-
ming. It is a partitioned global address space (PGAS) language. The program
here consists of a set of migratable threads and a set of data arrays. The data
arrays are partitioned into user-defined “pages”, which again are migratable
data units implemented as chares. The main point of departure for the lan-
guage is the notion of access modes. Each array may be in one of the few
possible modes, such as “read-only” or “accumulate”. All the threads must
collectively synchronize to switch the mode of an array. This model is shown
to avoid all data races, and yet captures a very large fraction of use cases
where one would find shared global data useful.

Charisma [108] is a language that allows elegant expression of applications or
modules that exhibit a static data-flow pattern. The computation is divided
into chares. If the chares exchange the same set of messages (with different
lengths and contents, to be sure) in every iteration, one can express the life-
cycle of entire collections of chares in a simple script-like notation, where
entry-methods are seen to publish and subscribe to tagged data.

Charj [179] is a compiler supported language that provides the same ab-
stractions as Charm++ combined with MSA. With compiler supported static
analysis, Charj provides a more convenient and elegant syntax, automatic gen-
eration of serialization code, and several other optimizations based on static
analysis. Charj is an experimental or research language at the current time.

1.7 Historical Notes

The precursors to Charm++ (the “Chare Kernel”) developed by us were
aimed at combinatorial search applications, and at supporting parallel func-

16 Parallel Science and Engineering Applications: The Charm++ Approach

tional and logical programming. However, once we turned our attention to
science and engineering applications, we decided to mold our abstractions
based on the needs of full-fledged and diverse applications. The first two ap-
plications examined were fluid dynamics [95] and biomolecular simulations
[116]. These two (along with many small examples, and parallel algorithms
such as the Fast multipole algorithm, histogram-based sorting [120, 142]) ade-
quately demonstrated to us that our approach was avoiding the trap of being
too specialized. This was especially true because we considered full-fledged ap-
plications, in addition to kernels or isolated algorithms. We thought that only
by immersing ourselves in the nitty-gritty of developing a full-fledged applica-
tion, would we be able to weigh the importance and relevance of alternative
abstractions, and capabilities.

This position and approach towards development of abstractions were ex-
plicitly written down in a position paper around 1994 [118]. The biomolecular
simulation program NAMD funded by NIH (and NSF, in the early days,
under the “Grand Challenge Application Groups” program), provided us a
good opportunity to practice and test this approach. NAMD was developed
in collaboration with Klaus Schulten, a biophysicist with a computational ori-
entation, and Bob Skeel, a numerical analyst, both Professors at University
of Illinois.

1.8 Conclusion

We believe that Charm++ and the underlying XMAPP abstract program-
ming model constitute an approach that is ready to deal with the upcoming
challenges in parallel computing, arising from increasingly complex hardware,
and increasingly sophisticated applications. It appears to us that the basic con-
cepts in XMAPP are going to have to be inexorably adopted by the commu-
nity, whichever language they choose to use in future. So, why not Charm++?
Charm++ itself is a production-quality system that has demonstrated its ca-
pabilities in improving programmer productivity and in attaining high scala-
bility on a wide variety of the parallel applications in science and engineering,
as demonstrated by this book. Some applications have demonstrated scaling
beyond half a million processor cores by now.

To simplify and ease adoption, Charm++ supports interoperability with
MPI: some modules can be written in regular MPI, while others can be based
on Charm++ or AMPI (or any of the other mini-languages in the Charm++

family). We invite the readers to experiment with this approach by writing
modules of their applications in it, or by using an existing Charm++ library
in their MPI application, or testing it by developing an isolated algorithm
using it, and then possibly moving on to developing entire applications using
Charm++, and reap the productivity and performance benefits.

Bibliography

[1] A. Adcroft, C. Hill, and J. Marshall. Representation of topography
by shaved cells in a height coordinate ocean model. Monthly Weather
Review, 125(9):2293–2315, 1997.

[2] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent. Hpctoolkit: tools for performance analysis
of optimized parallel programs http://hpctoolkit.org. Concurr. Comput.
: Pract. Exper., 22:685–701, April 2010.

[3] M.P. Allen and D.J. Tildesley. Computer Simulations of Liquids. Clare-
don Press, Oxford, (1989).

[4] R. J. Anderson. Tree data structures for n-body simulation. SIAM J.
Comput., 28:1923–1940, 1999.

[5] R. E. Angulo, V. Springel, S. D. M. White, A. Jenkins, C. M. Baugh, and
C. S. Frenk. Scaling relations for galaxy clusters in the Millennium-XXL
simulation. ArXiv e-prints, March 2012.

[6] Gabriel Antoniu, Luc Bouge, and Raymond Namyst. An efficient and
transparent thread migration scheme in the PM2 runtime system. In
Proc. 3rd Workshop on Runtime Systems for Parallel Programming
(RTSPP) San Juan, Puerto Rico. Lecture Notes in Computer Science
1586, pages 496–510. Springer-Verlag, April 1999.

[7] Amnon Barak, Shai Guday, and Richard G. Wheeler. The mosix dis-
tributed operating system. In LNCS 672. Springer, 1993.

[8] Kevin Barker, Andrey Chernikov, Nikos Chrisochoides, and Keshav Pin-
gali. A Load Balancing Framework for Adaptive and Asynchronous Ap-
plications. In IEEE Transactions on Parallel and Distributed Systems,
volume 15, pages 183–192, 2003.

[9] Kevin J. Barker and Nikos P. Chrisochoides. An Evaluation of a Frame-
work for the Dynamic Load Balancing of Highly Adaptive and Irregular
Parallel Applications. In Proceedings of SC 2003, Phoenix, AZ, 2003.

[10] J. Barnes and P. Hut. A Hierarchical O(NlogN) Force-Calculation Al-
gorithm. Nature, 324:446–449, December 1986.

243

244Parallel Science and Engineering Applications: The Charm++ Approach

[11] C. Barrett, R. Beckman, K. Berkbigler, K. Bisset, B. Bush, K. Campbell,
S. Eubank, K. Henson, J. Hurford, D. Kubicek, M. Marathe, P. Romero,
J. Smith, L. Smith, P. Speckman, P. Stretz, G. Thayer, E. Eeckhout, and
M. Williams. TRANSIMS: Transportation Analysis Simulation System.
Technical Report LA-UR-00-1725, LANL, 2001.

[12] C. L. Barrett, K. Bisset, S. Eubank, M. V. Marathe, V.S. Anil Kumar,
and Henning Mortveit. Modeling and Simulation of Biological Networks,
chapter Modeling and Simulation of Large Biological, Information and
Socio-Technical Systems: An Interaction Based Approach, pages 101–
147. AMS, 2007.

[13] C. L. Barrett, S. Eubank, and M. V. Marathe. An interaction based
approach to computational epidemics. In AAAI’ 08: Proceedings of the
Annual Conference of AAAI, Chicago USA, 2008. AAAI Press.

[14] C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J.
Rosenkrantz, and R. E. Stearns. Complexity of Reachability Prob-
lems for Finite Discrete Dynamical Systems. J. Comput. Syst. Sci.,
72(8):1317–1345, 2006.

[15] Christopher L. Barrett, Richard J. Beckman, Maleq Khan, V.S. Anil
Kumar, Madhav V. Marathe, Paula E. Stretz, Tridib Dutta, and Bryan
Lewis. Generation and analysis of large synthetic social contact net-
works. In M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, and
R. G. Ingalls, editors, Proceedings of the 2009 Winter Simulation Con-
ference, Piscataway, New Jersey, December 2009. Institute of Electrical
and Electronics Engineers, Inc.

[16] A. Basermann, J. Clinckemaillie, T. Coupez, J. Fingberg, H. Digonnet,
R. Ducloux, J.-M. Gratien, U. Hartmann, G. Lonsdale, B. Maerten,
D. Roose, and C. Walshaw. Dynamic load balancing of finite element
applications with the DRAMA Library. In Applied Math. Modeling,
volume 25, pages 83–98, 2000.

[17] Jerome Baudry, Emad Tajkhorshid, Ferenc Molnar, James Phillips, and
Klaus Schulten. Molecular dynamics study of bacteriorhodopsin and the
purple membrane. Journal of Physical Chemistry B, 105:905–918, 2001.

[18] A.D. Becke. Density-Functional exchange-energy approximation with
correct assymptotic behavior. Phys. Rev. A, 38:3098, (1988).

[19] R. J. Beckman, K. A. Baggerly, and M. D. McKay. Creating synthetic
baseline populations. Transportation Research Part A: Policy and Prac-
tice, 30(6):415–429, 1996.

[20] Milind Bhandarkar, L. V. Kale, Eric de Sturler, and Jay Hoeflinger.
Object-Based Adaptive Load Balancing for MPI Programs. In Proceed-

Contagion Diffusion with EpiSimdemics 245

ings of the International Conference on Computational Science, San
Francisco, CA, LNCS 2074, pages 108–117, May 2001.

[21] Abhinav Bhatele, Eric Bohm, and Laxmikant V. Kale. Optimizing com-
munication for charm++ applications by reducing network contention.
Concurrency and Computation: Practice and Experience, 23(2):211–222,
2011.

