
Projections: Scalable Performance
Analysis and Visualization

Jonathan Lifflander, Laxmikant V. Kale
{jliffl2, kale}@illinois.edu

University of Illinois Urbana-Champaign

October 14, 2013



Programming Model
→ Charm++

� Work is decomposed into objects that interact

� Objects are logical, location-oblivious entities
� Runtime maps them to a processor

I May migrate them during execution due to dynamic load imbalance

� Method invocation between objects causes communication if the
objects are not in the same memory domain

� Communication is asynchronous and drives the computation
� Runtime system schedules which method to execute next (based on

messages that have arrived)

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 2 / 27 Projections: Scalable Performance Analysis and Visualization2 / 27



Programming Model
→ Charm++

� Work is decomposed into objects that interact
� Objects are logical, location-oblivious entities

� Runtime maps them to a processor
I May migrate them during execution due to dynamic load imbalance

� Method invocation between objects causes communication if the
objects are not in the same memory domain

� Communication is asynchronous and drives the computation
� Runtime system schedules which method to execute next (based on

messages that have arrived)

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 2 / 27 Projections: Scalable Performance Analysis and Visualization2 / 27



Programming Model
→ Charm++

� Work is decomposed into objects that interact
� Objects are logical, location-oblivious entities
� Runtime maps them to a processor

I May migrate them during execution due to dynamic load imbalance

� Method invocation between objects causes communication if the
objects are not in the same memory domain

� Communication is asynchronous and drives the computation
� Runtime system schedules which method to execute next (based on

messages that have arrived)

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 2 / 27 Projections: Scalable Performance Analysis and Visualization2 / 27



Programming Model
→ Charm++

� Work is decomposed into objects that interact
� Objects are logical, location-oblivious entities
� Runtime maps them to a processor

I May migrate them during execution due to dynamic load imbalance

� Method invocation between objects causes communication if the
objects are not in the same memory domain

� Communication is asynchronous and drives the computation
� Runtime system schedules which method to execute next (based on

messages that have arrived)

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 2 / 27 Projections: Scalable Performance Analysis and Visualization2 / 27



Programming Model
→ Charm++

� Work is decomposed into objects that interact
� Objects are logical, location-oblivious entities
� Runtime maps them to a processor

I May migrate them during execution due to dynamic load imbalance

� Method invocation between objects causes communication if the
objects are not in the same memory domain

� Communication is asynchronous and drives the computation

� Runtime system schedules which method to execute next (based on
messages that have arrived)

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 2 / 27 Projections: Scalable Performance Analysis and Visualization2 / 27



Programming Model
→ Charm++

� Work is decomposed into objects that interact
� Objects are logical, location-oblivious entities
� Runtime maps them to a processor

I May migrate them during execution due to dynamic load imbalance

� Method invocation between objects causes communication if the
objects are not in the same memory domain

� Communication is asynchronous and drives the computation
� Runtime system schedules which method to execute next (based on

messages that have arrived)

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 2 / 27 Projections: Scalable Performance Analysis and Visualization2 / 27



Charm++
→ Collections of Objects

� Often communication patterns can be represented nicely by
interactions between a collection of elements

� Objects can be organized into typed, indexed collections
I Dense
I Sparse
I Multi-dimensional (1d-6d)
I Elements can be dynamically inserted into or deleted

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 3 / 27 Projections: Scalable Performance Analysis and Visualization3 / 27



Charm++
→ Collections of Objects

� Often communication patterns can be represented nicely by
interactions between a collection of elements

� Objects can be organized into typed, indexed collections
I Dense
I Sparse
I Multi-dimensional (1d-6d)
I Elements can be dynamically inserted into or deleted

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 3 / 27 Projections: Scalable Performance Analysis and Visualization3 / 27



Charm++
→ Collections of Objects

A[1]

A[0]

A[2]

B[3]

B[0]

C[1,0]

C[1,2]

C[0,0]

C[0,2]

C[1,4]

Processor 1 Processor 2

B[3]C[0,0]

C[1,4]

Processor 3 Processor 4

A[1]A[2]

C[0,2]

C[1,0]
C[1,2]

A[0]

B[0]

Location ManagerSchedulerLocation ManagerScheduler

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 4 / 27 Projections: Scalable Performance Analysis and Visualization4 / 27



Challenges

� Many more objects than processors
I Anywhere from tens to hundreds per processor

� Fine-grained resolution of events
I May be as small as tens of microseconds per event

� Logical entities (objects) are distinct from physical (processors)
I Mapping may change over time

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 5 / 27 Projections: Scalable Performance Analysis and Visualization5 / 27



Charm++

� Most of the code is written in C++
� Parallel objects have a corresponding parallel interface in a .ci file
� The .ci file is translated to C++ code

I We have some compiler level support we can leverage

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 6 / 27 Projections: Scalable Performance Analysis and Visualization6 / 27



Methodology
→ Event Tracing

� Trace-based instrumentation of events
I Certain methods in the system are marked as entry methods

F Meaning they can be invoked remotely
F These remote methods are automatically traced by the system

I Messages sent and received
I System events

F Certain scheduler-level events or system states are recorded: processor
idleness, communication overhead, message serialization, etc.

