Projections: Scalable Performance
Analysis and Visualization

Jonathan Lifflander, Laxmikant V. Kale
{j1iff12, kale}@illinois.edu

University of lllinois Urbana-Champaign

October 14, 2013

Programming Model

— Charm++

= Work is decomposed into objects that interact

Projections: Scalable Performance Analysis and Visualization ¢ Jonathan Lifflander (3 2/27

Programming Model

— Charm++

= Work is decomposed into objects that interact
= Objects are logical, location-oblivious entities

Projections: Scalable Performance Analysis and Visualization ¢ Jonathan Lifflander (3 2/27

Programming Model

— Charm++

= Work is decomposed into objects that interact
= Objects are logical, location-oblivious entities

= Runtime maps them to a processor
» May migrate them during execution due to dynamic load imbalance

Projections: Scalable Performance Analysis and Visualization ¢ Jonathan Lifflander +* 2/27

Programming Model

— Charm++

Work is decomposed into objects that interact

Objects are logical, location-oblivious entities
Runtime maps them to a processor
» May migrate them during execution due to dynamic load imbalance

Method invocation between objects causes communication if the
objects are not in the same memory domain

Projections: Scalable Performance Analysis and Visualization ¢ Jonathan Lifflander +* 2/27

Programming Model

— Charm++

Work is decomposed into objects that interact

Objects are logical, location-oblivious entities
Runtime maps them to a processor
» May migrate them during execution due to dynamic load imbalance

Method invocation between objects causes communication if the
objects are not in the same memory domain

= Communication is asynchronous and drives the computation

Projections: Scalable Performance Analysis and Visualization ¢ Jonathan Lifflander +* 2/27

Programming Model

— Charm++

= Work is decomposed into objects that interact
= Objects are logical, location-oblivious entities

= Runtime maps them to a processor
» May migrate them during execution due to dynamic load imbalance

= Method invocation between objects causes communication if the
objects are not in the same memory domain

= Communication is asynchronous and drives the computation

= Runtime system schedules which method to execute next (based on
messages that have arrived)

Projections: Scalable Performance Analysis and Visualization ¢ Jonathan Lifflander +* 2/27

Charm++
— Collections of Objects

= Often communication patterns can be represented nicely by
interactions between a collection of elements

Projections: Scalable Performance Analysis and Visualization ¢ Jonathan Lifflander (3 3/27

Charm++
— Collections of Objects

= Often communication patterns can be represented nicely by
interactions between a collection of elements
® Objects can be organized into typed, indexed collections

» Dense

Sparse

Multi-dimensional (1d-6d)

Elements can be dynamically inserted into or deleted

v vyy

Projections: Scalable Performance Analysis and Visualization ¢ Jonathan Lifflander * 3/27

Challenges

= Many more objects than processors
» Anywhere from tens to hundreds per processor

® Fine-grained resolution of events
» May be as small as tens of microseconds per event

® | ogical entities (objects) are distinct from physical (processors)
» Mapping may change over time

Projections: Scalable Performance Analysis and Visualization ¢ Jonathan Lifflander +* 5/27

Charm++

® Most of the code is written in C++

= Parallel objects have a corresponding parallel interface in a . ci file
m The .ci file is translated to C++ code
» We have some compiler level support we can leverage

Projections: Scalable Performance Analysis and Visualization ¢ Jonathan Lifflander ¢ 6/27

Methodology

— Event Tracing

m Trace-based instrumentation of events
» Certain methods in the system are marked as entry methods
* Meaning they can be invoked remotely
* These remote methods are automatically traced by the system

» Messages sent and received
» System events

* Certain scheduler-level events or system states are recorded: processor
idleness, communication overhead, message serialization, etc.