[22] Abhinav Bhatelé, Laxmikant V. Kalé, and Sameer Kumar. Dynamic
topology aware load balancing algorithms for molecular dynamics ap-
plications. In 23rd ACM International Conference on Supercomputing,
2009.

[23] Scott Biersdorff, Chee Wai Lee, Allen D. Malony, and Laxmikant V.
Kale. Integrated Performance Views in Charm ++: Projections Meets
TAU. In Proceedings of The 38th International Conference on Parallel
Processing (ICPP), pages 140–147, Vienna, Austria, September 2009.

[24] Keith Bisset, Ashwin Aji, Madhav Marathe, and Wu-chun Feng. High-
performance biocomputing for simulating the spread of contagion over
large contact networks. BMC Genomics, 13(Suppl 2):S3, 2012.

[25] E. Bohm, A. Bhatele, L.V. Kale, M.E. Tuckerman, S. Kumar, J.A.
Gunnels, and G.J. Martyna. Fine-grained parallelization of the Car-
Parrinello ab initio molecular dynamics method on the Blue Gene/L
supercomputer. IBM J. Res. Dev., 52 1/2:159–176, (2008).

[26] Eric Bohm, Abhinav Bhatele, Laxmikant V. Kale, Mark E. Tucker-
man, Sameer Kumar, John A. Gunnels, and Glenn J. Martyna. Fine
Grained Parallelization of the Car-Parrinello ab initio MD Method on
Blue Gene/L. IBM Journal of Research and Development: Applications
of Massively Parallel Systems, 52(1/2):159–174, 2008.

[27] Kevin J. Bowers, Edmond Chow, Huafeng Xu, Ron O. Dror, Michael P.
Eastwood, Brent A. Gregersen, John L. Klepeis, Istvan Kolossvary,
Mark A. Moraes, Federico D. Sacerdoti, John K. Salmon, Yibing Shan,
and David E. Shaw. Molecular dynamics—scalable algorithms for molec-
ular dynamics simulations on commodity clusters. In SC ’06: Proceed-
ings of the 2006 ACM/IEEE conference on Supercomputing, page 84,
New York, NY, USA, 2006. ACM Press.

[28] Kevin J. Bowers, Edmond Chow, Huafeng Xu, Ron O. Dror, Michael P.
Eastwood, Brent A. Gregersen, John L. Klepeis, Istvan Kolossvary,
Mark A. Moraes, Federico D. Sacerdoti, John K. Salmon, Yibing Shan,
and David E. Shaw. Scalable algorithms for molecular dynamics sim-
ulations on commodity clusters. In SC ’06: Proceedings of the 2006
ACM/IEEE conference on Supercomputing, New York, NY, USA, 2006.
ACM Press.

246Parallel Science and Engineering Applications: The Charm++ Approach

[29] BRAMS. http://www.cptec.inpe.br/brams, 2009.

[30] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A scalable
cross-platform infrastructure for application performance tuning using
hardware counters. In Proceedings of Supercomputing’00, Dallas, Texas,
2000.

[31] Robert K. Brunner and Laxmikant V. Kalé. Adapting to load on work-
station clusters. In The Seventh Symposium on the Frontiers of Mas-
sively Parallel Computation, pages 106–112. IEEE Computer Society
Press, February 1999.

[32] Robert K. Brunner and Laxmikant V. Kalé. Handling application-
induced load imbalance using parallel objects. In Parallel and Dis-
tributed Computing for Symbolic and Irregular Applications, pages 167–
181. World Scientific Publishing, 2000.

[33] G. T. Camacho and M. Ortiz. Computational modeling of impact dam-
age in brittle materials. Int. J. Solids Struct., 33:2899–2938, 1996.

[34] R. Car and M. Parrinello. Unified approach for molecular dynamics and
density functional theory. Phys. Rev. Lett., 55:2471, (1985).

[35] C. Cavazzoni, G.L. Chiarotti, S. Scandolo, E. Tosatti, M. Bernasconi,
and M. Parrinello. Superionic and Metallic States of Water and Ammo-
nia at Giant Planet Conditions. Science, 283:44, (1999).

[36] Sayantan Chakravorty and L. V. Kale. A fault tolerant protocol for
massively parallel machines. In FTPDS Workshop for IPDPS 2004.
IEEE Press, 2004.

[37] Sayantan Chakravorty and L. V. Kale. A fault tolerance protocol with
fast fault recovery. In Proceedings of the 21st IEEE International Par-
allel and Distributed Processing Symposium. IEEE Press, 2007.

[38] K. Channakeshava, K. Bisset, M. Marathe, A. Vullikanti, and S. Yardi.
High performance scalable and expressive modeling environment to
study mobile malware in large dynamic networks. In Proceedings of
25th IEEE International Parallel & Distributed Processing Symposium,
2011.

[39] Karthik Channakeshava, Deepti Chafekar, Keith Bisset, Anil Vullikanti,
and Madhav Marathe. EpiNet: A simulation framework to study the
spread of malware in wireless networks. In SIMUTools09. ICST Press,
March 2009. Rome, Italy.

[40] K.L. Chung, Y.L. Huang, and Y.W. Liu. Efficient algorithms for coding
Hilbert curve of arbitrary-sized image and application to window query.
Information Sciences, 177(10):2130–2151, 2007.

Contagion Diffusion with EpiSimdemics 247

[41] A.J. Cohen, Paula Mori-Sanchez, and Weitao Yang. Insights into current
limitations of density functional theory. Science, 321:792, (2008).

[42] P. Colella, D.T. Graves, T.J. Ligocki, D.F. Martin, D. Modiano, D.B.
Serafini, and B. Van Straalen. Chombo Software Package for AMR
Applications Design Document, 2003. http://seesar.lbl.gov/anag/

chombo/ChomboDesign-1.4.pdf.

[43] M. C.Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos.
Iterative minimization techniques for ab initio total-energy calculations:
molecular dynamics and conjugate gradients. Rev. Mod. Phys., 64:1045,
(1992).

[44] T.A. Darden, D.M. York, and L.G. Pedersen. Particle mesh Ewald.
An N·log(N) method for Ewald sums in large systems. JCP, 98:10089–
10092, 1993.

[45] M. Davis, G. Efstathiou, C. S. Frenk, and S. D. M. White. The evolution
of large-scale structure in a universe dominated by cold dark matter.
Astrophys. J., 292:371–394, May 1985.

[46] M. Davis, G. Efstathiou, C. S. Frenk, and S. D. M. White. The evolution
of large-scale structure in a universe dominated by cold dark matter.
Astrophys. J., 292:371–394, May 1985.

[47] W. Dehnen. Towards optimal softening in three-dimensional N-body
codes - I. Minimizing the force error. MNRAS, 324:273–291, June 2001.

[48] S.W. deLeeuw, J.W. Perram, and E.R. Smith. Simulation of Electro-
static Systems in Periodic Boundary Conditions. I. Lattice Sums and
Dielectric Constants. Proc. R. Soc. London A, 373:27, 1980.

[49] Department of Computer Science,University of Illinois at Urbana-
Champaign, Urbana, IL. The CHARM (5.9) programming language
manual, 2006.

[50] Department of Computer Science,University of Illinois at Urbana-
Champaign, Urbana, IL. The CONVERSE programming language man-
ual, 2006.

[51] Jayant DeSouza and Laxmikant V. Kalé. MSA: Multiphase specifically
shared arrays. In Proceedings of the 17th International Workshop on
Languages and Compilers for Parallel Computing, West Lafayette, In-
diana, USA, September 2004.

[52] K. Devine, B. Hendrickson, E. Boman, M. St. John, and C. Vaughan.
Design of Dynamic Load-Balancing Tools for Parallel Applications. In
Proc. Intl. Conf. Supercomputing, May 2000.

248Parallel Science and Engineering Applications: The Charm++ Approach

[53] Karen D. Devine, Erik G. Boman, Robert T. Heaphy, Bruce A. Hen-
drickson, James D. Teresco, Jamal Faik, Joseph E. Flaherty, and Luis G.
Gervasio. New challenges in dynamic load balancing. Appl. Numer.
Math., 52(2–3):133–152, 2005.

[54] J. Diemand, M. Kuhlen, P. Madau, M. Zemp, B. Moore, D. Potter, and
J. Stadel. Clumps and streams in the local dark matter distribution.
Nature, 454:735–738, August 2008.

[55] H.-Q. Ding, N. Karasawa, and W. A. Goddard, III. The reduced cell
multipole method for Coulomb interactions in periodic systems with
million-atom unit cells. Chemical Physics Letters, 196:6–10, August
1992.

[56] P. Domingos and M. Richardson. Mining the Network Value of Cus-
tomers. In Proc. ACM KDD, pages 57–61, 2001.

[57] Isaac Dooley. Intelligent Runtime Tuning of Par-
allel Applications With Control Points. PhD thesis,
Dept. of Computer Science, University of Illinois, 2010.
http://charm.cs.uiuc.edu/papers/DooleyPhDThesis10.shtml.

