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Programming Model
→ Charm++

� Work is decomposed into objects that interact

� Objects are logical, location-oblivious entities
� Runtime maps them to a processor

I May migrate them during execution due to dynamic load imbalance

� Method invocation between objects causes communication if the
objects are not in the same memory domain

� Communication is asynchronous and drives the computation
� Runtime system schedules which method to execute next (based on

messages that have arrived)
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Charm++
→ Collections of Objects

� Often communication patterns can be represented nicely by
interactions between a collection of elements

� Objects can be organized into typed, indexed collections
I Dense
I Sparse
I Multi-dimensional (1d-6d)
I Elements can be dynamically inserted into or deleted

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 3 / 27 Projections: Scalable Performance Analysis and Visualization3 / 27



Charm++
→ Collections of Objects

� Often communication patterns can be represented nicely by
interactions between a collection of elements

� Objects can be organized into typed, indexed collections
I Dense
I Sparse
I Multi-dimensional (1d-6d)
I Elements can be dynamically inserted into or deleted

Projections: Scalable Performance Analysis and Visualization � Jonathan Lifflander � 3 / 27 Projections: Scalable Performance Analysis and Visualization3 / 27



Charm++
→ Collections of Objects
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Challenges

� Many more objects than processors
I Anywhere from tens to hundreds per processor

� Fine-grained resolution of events
I May be as small as tens of microseconds per event

� Logical entities (objects) are distinct from physical (processors)
I Mapping may change over time
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Charm++

� Most of the code is written in C++
� Parallel objects have a corresponding parallel interface in a .ci file
� The .ci file is translated to C++ code

I We have some compiler level support we can leverage
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Methodology
→ Event Tracing

� Trace-based instrumentation of events
I Certain methods in the system are marked as entry methods

F Meaning they can be invoked remotely
F These remote methods are automatically traced by the system

I Messages sent and received
I System events

F Certain scheduler-level events or system states are recorded: processor
idleness, communication overhead, message serialization, etc.
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User Intervention
→ Event Tracing

� Language gives flexibility to the user
I Methods can be annotated by the notrace attribute, which causes the

code generation to eliminate tracing overhead altogether
I Non-entry methods (not traced by default), can be annotated as local

to automatically add tracing
� API provides further control to the programmer

I Turn tracing on or off
F On a subset of the processors or objects
F During some times

I Register user-defined functions for tracing
I Trace point events or bracketed events (register name and then call

API when it occurs)
I Save memory usage at a point in the program execution
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Charm++: Runtime Data Collection

� Charm++ has several strategies built-in that have varying
data/memory overheads
I Full tracing

F An event is composed of the time, sending/receiving processor, entry
method, object, etc.

F Each event is logged per processor in memory and then is incrementally
written to disk

I Summary
F Each processor is allotted a fixed number of equally sized time bins that

hold averages over the time range
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Projections

� Research on this began in 1992
� Java-based visualization tool that reads traces (summary or full)
� Supports many different ways of visualizing the data
� Scaling

I Tested with over 100k cores
I It is multi-threaded and has been optimized for memory usage

� How to use it
I Download the .jar, works out of the box with Charm++
I Link with the flag -tracemode projections
I git://charm.cs.uiuc.edu/projections.git

� Support beyond Charm++
I We are actively improving the prototyped MPI tracing layer
I Support for Global Arrays exists in alpha form
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Timeline
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Timeline
→ NAMD: Apoa1 system, 92k atoms, 32k cores, about 3 atoms per core!
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Time Profile
→ NAMD: Apoa1 system, 92k atoms, no communication thread
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Time Profile
→ NAMD: Apoa1 system, 92k atoms, with communication thread
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Histogram
→ NAMD: Apoa1 system, 92k atoms, 1-away decomposition
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Histogram
→ NAMD: Apoa1 system, 92k atoms, 2-away decomposition
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Time Profile
→ NAMD: Apoa1 system, 92k atoms, with communication thread
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Usage Profile
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Communication Over Time
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Outlier/Extrema View
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Timeline
→ Colored by memory for LU
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Profile Memory Scatter
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Profile Memory Scatter
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Demo
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Live Analysis

� Can we monitor performance as the application is actually running?
I Uses the Converse client/Server interface

F We can interact with the runtime as the program runs using python
F Allows us to stream performance data to Projections

I Demo: utilization
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End-of-run Analysis

� When we scale over 100k cores the data becomes very large and
unmanageable

� Deathbed analysis
I Use the full parallel machine at the end of the execution for some

analysis
I e.g. k-means clustering to pick out exemplar processors

� We are currently developing algorithms for this
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Conclusion

� Projections
I We are constantly improving it
I A mature tool that grew over the years out of necessity

� We are not experts in graphics or visualization
I As the number of cores increases along with data volume, we need

better techniques and help from the broader community
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