Projections: Scalable Performance Analysis and Visualization ¢ Jonathan Lifflander +* 7127

User Intervention

— Event Tracing

m |Language gives flexibility to the user
» Methods can be annotated by the notrace attribute, which causes the
code generation to eliminate tracing overhead altogether
» Non-entry methods (not traced by default), can be annotated as local
to automatically add tracing
= API provides further control to the programmer
» Turn tracing on or off
* On a subset of the processors or objects
* During some times
» Register user-defined functions for tracing
» Trace point events or bracketed events (register name and then call
API when it occurs)
» Save memory usage at a point in the program execution

Projections: Scalable Performance Analysis and Visualization ¢ Jonathan Lifflander ¢ 8/27

Charm++: Runtime Data Collection

= Charm++ has several strategies built-in that have varying
data/memory overheads
» Full tracing
* An event is composed of the time, sending/receiving processor, entry
method, object, etc.
* Each event is logged per processor in memory and then is incrementally
written to disk
» Summary
* Each processor is allotted a fixed number of equally sized time bins that
hold averages over the time range

Projections: Scalable Performance Analysis and Visualization ¢ Jonathan Lifflander +* 9/27

Projections

Research on this began in 1992

Java-based visualization tool that reads traces (summary or full)

Supports many different ways of visualizing the data

Scaling

» Tested with over 100k cores

» It is multi-threaded and has been optimized for memory usage
How to use it

» Download the .jar, works out of the box with Charm++

» Link with the flag -~tracemode projections

» git://charm.cs.uiuc.edu/projections.git
Support beyond Charm++

» We are actively improving the prototyped MPI tracing layer
» Support for Global Arrays exists in alpha form

Projections: Scalable Performance Analysis and Visualization ¢ Jonathan Lifflander ¢ 10/27

Timeline

Projections: Scalable Performance Analysis and Visualization

LT
1

Jonathan Lifflander

| 27

Timeline
— NAMD: Apoal system, 92k atoms, 32k cores, about 3 atoms per core!

9 }ms Zrlns 3rlns 4rps Sms Gms
PE 32 ‘ ' ' ‘ ‘ ‘
(25.19) g m——
PE 695
(30.16) T T] (NIRRT
PE 232417 0 111111111 (TR
PE 299g: 1IN0] | HIHGEEIII | W W
(66,33)

(a) Standard PME implementation

o 1ms 2ms 3ms 4ms 5ms 6ms
PE 32
(57,42) I peypmin 10 (o po 0 a0
a1 I P R T O 1A R T (AR (NI GET " IR
PE 23247 [4f LI AT 0 A9 LHHAEC P PR)
PE 29085 1 [HI NP L [l 0 —f ICHAHH T R LB A {
(44,17)

(b) Optimized PME with many-to-many

L.Integration U PME work ' Non-bonded 'Communication U Idle time 'Overhead‘

Projections: Scalable Performance Analysis and Visualization (3 Jonathan Lifflander ¢ 12/27

Time Profile

— NAMD: Apoal system, 92k atoms, no communication thread

Time Profile

=]
=1
L

Percentage Utilization
«n
=
!

oA
260.24s 260.24755 260.255s
Time (0.015ms resolution)

Projections: Scalable Performance Analysis and Visualization ¢ Jonathan Lifflander ¢ 18/27

Time Profile

— NAMD: Apoal system, 92k atoms, with communication thread

Time Profile

Percentage Utilization
w
3

0
99.43s 99.4315s 99.433s 99.4345s 99.436s 99.4375s 99.439s 99.4405s 99.442s 99.4435s 99.445s

Time (0.015ms resolution)

Projections: Scalable Performance Analysis and Visualization ¢ Jonathan Lifflander ¢ 14/27

Histogram
— NAMD: Apoal system, 92k atoms, 1-away decomposition

Histogram

Time in Bin range (us)

0 0.1ms 0.2ms 0.3ms 0.4ms 0.5ms 0.6ms 0.7ms 0.8ms 0.9ms 1ms
Entry Method Duration (at 0.01ms resolution)

Projections: Scalable Performance Analysis and Visualization ¢ Jonathan Lifflander ¢ 15/27

Histogram
— NAMD: Apoal system, 92k atoms, 2-away decomposition

Histogram

Time in Bin range (us)

0 0.1ms 0.2ms 0.3ms 0.4ms 0.5ms 0.6ms 0.7ms 0.8ms 0.9ms

Entry Method Duration (at 0.01ms resolution)

1ms

Projections: Scalable Performance Analysis and Visualization (3 Jonathan Lifflander ¢ 16 /27

Time Profile

— NAMD: Apoal system, 92k atoms, with communication thread

Time Profile

Percentage Utilization
w
3

0
99.43s 99.4315s 99.433s 99.4345s 99.436s 99.4375s 99.439s 99.4405s 99.442s 99.4435s 99.445s