[58] D. J. Earl and M.W. Deem. Parallel tempering: Theory, applications,
and new perspectives. Phys. Chem. Chem. Phys., 7:3910–3916, (2005).

[59] D. Easley and J. Kleinberg. Networks, Crowds and Markets: Reasoning
About A Highly Connected World. Cambridge University Press, New
York, NY, 2010.

[60] G. Efstathiou, M. Davis, S. D. M. White, and C. S. Frenk. Numerical
techniques for large cosmological N-body simulations. Astrophys. J.
Supp., 57:241–260, February 1985.

[61] S.N. Eliane, E. Araújo, W. Cirne, G. Wagner, N. Oliveira, E.P. Souza,
C.O. Galvão, and E.S. Martins. The SegHidro Experience: Using
the Grid to Empower a HydroMeteorological. In Proceedings of the
First International Converence on e-Science and Grid Computing (e-
Science/05), pages 64–71, 2005.

[62] S. Eubank, H. Guclu, V. S. Anil Kumar, M. Marathe, A. Srinivasan,
Z. Toroczkai, and N. Wang. Modelling disease outbreaks in realistic
urban social networks. Nature, 429:180–184, 2004.

[63] A. E. Evrard. Beyond N-body - 3D cosmological gas dynamics. MNRAS,
235:911–934, December 1988.

[64] P. P. Ewald. Die Berechnung optischer und elektrostatischer Gitterpo-
tentiale. Annalen der Physik, 369:253–287, 1921.

Contagion Diffusion with EpiSimdemics 249

[65] A. L. Fazenda, J. Panetta, P. Navaux, L. F. Rodrigues, D. M. Kat-
surayama, and L. F Motta. Escalabilidade de aplicação operacional em
ambiente massivamente paralelo. In Anais do X Simpósio em Sistemas
Computacionais (WSCAD-SCC), pages 27–34, 2009.

[66] R.P. Feynman. Statistical Mechanics. Benjamin, Reading, (1972).

[67] B. Fitch, R. Germain, M. Mendell, J. Pitera, M. Pitman, A. Rayshub-
skiy, Y. Sham, F. Suits, W. Swope, T. Ward, Y. Zhestkov, and R. Zhou.
Blue Matter, an application framework for molecular simulation on Blue
Gene. Journal of Parallel and Distributed Computing, 63:759–773, 2003.

[68] Blake G. Fitch, Aleksandr Rayshubskiy, Maria Eleftheriou,
T. J. Christopher Ward, Mark Giampapa, Michael C. Pitman,
and Robert S. Germain. Molecular dynamics—blue matter: approach-
ing the limits of concurrency for classical molecular dynamics. In SC
’06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing,
page 87, New York, NY, USA, 2006. ACM Press.

[69] IT Foster and BR Toonen. Load-balancing algorithms for climate mod-
els. In Proceedings of Scalable High-Performance Computing Conference,
pages 674–681, 1994.

[70] Peter L. Freddolino, Anton S. Arkhipov, Steven B. Larson, Alexander
McPherson, and Klaus Schulten. Molecular dynamics simulations of the
complete satellite tobacco mosaic virus. Structure, 14:437–449, 2006.

[71] SR Freitas, KM Longo, MAF Silva Dias, R. Chatfield, P. Silva Dias,
P. Artaxo, MO Andreae, G. Grell, LF Rodrigues, A. Fazenda, et al. The
Coupled Aerosol and Tracer Transport model to the Brazilian develop-
ments on the Regional Atmospheric Modeling System (CATT-BRAMS).
Atmospheric Chemistry and Physics, 9(8):2843–2861, 2009.

[72] C. S. Frenk, S. D. M. White, P. Bode, J. R. Bond, G. L. Bryan, R. Cen,
H. M. P. Couchman, A. E. Evrard, N. Gnedin, A. Jenkins, A. M.
Khokhlov, A. Klypin, J. F. Navarro, M. L. Norman, J. P. Ostriker, J. M.
Owen, F. R. Pearce, U.-L. Pen, M. Steinmetz, P. A. Thomas, J. V. Vil-
lumsen, J. W. Wadsley, M. S. Warren, G. Xu, and G. Yepes. The Santa
Barbara Cluster Comparison Project: A Comparison of Cosmological
Hydrodynamics Solutions. Astrophys. J., 525:554–582, November 1999.

[73] D. Frenkel and B. Smit. Understanding Molecular Simulation. Academic
Press, 1996.

[74] George Karypis and Vipin Kumar. A fast and high quality multi-
level scheme for partitioning irregular graphs. SIAM J. Sci. Comput.,
20(1):359–392, 1998.

250Parallel Science and Engineering Applications: The Charm++ Approach

[75] George Karypis and Vipin Kumar. Multilevel k-way Partitioning
Scheme for Irregular Graphs. Journal of Parallel and Distributed Com-
puting, 48:96–129 , 1998.

[76] T. C. Germann, K. Kadau, I. M. Longini, Jr., and C. A. Macken. Miti-
gation strategies for pandemic influenza in the United States. Proc. of
National Academy of Sciences, 103(15):5935–5940, April11 2006.

[77] P. H. Geubelle and J. Baylor. Impact-induced delamination of compos-
ites: a 2d simulation. Composites B, 29(B):589–602, 1998.

[78] R. Gevaerd, S. R. Freitas, and K. M. Longo. Numerical simulation of
biomass burning emission and trasportation during 1998 roraima fires.
In Proceedings of International Conference on Southern Hemisphere Me-
teorology and Oceanography (ICSHMO) 8, 2006.

[79] S. Ghan, X. Bian, A. Hunt, and A. Coleman. The thermodynamic influ-
ence of subgrid orography in a global climate model. Climate Dynamics,
20(1):31–44, 2002.

[80] S. Ghan and T. Shippert. Load balancing and scalability of a subgrid
orography scheme in a global climate model. International Journal of
High Performance Computing Applications, 19(3):237, 2005.

[81] D.S. Ginley and D. Cahen. Fundamentals of Materials for Energy and
Environmental Sustainability. Cambridge University Press, Cambridge,
UK.

[82] Filippo Gioachin and Laxmikant V. Kalé. Dynamic High-Level Scripting
in Parallel Applications. In In Proceedings of the 23rd IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), Rome,
Italy, May 2009.

[83] Filippo Gioachin, Amit Sharma, Sayantan Chakravorty, Celso Mendes,
Laxmikant V. Kale, and Thomas R. Quinn. Scalable cosmology simula-
tions on parallel machines. In VECPAR 2006, LNCS 4395, pp. 476-489,
2007.

[84] Filippo Gioachin, Gengbin Zheng, and Laxmikant V. Kalé. Debugging
Large Scale Applications in a Virtualized Environment. In Proceedings
of the 23rd International Workshop on Languages and Compilers for
Parallel Computing (LCPC2010), number 10-11, Houston, TX (USA),
October 2010.

[85] Filippo Gioachin, Gengbin Zheng, and Laxmikant V. Kalé. Robust
Record-Replay with Processor Extraction. In PADTAD ’10: Proceed-
ings of the 8th Workshop on Parallel and Distributed Systems: Testing,
Analysis, and Debugging, pages 9–19. ACM, July 2010.

Contagion Diffusion with EpiSimdemics 251

[86] E Goldstein, A Apolloni, B Lewis, J C Miller, M Macauley, S Eu-
bank, M Lipsitch, and J Wallinga. Distribution of vaccine/antivirals
and the ‘least spread line’; in a stratified population. J R Soc Interface,
7(46):755–64, 2010.

[87] R. Gould. Collective action and network structure. American Sociolog-
ical Review, 58:182–196, 1993.

[88] F. Governato, C. Brook, L. Mayer, A. Brooks, G. Rhee, J. Wadsley,
P. Jonsson, B. Willman, G. Stinson, T. Quinn, and P. Madau. Bulgeless
dwarf galaxies and dark matter cores from supernova-driven outflows.
Nature, 463:203–206, January 2010.

[89] F. Governato, B. Willman, L. Mayer, A. Brooks, G. Stinson, O. Valen-
zuela, J. Wadsley, and T. Quinn. Forming disc galaxies in ΛCDM sim-
ulations. MNRAS, 374:1479–1494, February 2007.

[90] S. L . Graham, P. B. Kessler, and M. K. McKusick. GPROF: a call graph
execution profiler. SIGPLAN 1982 Symposium on Compiler Construc-
tion, pages 120–126, June 1982.

[91] M. Granovetter. Threshold Models of Collective Behavior. American J.
Sociology, 83(6):1420–1443, 1978.

[92] L. Greengard. The rapid evaluation of potential fields in particle systems.
PhD thesis, MIT, Cambridge, MA, USA., 1988.

[93] G. Grell and D. Devenyi. A generalized approach to parameterizing
convection combining ensemble and data assimilation techniques. Geo-
physical Research Letters, 29(14):38–1, 2002.

[94] G. Grimmett. Percolation. Springer, 1989.

