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Programming Model

— Charm++

= Work is decomposed into objects that interact
= Objects are logical, location-oblivious entities

= Runtime maps them to a processor
» May migrate them during execution due to dynamic load imbalance

= Method invocation between objects causes communication if the
objects are not in the same memory domain

= Communication is asynchronous and drives the computation

= Runtime system schedules which method to execute next (based on
messages that have arrived)
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Charm++
— Collections of Objects

= Often communication patterns can be represented nicely by
interactions between a collection of elements
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Charm++
— Collections of Objects

= Often communication patterns can be represented nicely by
interactions between a collection of elements
® Objects can be organized into typed, indexed collections

» Dense

Sparse

Multi-dimensional (1d-6d)

Elements can be dynamically inserted into or deleted

v vyy
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Challenges

= Many more objects than processors
» Anywhere from tens to hundreds per processor

® Fine-grained resolution of events
» May be as small as tens of microseconds per event

® | ogical entities (objects) are distinct from physical (processors)
» Mapping may change over time
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Charm++

® Most of the code is written in C++

= Parallel objects have a corresponding parallel interface in a . ci file
m The .ci file is translated to C++ code
» We have some compiler level support we can leverage
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Methodology

— Event Tracing

m Trace-based instrumentation of events
» Certain methods in the system are marked as entry methods
* Meaning they can be invoked remotely
* These remote methods are automatically traced by the system

» Messages sent and received
» System events

* Certain scheduler-level events or system states are recorded: processor
idleness, communication overhead, message serialization, etc.
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User Intervention

— Event Tracing

m |Language gives flexibility to the user
» Methods can be annotated by the notrace attribute, which causes the
code generation to eliminate tracing overhead altogether
» Non-entry methods (not traced by default), can be annotated as local
to automatically add tracing
= API provides further control to the programmer
» Turn tracing on or off
* On a subset of the processors or objects
* During some times
» Register user-defined functions for tracing
» Trace point events or bracketed events (register name and then call
API when it occurs)
» Save memory usage at a point in the program execution
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Charm++: Runtime Data Collection

= Charm++ has several strategies built-in that have varying
data/memory overheads
» Full tracing
* An event is composed of the time, sending/receiving processor, entry
method, object, etc.
* Each event is logged per processor in memory and then is incrementally
written to disk
» Summary
* Each processor is allotted a fixed number of equally sized time bins that
hold averages over the time range
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Projections

Research on this began in 1992

Java-based visualization tool that reads traces (summary or full)

Supports many different ways of visualizing the data

Scaling

» Tested with over 100k cores

» It is multi-threaded and has been optimized for memory usage
How to use it

» Download the .jar, works out of the box with Charm++

» Link with the flag -~tracemode projections

» git://charm.cs.uiuc.edu/projections.git
Support beyond Charm++

» We are actively improving the prototyped MPI tracing layer
» Support for Global Arrays exists in alpha form
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Timeline
— NAMD: Apoal system, 92k atoms, 32k cores, about 3 atoms per core!
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(b) Optimized PME with many-to-many
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Time Profile

— NAMD: Apoal system, 92k atoms, no communication thread
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Time Profile

— NAMD: Apoal system, 92k atoms, with communication thread

Time Profile
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Histogram
— NAMD: Apoal system, 92k atoms, 1-away decomposition

Histogram
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Histogram
— NAMD: Apoal system, 92k atoms, 2-away decomposition
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Time Profile

— NAMD: Apoal system, 92k atoms, with communication thread

Time Profile
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Usage Profile

Profile of Usage for Processors 0-255
(Time 28.220s - 28.332s)
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Communication Over Time
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Outlier/Extrema View
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Timeline
— Colored by memory for LU
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Profile Memory Scatter

Memory Usage (at 2.000s resolution)
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Live Analysis

= Can we monitor performance as the application is actually running?
» Uses the Converse client/Server interface

* We can interact with the runtime as the program runs using python
* Allows us to stream performance data to Projections

» Demo: utilization
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End-of-run Analysis

= When we scale over 100k cores the data becomes very large and
unmanageable

m Deathbed analysis

» Use the full parallel machine at the end of the execution for some
analysis
» e.g. k-means clustering to pick out exemplar processors

m We are currently developing algorithms for this
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Conclusion

= Projections

» We are constantly improving it
» A mature tool that grew over the years out of necessity

= We are not experts in graphics or visualization

» As the number of cores increases along with data volume, we need
better techniques and help from the broader community
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