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 7 / 27 Projections: Scalable Performance Analysis and Visualization7 / 27



User Intervention
→ Event Tracing

� Language gives flexibility to the user
I Methods can be annotated by the notrace attribute, which causes the

code generation to eliminate tracing overhead altogether
I Non-entry methods (not traced by default), can be annotated as local

to automatically add tracing
� API provides further control to the programmer

I Turn tracing on or off
F On a subset of the processors or objects
F During some times

I Register user-defined functions for tracing
I Trace point events or bracketed events (register name and then call

API when it occurs)
I Save memory usage at a point in the program execution

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 8 / 27 Projections: Scalable Performance Analysis and Visualization8 / 27



Charm++: Runtime Data Collection

� Charm++ has several strategies built-in that have varying
data/memory overheads
I Full tracing

F An event is composed of the time, sending/receiving processor, entry
method, object, etc.

F Each event is logged per processor in memory and then is incrementally
written to disk

I Summary
F Each processor is allotted a fixed number of equally sized time bins that

hold averages over the time range

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 9 / 27 Projections: Scalable Performance Analysis and Visualization9 / 27



Projections

� Research on this began in 1992
� Java-based visualization tool that reads traces (summary or full)
� Supports many different ways of visualizing the data
� Scaling

I Tested with over 100k cores
I It is multi-threaded and has been optimized for memory usage

� How to use it
I Download the .jar, works out of the box with Charm++
I Link with the flag -tracemode projections
I git://charm.cs.uiuc.edu/projections.git

� Support beyond Charm++
I We are actively improving the prototyped MPI tracing layer
I Support for Global Arrays exists in alpha form

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 10 / 27 Projections: Scalable Performance Analysis and Visualization10 / 27



Timeline

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 11 / 27 Projections: Scalable Performance Analysis and Visualization11 / 27



Timeline
→ NAMD: Apoa1 system, 92k atoms, 32k cores, about 3 atoms per core!

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 12 / 27 Projections: Scalable Performance Analysis and Visualization12 / 27



Time Profile
→ NAMD: Apoa1 system, 92k atoms, no communication thread

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 13 / 27 Projections: Scalable Performance Analysis and Visualization13 / 27



Time Profile
→ NAMD: Apoa1 system, 92k atoms, with communication thread

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 14 / 27 Projections: Scalable Performance Analysis and Visualization14 / 27



Histogram
→ NAMD: Apoa1 system, 92k atoms, 1-away decomposition

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 15 / 27 Projections: Scalable Performance Analysis and Visualization15 / 27



Histogram
→ NAMD: Apoa1 system, 92k atoms, 2-away decomposition

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 16 / 27 Projections: Scalable Performance Analysis and Visualization16 / 27



Time Profile
→ NAMD: Apoa1 system, 92k atoms, with communication thread

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 17 / 27 Projections: Scalable Performance Analysis and Visualization17 / 27



Usage Profile

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 18 / 27 Projections: Scalable Performance Analysis and Visualization18 / 27



Communication Over Time

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 19 / 27 Projections: Scalable Performance Analysis and Visualization19 / 27



Outlier/Extrema View

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 20 / 27 Projections: Scalable Performance Analysis and Visualization20 / 27



Timeline
→ Colored by memory for LU

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 21 / 27 Projections: Scalable Performance Analysis and Visualization21 / 27



Profile Memory Scatter

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 22 / 27 Projections: Scalable Performance Analysis and Visualization22 / 27



Profile Memory Scatter

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 23 / 27 Projections: Scalable Performance Analysis and Visualization23 / 27



Demo

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 24 / 27 Projections: Scalable Performance Analysis and Visualization24 / 27



Live Analysis

� Can we monitor performance as the application is actually running?
I Uses the Converse client/Server interface

F We can interact with the runtime as the program runs using python
F Allows us to stream performance data to Projections

I Demo: utilization

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 25 / 27 Projections: Scalable Performance Analysis and Visualization25 / 27



End-of-run Analysis

� When we scale over 100k cores the data becomes very large and
unmanageable

� Deathbed analysis
I Use the full parallel machine at the end of the execution for some

analysis
I e.g. k-means clustering to pick out exemplar processors

� We are currently developing algorithms for this

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 26 / 27 Projections: Scalable Performance Analysis and Visualization26 / 27



Conclusion

� Projections
I We are constantly improving it
I A mature tool that grew over the years out of necessity

� We are not experts in graphics or visualization
I As the number of cores increases along with data volume, we need

better techniques and help from the broader community

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 27 / 27 Projections: Scalable Performance Analysis and Visualization27 / 27