[95] A. Gursoy, L.V. Kale, and S.P. Vanka. Unsteady fluid flow calculations
using a machine independent parallel programming environment. In
R. B. Pelz, A. Ecer, and J. Hauser, editors, Parallel Computational Fluid
Dynamics ’92, pages 175–185. North-Holland, 1993.

[96] A. Haldane and R. May. Systemic risk in banking ecosystems. Nature,
469:351–355, 2011.

[97] M. Halloran, N. Ferguson, I. Longini S. Eubank, D. Cummings, B. Lewis,
S Xu, C. Fraser, A. Vullikanti, T. Germann, D. Wagener, R. Beckman,
K. Kadau, C. Barrett, C. Macken, D. Burke, and P. Cooley. Modeling
targeted layered containment of an influenza pandemic in the united
states. PNAS, 105(12):4639–4644, 2008.

[98] M. Elizabeth Halloran, Neil M. Ferguson, Stephen Eubank, Ira M.
Longini, Derek A. T. Cummings, Bryan Lewis, Shufu Xu, Christophe

252Parallel Science and Engineering Applications: The Charm++ Approach

Fraser, Anil Vullikanti, Timothy C. Germann, Diane Wagener, Richard
Beckman, Kai Kadau, Chris Barrett, Catherine A. Macken, Donald S.
Burke, and Philip Cooley. Modeling targeted layered containment of
an influenza pandemic in the united states. Proceedings of the National
Academy of Sciences, 105(12):4639–4644, March 2008.

[99] R. Halstead. Multilisp: A Language for Concurrent Symbolic Compu-
tation. ACM Transactions on Programming Languages and Systems,
October 1985.

[100] Tsuyoshi Hamada, Tetsu Narumi, Rio Yokota, Kenji Yasuoka, Keigo Ni-
tadori, and Makoto Taiji. 42 tflops hierarchical n-body simulations on
gpus with applications in both astrophysics and turbulence. In Proceed-
ings of the Conference on High Performance Computing Networking,
Storage and Analysis, SC ’09, pages 62:1–62:12, New York, NY, USA,
2009. ACM.

[101] Richard Hamming. Numerical Analysis for Scientists and Engineers.
1973.

[102] K. Heitmann, P. M. Ricker, M. S. Warren, and S. Habib. Robustness of
Cosmological Simulations. I. Large-Scale Structure. Astrophys. J. Supp.,
160:28–58, September 2005.

[103] L. Hernquist, F. R. Bouchet, and Y. Suto. Application of the Ewald
method to cosmological N-body simulations. Astrophys. J. Supp.,
75:231–240, February 1991.

[104] L. Hernquist and N. Katz. TREESPH - A unification of SPH with the
hierarchical tree method. Astrophys. J. Supp., 70:419–446, June 1989.

[105] D. Hilbert. Über die stetige abbildung einer linie auf ein flächenstück.
Mathematische Annalen, 38:459–460, 1891.

[106] R. W. Hockney and J. W. Eastwood. Computer Simulation Using Par-
ticles. New York: McGraw-Hill, 1981.

[107] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev.,
136:B864, 1964.

[108] Chao Huang and Laxmikant V. Kale. Charisma: Orchestrating migrat-
able parallel objects. In Proceedings of IEEE International Symposium
on High Performance Distributed Computing (HPDC), July 2007.

[109] Chao Huang, Orion Lawlor, and L. V. Kalé. Adaptive MPI. In Proceed-
ings of the 16th International Workshop on Languages and Compilers
for Parallel Computing (LCPC 2003), LNCS 2958, pages 306–322, Col-
lege Station, Texas, October 2003.

Contagion Diffusion with EpiSimdemics 253

[110] Chao Huang, Gengbin Zheng, Sameer Kumar, and Laxmikant V. Kalé.
Performance Evaluation of Adaptive MPI. In Proceedings of ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
2006, March 2006.

[111] J. JáJá. An introduction to parallel algorithms. Addison Wesley Long-
man Publishing Co., Inc. Redwood City, CA, USA, 1992.

[112] Pritish Jetley, Filippo Gioachin, Celso Mendes, Laxmikant V. Kale, and
Thomas R. Quinn. Massively parallel cosmological simulations with
ChaNGa. In Proceedings of IEEE International Parallel and Distributed
Processing Symposium 2008, 2008.

[113] Pritish Jetley, Lukasz Wesolowski, Filippo Gioachin, Laxmikant V. Kalé,
and Thomas R. Quinn. Scaling hierarchical n-body simulations on gpu
clusters. In Proceedings of the 2010 ACM/IEEE International Confer-
ence for High Performance Computing, Networking, Storage and Anal-
ysis, SC ’10, Washington, DC, USA, 2010. IEEE Computer Society.

[114] Xiangmin Jiao, Gengbin Zheng, Phillip A. Alexander, Michael T. Camp-
bell, Orion S. Lawlor, John Norris, Andreas Haselbacher, and Michael T.
Heath. A system integration framework for coupled multiphysics simu-
lations. Engineering with Computers, 22(3):293–309, 2006.

[115] J. M. Jiménez, B. L. Lewis, and S. Eubank. Hospitals as complex social
systems: agent-based simulation of hospital-acquired infections. In Pro-
ceedings of 2nd International Conference on Complex Sciences: Theory
and Applications, 2012.

[116] John A. Board Jr., Laxmikant V. Kale, Klaus Schulten, Robert D. Skeel,
, and Tamar Schlick. Modeling biomolecules: Large sclaes, longer du-
rations. IEEE Computational Science & Engineering, 1:19–30, Winter
1994.

[117] Rashmi Jyothi, Orion Sky Lawlor, and L. V. Kale. Debugging support
for Charm++. In PADTAD Workshop for IPDPS 2004, page 294. IEEE
Press, 2004.

[118] L. V. Kale. Application oriented and computer science centered HPCC
research. pages 98–105, 1994.

[119] L. V. Kale and Milind Bhandarkar. Structured Dagger: A Coordination
Language for Message-Driven Programming. In Proceedings of Second
International Euro-Par Conference, volume 1123-1124 of Lecture Notes
in Computer Science, pages 646–653, September 1996.

[120] L. V. Kale and Sanjeev Krishnan. A comparison based parallel sort-
ing algorithm. In Proceedings of the 22nd International Conference on
Parallel Processing, pages 196–200, St. Charles, IL, August 1993.

254Parallel Science and Engineering Applications: The Charm++ Approach

[121] L. V. Kale and Sanjeev Krishnan. A comparison based parallel sort-
ing algorithm. In Proceedings of the 22nd International Conference on
Parallel Processing, pages 196–200, St. Charles, IL, August 1993.

[122] L. V. Kale and Sanjeev Krishnan. Charm++: Parallel Programming
with Message-Driven Objects. In Gregory V. Wilson and Paul Lu, edi-
tors, Parallel Programming using C++, pages 175–213. MIT Press, 1996.

[123] L. V. Kale, B. H. Richards, and T. D. Allen. Efficient parallel graph col-
oring with prioritization. In Lecture Notes in Computer Science, volume
1068, pages 190–208. Springer-Verlag, August 1995.

[124] Laxmikant Kale, Anshu Arya, Abhinav Bhatele, Abhishek Gupta, Nikhil
Jain, Pritish Jetley, Jonathan Lifflander, Phil Miller, Yanhua Sun,
Ramprasad Venkataraman, Lukasz Wesolowski, and Gengbin Zheng.
Charm++ for productivity and performance: A submission to the 2011
HPC class II challenge. Technical Report 11-49, Parallel Programming
Laboratory, November 2011.

[125] Laxmikant Kale, Anshu Arya, Nikhil Jain, Akhil Langer, Jonathan Lif-
flander, Harshitha Menon, Xiang Ni, Yanhua Sun, Ehsan Totoni, Ram-
prasad Venkataraman, and Lukasz Wesolowski. Migratable objects +
active messages + adaptive runtime = productivity + performance a
submission to 2012 HPC class II challenge. Technical Report 12-47,
Parallel Programming Laboratory, November 2012.

[126] Laxmikant Kalé, Robert Skeel, Milind Bhandarkar, Robert Brunner, At-
tila Gursoy, Neal Krawetz, James Phillips, Aritomo Shinozaki, Krishnan
Varadarajan, and Klaus Schulten. NAMD2: Greater scalability for paral-
lel molecular dynamics. Journal of Computational Physics, 151:283–312,
1999.

[127] Laxmikant V. Kalé. The virtualization model of parallel programming
: Runtime optimizations and the state of art. In LACSI 2002, Albu-
querque, October 2002.

[128] Laxmikant V. Kalé. Performance and productivity in parallel program-
ming via processor virtualization. In Proc. of the First Intl. Workshop
on Productivity and Performance in High-End Computing (at HPCA
10), Madrid, Spain, February 2004.

[129] Laxmikant V. Kalé, Sameer Kumar, Gengbin Zheng, and Chee Wai
Lee. Scaling molecular dynamics to 3000 processors with projections:
A performance analysis case study. In Terascale Performance Analysis
Workshop, International Conference on Computational Science(ICCS),
Melbourne, Australia, June 2003.