Time (0.015ms resolution)

Projections: Scalable Performance Analysis and Visualization ¢ Jonathan Lifflander ¢ 17/27

Usage Profile

Profile of Usage for Processors 0-255
(Time 28.220s - 28.332s)

I il il
AR A 1 1 LR CO I REERREREEE SO RN KR AR RS
i

An 29 39 49 59 69 9s 109 118 139 149 159 169 179 188 199

Projections: Scalable Performance Analysis and Visualization ¢ Jonathan Lifflander ¢ 18

27

Communication Over Time

-graph typi ‘

© Line Graph ® Bar Graph Area Graph [Stacked

<< [x-Avisscate 1o > | fese dh << [v-Avis scte 10 [| reset |

[essages sent] [Bytes sent] [Messages Received | [Bytes Received| [« Messages Received Externally] [#Bytes Received Externally|

Select Enuy Points | Select New Range | Save Enuy Colors | Load Enury Colors |

Projections: Scalable Performance Analysis and Visualization ¢ Jonathan Lifflander ¢ 19/27

Outlier/Extrema View

[
\
L
IR |

Ll
LI

= \‘I{lr\ﬂll
L LTl
Il

| ==

Projections: Scalable Performance Analysis and Visualization ¢ Jonathan Lifflander ¢ 20/27

Timeline
— Colored by memory for LU

Projections: Scalable Performance Analysis and Visualization ¢+ Jonathan Lifflander * 21/27

Profile Memory Scatter

Memory Usage (at 2.000s resolution)

1,200
1,100

1,000

1

: i
H

H

i

]

i

]

1,000 1,250 1,500 1,750 2,000
Time (s)
WPEO®PE1 wPE2 PE3 WPE4 PES

PEG WPE7 mPE8 WPE9 WwPE 10 »PE 11 WwPE 12 wPE 13 mPE 14
WPEL15 mPE16 wPE17 PEL18 wPE19 “PE20 “PE21 mPE 22 mPE 23 mPE 24 mPE 25 mPE 26 mPE 27 wPE 28

WPE29 “PE30 PE31wPE32 PE33 wPE34 wPE35 wPE36 PE37 wPE38 - PE39 “PE40 wPE41 mPE 42
mPE 43

Projections: Scalable Performance Analysis and Visualization (3 Jonathan Lifflander ¢

22/27

Profile Memory Scatter

Memory Usage (at 2.000s resolution)

1,200
1,100

1,000

1

: i
H

H

i

]

i

]

1,000 1,250 1,500 1,750 2,000
Time (s)
WPEO®PE1 wPE2 PE3 WPE4 PES

PEG WPE7 mPE8 WPE9 WwPE 10 »PE 11 WwPE 12 wPE 13 mPE 14
WPEL15 mPE16 wPE17 PEL18 wPE19 “PE20 “PE21 mPE 22 mPE 23 mPE 24 mPE 25 mPE 26 mPE 27 wPE 28

WPE29 “PE30 PE31wPE32 PE33 wPE34 wPE35 wPE36 PE37 wPE38 - PE39 “PE40 wPE41 mPE 42
mPE 43

Projections: Scalable Performance Analysis and Visualization (3 Jonathan Lifflander ¢

23/27

Live Analysis

= Can we monitor performance as the application is actually running?
» Uses the Converse client/Server interface

* We can interact with the runtime as the program runs using python
* Allows us to stream performance data to Projections

» Demo: utilization

Projections: Scalable Performance Analysis and Visualization ¢ Jonathan Lifflander ¢ 25/27

End-of-run Analysis

= When we scale over 100k cores the data becomes very large and
unmanageable

m Deathbed analysis

» Use the full parallel machine at the end of the execution for some
analysis
» e.g. k-means clustering to pick out exemplar processors

m We are currently developing algorithms for this

Projections: Scalable Performance Analysis and Visualization ¢ Jonathan Lifflander ¢ 26/27

Conclusion

= Projections

» We are constantly improving it
» A mature tool that grew over the years out of necessity

= We are not experts in graphics or visualization

» As the number of cores increases along with data volume, we need
better techniques and help from the broader community

Projections: Scalable Performance Analysis and Visualization ¢ Jonathan Lifflander ¢ 27127