Contagion Diffusion with EpiSimdemics 255

[130] Laxmikant V. Kale, Gengbin Zheng, Chee Wai Lee, and Sameer Ku-
mar. Scaling applications to massively parallel machines using projec-
tions performance analysis tool. In Future Generation Computer Sys-
tems Special Issue on: Large-Scale System Performance Modeling and
Analysis, volume 22, pages 347–358, February 2006.

[131] L.V. Kalé and S. Krishnan. CHARM++: A Portable Concurrent Object
Oriented System Based on C++. In A. Paepcke, editor, Proceedings of
OOPSLA’93, pages 91–108. ACM Press, September 1993.

[132] L.V. Kalé and Amitabh Sinha. Projections: A preliminary performance
tool for charm. In Parallel Systems Fair, International Parallel Process-
ing Symposium, pages 108–114, Newport Beach, CA, April 1993.

[133] S.A. Kalogirou. Solar Energy Engineering: Processes and Systems. Aca-
demic Press, Waltham, MA USA.

[134] George Karypis and Vipin Kumar. METIS: Unstructured graph par-
titioning and sparse matrix ordering system. University of Minnesota,
1995.

[135] George Karypis and Vipin Kumar. Parallel multilevel k-way partitioning
scheme for irregular graphs. In Supercomputing ’96: Proceedings of the
1996 ACM/IEEE conference on Supercomputing (CDROM), page 35,
1996.

[136] Amal Kasry, Marcelo A. Kuroda, Glenn J. Martyna, George S. Tulevski,
and Ageeth A. Bol. Chemical doping of large-area stacked graphene films
for use as transparent, conducting electrodes. ACS Nano, 4(7):3839–
3844, 2010.

[137] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the Spread of
Influence Through a Social Network. In Proc. ACM KDD, pages 137–
146, 2003.

[138] D. Kempe, J. Kleinberg, and E. Tardos. Influential Nodes in a Diffusion
Model for Social Networks. In Proc. ICALP, pages 1127–1138, 2005.

[139] C.H. Koelbel, D.B. Loveman, R.S. Schreiber, G.L. Steele Jr., and M.E.
Zosel. The High Performance Fortran Handbook. MIT Press, 1994.

[140] W. Kohn and L.J. Sham. Self-consistent equations including exchange
and correlation effects. Phys. Rev., 140:A1133, 1965.

[141] C. Koziar, R. Reilein, and G. Runger. Load imbalance aspects in at-
mosphere simulations. International Journal of Computational Science
and Engineering, 1(2):215–225, 2005.

256Parallel Science and Engineering Applications: The Charm++ Approach

[142] Sanjeev Krishnan and L. V. Kale. A parallel adaptive fast multipole
algorithm for n-body problems. In Proceedings of the International Con-
ference on Parallel Processing, pages III 46 – III 50, August 1995.

[143] Rick Kufrin. Perfsuite: An Accessible, Open Source Performance Anal-
ysis Environment for Linux. In In Proceedings of the Linux Cluster
Conference, 2005.

[144] Sameer Kumar. Optimizing Communication for Massively Parallel Pro-
cessing. PhD thesis, University of Illinois at Urbana-Champaign, May
2005.

[145] Sameer Kumar, Chao Huang, Gheorghe Almasi, and Laxmikant V. Kalé.
Achieving strong scaling with NAMD on Blue Gene/L. In Proceedings
of IEEE International Parallel and Distributed Processing Symposium
2006, April 2006.

[146] Sameer Kumar, Yanhua Sun, and L. V. Kale. Acceleration of an asyn-
chronous message driven programming paradigm on ibm blue gene/q.
In Proceedings of 26th IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS), Boston, USA, May 2013.

[147] V. Kumar. Introduction to parallel computing. Addison-Wesley Long-
man Publishing Co., Inc. Boston, MA, USA, 2002.

[148] Akhil Langer, Jonathan Lifflander, Phil Miller, Kuo-Chuan Pan, ,
Laxmikant V. Kale, and Paul Ricker. Scalable Algorithms for
Distributed-Memory Adaptive Mesh Refinement. In Proceedings of
the 24th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD 2012), New York, USA, October
2012.

[149] Ilya Lashuk, Aparna Chandramowlishwaran, Harper Langston, Tuan-
Anh Nguyen, Rahul Sampath, Aashay Shringarpure, Richard Vuduc,
Lexing Ying, Denis Zorin, and George Biros. A massively parallel adap-
tive fast-multipole method on heterogeneous architectures. In SC ’09:
Proceedings of the Conference on High Performance Computing Net-
working, Storage and Analysis, pages 1–12, New York, NY, USA, 2009.
ACM.

[150] Orion Lawlor, Sayantan Chakravorty, Terry Wilmarth, Nilesh Choud-
hury, Isaac Dooley, Gengbin Zheng, and Laxmikant Kale. Parfum: A
parallel framework for unstructured meshes for scalable dynamic physics
applications. Engineering with Computers, 22(3-4):215–235, September
2006.

[151] Orion Lawlor, Hari Govind, Isaac Dooley, Michael Breitenfeld, and
Laxmikant Kale. Performance degradation in the presence of subnor-
mal floating-point values. In Proceedings of the International Workshop

Contagion Diffusion with EpiSimdemics 257

on Operating System Interference in High Performance Applications,
September 2005.

[152] Orion Sky Lawlor. Impostors for Parallel Interactive Computer Graph-
ics. PhD thesis, University of Illinois at Urbana-Champaign, December
2004.

[153] Orion Sky Lawlor and L. V. Kalé. Supporting dynamic parallel ob-
ject arrays. Concurrency and Computation: Practice and Experience,
15:371–393, 2003.

[154] D. Lea and W. Gloger. A memory allocator. http://web.mit.edu/

sage/export/singular-3-0-4-3.old/omalloc/Misc/dlmalloc/

malloc.ps, 2000.

[155] C. Lee, W. Yang, and R.G. Parr. Development of the Calle-Salvetti
correlation energy into a functional of the electron density. Phys. Rev.
B, 37:785, (1988).

[156] Chee Wai Lee. Techniques in Scalable and Effective Parallel Perfor-
mance Analysis. PhD thesis, Department of Computer Science, Univer-
sity of Illinois, Urbana-Champaign, December 2009.

[157] J. K. Lenstra, D. B. Shmoys, and E. Tardos. Approximation algorithms
for scheduling unrelated parallel machines. Math. Program., 46(3):259–
271, 1990.

[158] J. Leskovec, L. Adamic, and B. Huberman. The Dynamics of Viral
Marketing. ACM Trans. on the Web, 1(1), 2007.

[159] J.R. Levine. Linkers and Loaders. Morgan-Kauffman, 2000.

[160] Bryan Lewis, Stephen Eubank, Allyson M Abrams, and Ken Klein-
man. In silico surveillance: evaluating outbreak detection with simu-
lation models. BMC medical informatics and decision making, 13(1):12,
January 2013.

[161] G. F. Lewis, A. Babul, N. Katz, T. Quinn, L. Hernquist, and D. H.
Weinberg. The Effects of Gasdynamics, Cooling, Star Formation, and
Numerical Resolution in Simulations of Cluster Formation. Astrophys.
J., 536:623–644, June 2000.

[162] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni,
I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff. Large-
Area Synthesis of High-Quality and Uniform Graphene Films on Copper
Foils. Science, 324:1312, (2009).

[163] X. Liu and G. Schrack. Encoding and decoding the Hilbert order. Soft-
ware, practice & experience, 26(12):1335–1346, 1996.

258Parallel Science and Engineering Applications: The Charm++ Approach

[164] Kwan-Liu Ma, Greg Schussman, Brett Wilson, Kwok Ko, Ji Qiang, and
Robert Ryne. Advanced visualization technology for terascale particle
accelerator simulations. In Supercomputing ’02: Proceedings of the 2002
ACM/IEEE conference on Supercomputing, pages 1–11, Los Alamitos,
CA, USA, 2002. IEEE Computer Society Press.

[165] Paulo W. C. Maciel and Peter Shirley. Visual navigation of large envi-
ronments using textured clusters. In Proceedings of the 1995 symposium
on Interactive 3D graphics, pages 95–ff. ACM Press, 1995.

[166] Sandhya Mangala, Terry Wilmarth, Sayantan Chakravorty, Nilesh
Choudhury, Laxmikant V. Kale, and Philippe H. Geubelle. Parallel
adaptive simulations of dynamic fracture events. Engineering with Com-
puters, 24:341–358, December 2007.

[167] Achla Marathe, Bryan Lewis, Christopher Barrett, Jiangzhuo Chen,
Madhav Marathe, Stephen Eubank, and Yifei Ma. Comparing effec-
tiveness of top-down and bottom-up strategies in containing influenza.
PloS one, 6(9):e25149, 2011.

[168] Achla Marathe, Bryan Lewis, Jiangzhuo Chen, and Stephen Eubank.
Sensitivity of household transmission to household contact structure and
size. PloS one, 6(8):e22461, 2011.

[169] Dominik Marx, Mark E. Tuckerman, and M. Parrinello. The nature of
the hydrated excess proton in water. Nature, 601:397, (1999).

[170] L. Mayer, T. Quinn, J. Wadsley, and J. Stadel. Formation of Giant
Planets by Fragmentation of Protoplanetary Disks. Science, 298:1756–
1759, November 2002.

[171] M. McPherson, L. Smith-Lovin, and J. Cook. Birds of a Feather: Ho-
mophily in Social Networks. Annual Review of Sociology, 27:415–444,
2001.

[172] Vikas Mehta. LeanMD: A Charm++ framework for high performance
molecular dynamics simulation on large parallel machines. Master’s
thesis, University of Illinois at Urbana-Champaign, 2004.

[173] Chao Mei, Yanhua Sun, Gengbin Zheng, Eric J. Bohm, Laxmikant V.
Kalé, James C.Phillips, and Chris Harrison. Enabling and scaling
biomolecular simulations of 100 million atoms on petascale machines
with a multicore-optimized message-driven runtime. In Proceedings
of the 2011 ACM/IEEE conference on Supercomputing, Seattle, WA,
November 2011.

[174] Chao Mei, Gengbin Zheng, Filippo Gioachin, and Laxmikant V. Kalé.
Optimizing a Parallel Runtime System for Multicore Clusters: A Case
Study. In TeraGrid’10, number 10-13, Pittsburgh, PA, USA, August
2010.

Contagion Diffusion with EpiSimdemics 259

[175] Esteban Meneses, Greg Bronevetsky, and Laxmikant V. Kale. Dynamic
load balance for optimized message logging in fault tolerant HPC ap-
plications. In IEEE International Conference on Cluster Computing
(Cluster) 2011, September 2011.

[176] Esteban Meneses, Celso L. Mendes, and Laxmikant V. Kale. Team-based
message logging: Preliminary results. In 3rd Workshop on Resiliency
in High Performance Computing (Resilience) in Clusters, Clouds, and
Grids (CCGRID 2010)., May 2010.

[177] J. Michalakes. MM90: a scalable parallel implementation of the
Penn State/NCAR Mesoscale Model (MM5). Parallel Computing,
23(14):2173–2186, 1997.

[178] John Michalakes, Josh Hacker, Richard Loft, Michael O. McCracken,
Allan Snavely, Nicholas J. Wright, Tom Spelce, Brent Gorda, and Robert
Walkup. Wrf nature run. In Proceedings of SuperComputing, pages 1–6,
Los Alamitos, CA, USA, 2007. IEEE Computer Society.

[179] Phil Miller, Aaron Becker, and Laxmikant Kal. Using shared arrays in
message-driven parallel programs. Parallel Computing, 38(12):66 – 74,
2012.

[180] J. Minkel. The 2003 northeast blackout–five years later. Scientific Amer-
ican, 2008. 13 August 2008, http://www.scientificamerican.com/
article.cfm?id=2003-blackout-five-years-later.

[181] M.Levy. Universal variational functionals of electron densities, first-
order density matrices, and natural spin-orbitals and solution of the v-
representability problem. Proc. Natl. Acad. Sci. U.S.A., 76:6062, (1979).

[182] P. R. Monge and N. S. Contractor. Theories of Communication Net-
works. Oxford University Press, USA, 2003.

[183] B. Moore, F. Governato, T. Quinn, J. Stadel, and G. Lake. Resolving
the Structure of Cold Dark Matter Halos. Astrophys. J. Lett., 499:L5–+,
May 1998.

[184] E. Moretti. Social learning and peer effects in consumption: Evidence
from movie sales. Review of Economic Studies, 78:356–393, 2011.

[185] H. Mortveit and C. Reidys. An Introduction to Sequential Dynamical
Systems. Springer, New York, NY, 2007.

[186] Martin Mundhenk, Judy Goldsmith, Christopher Lusena, and Eric Al-
lender. Complexity of finite-horizon markov decision process problems.
JACM, 47(4):681–720, July 2000.

[187] National Institutes of Health, 2009. http://www.nigms.nih.gov/

Initiatives/MIDAS.

260Parallel Science and Engineering Applications: The Charm++ Approach

[188] J. F. Navarro, C. S. Frenk, and S. D. M. White. A Universal Density
Profile from Hierarchical Clustering. Astrophys. J., 490:493, December
1997.

[189] NDSSL. Synthetic data products for societal infrastructures and proto-
populations: Data set 2.0. Technical Report NDSSL-TR-07-003, NDSSL,
Virginia Polytechnic Institute and State University, Blacksburg, VA,
24061, 2007.

[190] M. Newman. The structure and function of complex networks. SIAM
Review, 45, 2003.

[191] M.E. Newman. Spread of epidemic disease on networks. Phys. Rev. E,
2002.

[192] D.M. Newns, B.G. Elmegreen, X.-H. Liu, and G.J. Martyna. High Re-
sponse Piezoelectric and Piezoresistive Materials for Fast, Low Volt-
age Switching: Simulation and Theory of Transduction Physics at the
Nanometer-Scale. Adv. Mat., 24:3672, 2012.

[193] D.M. Newns, B.G. Elmegreen, X.-H. Liu, and G.J. Martyna. High Re-
sponse Piezoelectric and Piezoresistive Materials for Fast, Low Volt-
age Switching: Simulation and Theory of Transduction Physics at the
Nanometer-Scale. Adv. Mat., 24:3672, 2012.

[194] D.M. Newns, B.G. Elmegreen, X.-H. Liu, and G.J. Martyna. The piezo-
electronic transistor:A nanoactuator-based post-CMOS digital switch
with high speed and low power. MRS Bulletin, 37:1071, 2012.

[195] D.M. Newns, J.A. Misewich, A. Gupta C.C. Tsuei, B.A. Scott, and
A. Schrott. Mott Transition Field Effect Transistor. Appl. Phys. Lett.,
73:780, (1998).

[196] R. Nistor, D.M. Newns, and G.J. Martyna. Understanding the doping
mechanism in graphene-based electronics: The role of chemistry. ACS
Nano, 5:3096, (2011).

[197] A. Odell1, A. Delin1, B. Johansson, N. Bock, M. Challacombe,
and A. M. N. Niklasson. Higher-order symplectic integration in
Born.Oppenheimer molecular dynamics. J. Chem. Phys., 131:244106,
(2009).

[198] Committee on Modeling Community Containment for Pandemic In-
fluenza and Institute of Medicine. Modeling Community Containment
for Pandemic Influenza: A Letter Report. The National Academies
Press, Washington D.C., 2006.

[199] J. P. Ostriker and P. J. E. Peebles. A Numerical Study of the Stability
of Flattened Galaxies: or, can Cold Galaxies Survive? Astrophys. J.,
186:467–480, December 1973.

Contagion Diffusion with EpiSimdemics 261

[200] Douglas Z. Pan and Mark A. Linton. Supporting reverse execution for
parallel programs. SIGPLAN Not., 24(1):124–129, 1989.

[201] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized Gradient Ap-
proximation Made Simple. Phys. Rev. B, 77:386, (1996).

[202] P. Perzyna. Fundamental problems in viscoplasticity. Advances in ap-
plied mechanics, 9(C):243–377, 1966.

[203] James C. Phillips, Gengbin Zheng, Sameer Kumar, and Laxmikant V.
Kalé. NAMD: Biomolecular simulation on thousands of processors.
In Proceedings of the 2002 ACM/IEEE conference on Supercomputing,
pages 1–18, Baltimore, MD, September 2002.

[204] Planck Collaboration, N. Aghanim, M. Arnaud, M. Ashdown, F. Atrio-
Barandela, J. Aumont, C. Baccigalupi, A. Balbi, A. J. Banday, R. B.
Barreiro, J. G. Bartlett, E. Battaner, K. Benabed, J.-P. Bernard,
M. Bersanelli, H. Böhringer, A. Bonaldi, J. R. Bond, J. Borrill, F. R.
Bouchet, H. Bourdin, M. L. Brown, C. Burigana, R. C. Butler, P. Ca-
bella, J.-F. Cardoso, P. Carvalho, A. Catalano, L. Cayón, A. Cham-
ballu, R.-R. Chary, L.-Y. Chiang, G. Chon, P. R. Christensen, D. L.
Clements, S. Colafrancesco, S. Colombi, A. Coulais, B. P. Crill, F. Cut-
taia, A. Da Silva, H. Dahle, R. J. Davis, P. de Bernardis, G. de Gasperis,
G. de Zotti, J. Delabrouille, J. Démoclès, F.-X. Désert, J. M. Diego,
K. Dolag, H. Dole, S. Donzelli, O. Doré, M. Douspis, X. Dupac, T. A.
Enßlin, H. K. Eriksen, F. Finelli, I. Flores-Cacho, O. Forni, P. Fosalba,
M. Frailis, S. Fromenteau, S. Galeotta, K. Ganga, R. T. Génova-Santos,
M. Giard, J. González-Nuevo, R. González-Riestra, K. M. Górski,
A. Gregorio, A. Gruppuso, F. K. Hansen, D. Harrison, A. Hempel,
C. Hernández-Monteagudo, D. Herranz, S. R. Hildebrandt, A. Horn-
strup, K. M. Huffenberger, G. Hurier, T. Jagemann, J. Jasche, M. Ju-
vela, E. Keihänen, R. Keskitalo, T. S. Kisner, R. Kneissl, J. Knoche,
L. Knox, H. Kurki-Suonio, G. Lagache, A. Lähteenmäki, J.-M. Lamarre,
A. Lasenby, C. R. Lawrence, S. Leach, R. Leonardi, A. Liddle, P. B. Lilje,
M. López-Caniego, G. Luzzi, J. F. Maćıas-Pérez, D. Maino, N. Man-
dolesi, R. Mann, F. Marleau, D. J. Marshall, E. Mart́ınez-González,
S. Masi, M. Massardi, S. Matarrese, F. Matthai, P. Mazzotta, P. R.
Meinhold, A. Melchiorri, J.-B. Melin, L. Mendes, A. Mennella, M.-A.
Miville-Deschênes, A. Moneti, L. Montier, G. Morgante, D. Mortlock,
D. Munshi, P. Naselsky, P. Natoli, H. U. Nørgaard-Nielsen, F. Noviello,
S. Osborne, F. Pasian, G. Patanchon, O. Perdereau, F. Perrotta, F. Pi-
acentini, E. Pierpaoli, S. Plaszczynski, P. Platania, E. Pointecouteau,
G. Polenta, N. Ponthieu, L. Popa, T. Poutanen, G. W. Pratt, J.-L.
Puget, J. P. Rachen, R. Rebolo, M. Reinecke, M. Remazeilles, C. Re-
nault, S. Ricciardi, T. Riller, I. Ristorcelli, G. Rocha, C. Rosset, M. Ros-
setti, J. A. Rubiño-Mart́ın, B. Rusholme, M. Sandri, G. Savini, B. M.

262Parallel Science and Engineering Applications: The Charm++ Approach

Schaefer, D. Scott, G. F. Smoot, J.-L. Starck, F. Stivoli, R. Sun-
yaev, D. Sutton, J.-F. Sygnet, J. A. Tauber, L. Terenzi, L. Toffolatti,
M. Tomasi, M. Tristram, L. Valenziano, B. Van Tent, P. Vielva, F. Villa,
N. Vittorio, B. D. Wandelt, J. Weller, S. D. M. White, D. Yvon, A. Zac-
chei, and A. Zonca. Planck intermediate results. I. Further validation of
new Planck clusters with XMM-Newton. Astronomy and Astrophysics,
543:A102, July 2012.

[205] S. J. Plimpton and B. A. Hendrickson. A new parallel method for
molecular-dynamics simulation of macromolecular systems. J Comp
Chem, 17:326–337, 1996.

[206] Steve Plimpton. Fast parallel algorithms for short-range molecular dy-
namics. J. Comput. Phys., 117(1):1–19, 1995.

[207] C. Power, J. F. Navarro, A. Jenkins, C. S. Frenk, S. D. M. White,
V. Springel, J. Stadel, and T. Quinn. The inner structure of ΛCDM
haloes - I. A numerical convergence study. Monthly Notices of the Royal
Astronomical Society, 338:14–34, January 2003.

[208] D. Reed, J. Gardner, T. Quinn, J. Stadel, M. Fardal, G. Lake, and
F. Governato. Evolution of the mass function of dark matter haloes.
MNRAS, 346:565–572, December 2003.

[209] D.K. Remler and P.A. Madden. Molecular Dynamics without effective
potentials via the Car-Parrinello approach. Mol. Phys., 70:921, (1990).

[210] E. R. Rodrigues, P. O. A. Navaux, J Panetta, and C. L. Mendes. A
new technique for data privatization in user-level threads and its use in
parallel applications. In ACM 25th Symposium On Applied Computing
(SAC), Sierre, Switzerland, 2010.

[211] Eduardo R. Rodrigues, Philippe O. A. Navaux, Jairo Panetta, Alvaro
Fazenda, Celso L. Mendes, and Laxmikant V. Kalé. A comparative anal-
ysis of load balancing algorithms applied to a weather forecast model. In
Proceedings of 22nd IEEE International Symposium on Computer Ar-
chitecture and High Performance Computing, Petrópolis - Brazil, 2010.

[212] Eduardo R. Rodrigues, Philippe O. A. Navaux, Jairo Panetta, Celso L.
Mendes, and Laxmikant V. Kalé. Optimizing an MPI weather forecast-
ing model via processor virtualization. In Proceedings of IEEE Interna-
tional Conference on High Performance Computing (HiPC 2010), Goa
- India, 2010.

[213] D. Romero, B. Meeder, and J. Kleinberg. Differences in the Mechanics
of Information Diffusion Across Topics: Idioms, Political Hashtags, and
Complex Contagion on Twitter. In Proceedings of the 20th International
World Wide Web Conference (WWW 2011), 2011.

Contagion Diffusion with EpiSimdemics 263

[214] Michiel Ronsse and Koen De Bosschere. RecPlay: a fully integrated
practical record/replay system. ACM Trans. Comput. Syst., 17(2):133–
152, 1999.

[215] H.G. Rotithor. Taxonomy of dynamic task scheduling schemes in dis-
tributed computing systems. In Proceedings of IEE: Computers and
Digital Techniques, volume 141, pages 1–10, 1994.

[216] J. J. Ruan, T. R. Quinn, and A. Babul. The Observable Thermal and
Kinetic Sunyaev-Zel’dovich Effect in Merging Galaxy Clusters. ArXiv
e-prints, April 2013.

[217] Ruth Rutter. Run-length encoding on graphics hardware. Master’s
thesis, University of Alaska at Fairbanks, 2011.

[218] J. K. Salmon and M. S. Warren. Skeletons from the treecode closet.
Journal of Computational Physics, 111:136–155, March 1994.

[219] Osman Sarood and Laxmikant V. Kalé. A ‘cool’ load balancer for par-
allel applications. In Proceedings of the 2011 ACM/IEEE conference on
Supercomputing, Seattle, WA, November 2011.

[220] Osman Sarood, Phil Miller, Ehsan Totoni, and L. V. Kale. ‘Cool’ Load
Balancing for High Performance Computing Data Centers. In IEEE
Transactions on Computer - SI (Energy Efficient Computing), Septem-
ber 2012.

[221] Martin Schulz, Jim Galarowicz, Don Maghrak, William Hachfeld, David
Montoya, and Scott Cranford. Open|speedshop: An open source in-
frastructure for parallel performance analysis. Scientific Programming,
16(2-3):105–121, 2008.

[222] Melih Sener, Johan Strumpfer, John A. Timney, Arvi Freiberg, C. Neil
Hunter, and Klaus Schulten. Photosynthetic vesicle architecture and
constraints on efficient energy harvesting. Biophysical Journal, 99:67–
75, 2010.

[223] D. Shakhvorostov, R.A. Nistor, L. Krusin-Elbaum, G.J. Martyna, D.M.
Newns, B.G. Elmegreen, X. Liu, Z.E. Hughesa, S. Paul, C. Cabral,
S. Raoux, D.B. Shrekenhamerd, D.N. Basovd, Y. Songe, and M.H.
Mueser. Evidence for electronic gap-driven metal-semiconductor tran-
sition in phase-change materials. PNAS., 106:10907–10911, (2009).

[224] S. Shende and A. D. Malony. The TAU Parallel Performance Sys-
tem. International Journal of High Performance Computing Applica-
tions, 20(2):287–331, Summer 2006.

[225] S.A. Shevlin, A. Curioni, and W. Andreoni. Ab Initio Design of High-k
Dielectrics: LaxY1−xAlO3. Phys. Rev. Lett., 94:146401, (2005).

264Parallel Science and Engineering Applications: The Charm++ Approach

[226] S. Shingu, H. Takahara, H. Fuchigami, M. Yamada, Y. Tsuda, W. Oh-
fuchi, Y. Sasaki, K. Kobayashi, T. Hagiwara, S. Habata, et al. A 26.58
tflops global atmospheric simulation with the spectral transform method
on the earth simulator. In Proceedings of the 2002 ACM/IEEE confer-
ence on Supercomputing, pages 1–19. IEEE Computer Society Press,
2002.

[227] D. Siegel. Social networks and collective action. Americal Journal of
Political Science, 53:122–138, 2009.

[228] A. Sinha and L.V. Kalé. Information Sharing Mechanisms in Parallel
Programs. In H.J. Siegel, editor, Proceedings of the 8th International
Parallel Processing Symposium, pages 461–468, Cancun, Mexico, April
1994.

[229] Marc Snir. A note on n-body computations with cutoffs. Theory of
Computing Systems, 37:295–318, 2004.

[230] Edgar Solomonik and Laxmikant V. Kale. Highly Scalable Parallel Sort-
ing. In Proceedings of the 24th IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), April 2010.

[231] R. Souto, RB Avila, POA Navaux, MX Py, N. Maillard, T. Diverio,
HC Velho, S. Stephany, AJ Preto, J. Panetta, et al. Processing mesoscale
climatology in a grid environment. In Proceedings of the Seventh IEEE
International Symposium on Cluster Computing and the Grid–CCGrid,
2007.

[232] V. Springel. The cosmological simulation code GADGET-2. MNRAS,
364:1105–1134, December 2005.

[233] V. Springel, J. Wang, M. Vogelsberger, A. Ludlow, A. Jenkins, A. Helmi,
J. F. Navarro, C. S. Frenk, and S. D. M. White. The Aquarius Project:
the subhaloes of galactic haloes. MNRAS, 391:1685–1711, December
2008.

[234] V. Springel, S. D. M. White, A. Jenkins, C. S. Frenk, N. Yoshida, L. Gao,
J. Navarro, R. Thacker, D. Croton, J. Helly, J. A. Peacock, S. Cole,
P. Thomas, H. Couchman, A. Evrard, J. Colberg, and F. Pearce. Simu-
lations of the formation, evolution and clustering of galaxies and quasars.
Nature, 435:629–636, June 2005.

[235] J. Stadel, D. Potter, B. Moore, J. Diemand, P. Madau, M. Zemp,
M. Kuhlen, and V. Quilis. Quantifying the heart of darkness with
GHALO - a multibillion particle simulation of a galactic halo. MNRAS,
398:L21–L25, September 2009.

[236] J. G. Stadel. Cosmological N-body Simulations and their Analysis. PhD
thesis, Department of Astronomy, University of Washington, March
2001.

Contagion Diffusion with EpiSimdemics 265

[237] Yanhua Sun, Gengbin Zheng, Chao Mei Eric J. Bohm, Terry Jones,
Laxmikant V. Kalé, and James C.Phillips. Optimizing fine-grained
communication in a biomolecular simulation application on cray xk6.
In Proceedings of the 2012 ACM/IEEE conference on Supercomputing,
Salt Lake City, Utah, November 2012.

[238] Yanhua Sun, Gengbin Zheng, L. V. Kale, Terry R. Jones, and Ryan
Olson. A uGNI-based Asynchronous Message-driven Runtime System
for Cray Supercomputers with Gemini Interconnect. In Proceedings of
26th IEEE International Parallel and Distributed Processing Symposium
(IPDPS), Shanghai, China, May 2012.

[239] Emad Tajkhorshid, Aleksij Aksimentiev, Ilya Balabin, Mu Gao, Barry
Isralewitz, James C. Phillips, Fangqiang Zhu, and Klaus Schulten. Large
scale simulation of protein mechanics and function. In Frederic M.
Richards, David S. Eisenberg, and John Kuriyan, editors, Advances in
Protein Chemistry, volume 66, pages 195–247. Elsevier Academic Press,
New York, 2003.

[240] Emad Tajkhorshid, Peter Nollert, Morten Ø. Jensen, Larry J. W. Mier-
cke, Joseph O’Connell, Robert M. Stroud, and Klaus Schulten. Control
of the selectivity of the aquaporin water channel family by global orien-
tational tuning. Science, 296:525–530, 2002.

[241] Claudia Taylor, Achla Marathe, and Richard Beckman. Same influenza
vaccination strategies but different outcomes across us cities? Interna-
tional Journal of Infectious Diseases, 14(9):e792 – e795, 2010.

[242] T.N. Theis and P.M. Solomon. In Quest of the “Next Switch”: Prospects
for Greatly Reduced Power Dissipation in a Successor to the Silicon
Field-Effect Transistor. Proceedings of the IEEE, 98:2005, (2010).

[243] GJ Tripoli and WR Cotton. The Colorado State University three-
dimensional cloud/mesoscale model. Technical Report 3, Atmos, 1982.

[244] M. Tuckerman, G. Martyna, M.L. Klein, and B.J. Berne. Efficient
Molecular Dynamics and Hybrid Monte Carlo Algorithms for Path In-
tegrals. J. Chem. Phys., 99:2796, (1993).

[245] Ramkumar V. Vadali, Yan Shi, Sameer Kumar, L. V. Kale, Mark E.
Tuckerman, and Glenn J. Martyna. Scalable fine-grained paralleliza-
tion of plane-wave-based ab initio molecular dynamics for large super-
computers. Journal of Comptational Chemistry, 25(16):2006–2022, Oct.
2004.

[246] J. W. Wadsley, J. Stadel, and T. Quinn. Gasoline: a flexible, parallel
implementation of TreeSPH. New Astronomy, 9:137–158, February 2004.

266Parallel Science and Engineering Applications: The Charm++ Approach

[247] R.L. Walko, L.E. Band, J. Baron, T.G.F. Kittel, R. Lammers, T.J.
Lee, D. Ojima, R.A. Pielke Sr, C. Taylor, C. Tague, et al. Coupled
atmosphere–biophysics–hydrology models for environmental modeling.
Journal of Applied Meteorology, 39(6), 2000.

[248] Yuhe Wang and John Killough. A new approach to load balance
for parallel compositional simulation based on reservoir model over-
decomposition. In 2013 SPE Reservoir Simulation Symposium, 2013.

[249] M. S. Warren and J. K. Salmon. A parallel hashed oct-tree n-body
algorithm. In Proceedings of the 1993 ACM/IEEE conference on Su-
percomputing, Supercomputing ’93, pages 12–21, New York, NY, USA,
1993. ACM.

[250] M.S. Warren, J.K. Salmon, D.J. Becker, M.P. Goda, T. Sterling, and
W. Winckelmans. Pentium pro inside: I. a treecode at 430 gigaflops
on asci red, ii. price/performance of $50/mflop on loki and hyglac. In
Supercomputing, ACM/IEEE 1997 Conference, page 61, nov. 1997.

[251] S. D. M. White, C. S. Frenk, and M. Davis. Clustering in a neutrino-
dominated universe. Astrophys. J. Lett., 274:L1–L5, November 1983.

[252] X.-P. Xu and A. Needleman. Numerical simulation of fast crack growth
in brittle solids. Journal of the Mechanics and Physics of Solids,
42:1397–1434, 1994.

[253] M. Xue, K.K. Droegemeier, and D. Weber. Numerical Prediction of
High-Impact Local Weather: A Driver for Petascale Computing. Petas-
cale Computing: Algorithms and Applications, pages 103–124, 2007.

[254] Jae-Seung Yeom, Abhinav Bhatele, Keith Bisset, Eric Bohm, Abhishek
Gupta, Laxmikant V. Kale, Madhav Marathe, Dimitrios S. Nikolopou-
los, Martin Schulz, and Lukasz Wesolowski. Overcoming the scalability
challenges of contagion simulations on Blue Waters. Technical Report
13-057, NDSSL, Virginia Bioinformatics Institute at Virginia Tech, 2013.

[255] Y. B. Zeldovich and R. A. Sunyaev. The Interaction of Matter and Ra-
diation in a Hot-Model Universe. Astrophysics & Space Science, 4:301–
316, July 1969.

[256] Gongpu Zhao, Juan R. Perilla, Ernest L. Yufenyuy, Xin Meng, Bo Chen,
Jiying Ning, Jinwoo Ahn, Angela M. Gronenborn, Klaus Schulten,
Christopher Aiken, and Peijun Zhang. Mature HIV-1 capsid structure
by cryo-electron microscopy and all-atom molecular dynamics. Nature,
497:643–646, 2013. doi:10.1038/nature12162.

[257] Gengbin Zheng. Achieving high performance on extremely large par-
allel machines: performance prediction and load balancing. PhD the-
sis, Department of Computer Science, University of Illinois at Urbana-
Champaign, 2005.

Contagion Diffusion with EpiSimdemics 267

[258] Gengbin Zheng, Abhinav Bhatele, Esteban Meneses, and Laxmikant V.
Kale. Periodic Hierarchical Load Balancing for Large Supercomput-
ers. International Journal of High Performance Computing Applications
(IJHPCA), March 2011.

[259] Gengbin Zheng, Orion Sky Lawlor, and Laxmikant V. Kalé. Multiple
flows of control in migratable parallel programs. In 2006 International
Conference on Parallel Processing Workshops (ICPPW’06), pages 435–
444, Columbus, Ohio, August 2006. IEEE Computer Society.

[260] Gengbin Zheng, Xiang Ni, and L. V. Kale. A Scalable Double In-memory
Checkpoint and Restart Scheme towards Exascale. In Proceedings of the
2nd Workshop on Fault-Tolerance for HPC at Extreme Scale (FTXS),
Boston, USA, June 2012.

[261] Gengbin Zheng, Lixia Shi, and Laxmikant V. Kalé. FTC-Charm++:
An In-Memory Checkpoint-Based Fault Tolerant Runtime for Charm++
and MPI. In 2004 IEEE Cluster, pages 93–103, San Diego, CA, Septem-
ber 2004.

[262] Gengbin Zheng, Terry Wilmarth, Praveen Jagadishprasad, and
Laxmikant V. Kalé. Simulation-based performance prediction for large
parallel machines. In International Journal of Parallel Programming,
volume 33, pages 183–207, 2005.

