
Thermal Aware Automated Load Balancing for HPC
Applications

Harshitha Menon, Bilge Acun, Simon Garcia De Gonzalo, Osman Sarood and Laxmikant Kalé

Department of Computer Science
University of Illinois at Urbana-Champaign, Urbana, Illinois

E-mail: {gplkrsh2, acun2, grcdgnz2, sarood1, kale}@illinois.edu

Abstract—As we move towards the exascale era, power and
energy have become major challenges. Some of the supercomput-
ers draw more than 10 megawatts, leading to high energy bills.
A significant portion of this energy is spent in cooling. In this
paper, we propose an adaptive control system that minimizes the
cooling energy by using Dynamic Voltage and Frequency Scaling
to control the temperature and performing load balancing. This
framework, which is a part of the adaptive runtime system,
monitors the system and application characteristics and triggers
mechanism to limit the temperature. It also performs load
balancing whenever imbalance is detected and load balancing
is beneficial. We demonstrate, using a set of applications and
benchmarks, that the proposed framework can control the
temperature of the cores effectively and reduce the timing penalty
automatically without any support from the user.

Keywords—energy consumption, load balancing, run-time sys-
tem, dvfs, automated, parallel applications

I. INTRODUCTION

With the move towards exascale, power and energy con-
sumption have become important issues in high performance
computing. Recent studies show that HPC systems are drawing
enormous amounts of electrical power. In the U.S., data centers
use 59-megawatt hours of electricity per year, which costs
4.1 billion dollars and generates 864 million metric tons of
carbon dioxide emissions [1]. Exascale computing systems are
expected to draw in power ranging from 60-130 megawatts
in 2016-2018 [2]. The increase in the number of cores and
clock speed results in heat generation and increase in core
temperatures. This makes the hardware more vulnerable to
both transient and permanent faults. Therefore, cooling is
necessary to prevent overheating of the core. However, cooling
also takes large amounts of energy. 40% to 50% of the energy
consumed by a data center is spent in running the computer
room at a low temperature [3].

In order to reduce the cooling energy, the computer
room air conditioning (CRAC) temperature can be set at a
higher value. But this will result in high ambient temperature
and possible overheating of the cores. To avoid overheating,
modern day microprocessors are equipped with an on-chip
temperature sensor and mechanisms to control the dynamic
voltage and frequency using DVFS. Dynamic voltage and
frequency scaling, DVFS, is commonly used to reduce power
and the amount of heat generated by the chip by adjusting
the frequency of the microprocessor. Running a processor at
a lower frequency reduces the amount of heat generated and
conserves power. Therefore, setting a high CRAC temperature

and controlling the chip temperature using DVFS can be a
possible solution to reduce the cooling energy, which accounts
for a significant part of the power consumption.

However, using DVFS to control temperature has its draw-
backs. Reducing the frequency may incur a timing penalty.
Since the processors may overheat at different times, they
may be running at different frequencies. The timing penalty
is not just due to the lower frequency but also due to the
load imbalance created by the different processor speeds.
In HPC applications, where there is an interdependence of
tasks across processors, if one processor is slowed down, the
entire application may consequently be slowed down. Even if
there are no such dependencies, there will be load imbalance
between the processors. As a result, decreasing the frequency
will result in degradation of performance and increase in
the total execution time. In order to minimize the timing
penalty, load balancing can be employed to improve the system
utilization. This technique has been shown to be effective in
reducing the cooling energy [4], [5].

In a recent work [4], a temperature-aware dynamic load
balancing strategy was proposed which controls the chip
temperature using DVFS and uses load balancing to reduce
the timing penalty. This scheme performs periodic temperature
checks, applies DVFS on cores that are hotter or colder than
the threshold temperature and invokes the load balancer. This
approach puts the burden on the application programmer to
specify the period to control the temperature and invoke the
load balancer. If the user performs frequent temperature checks
and load balancing, it may lead to loss of performance due to
overhead. But if the user specifies long interval to check and
load balance, then the temperature of the core may exceed
the specified temperature threshold leading to overheating.
Moreover, invoking a load balancer also incurs overhead. Thus,
if the user invokes the load balancer frequently, then the
overhead of load balancing may exceed the benefit. But if
the load balancer is invoked infrequently, then it may result in
loss of performance due to load imbalance. Putting the burden
on the user to specify an ideal temperature check and load
balancing period may be inefficient.

In this paper, we propose a framework, MetaTemp-
Controller, which will automatically control the temperature
of cores and perform load balancing without any support
from the user. In this framework, which will be a part of
the adaptive runtime system, the run time system will mon-
itor the application characteristics and the core temperatures
asynchronously. To minimize the cooling energy we increase

978-1-4799-0898-1/13/$31.00 c©2013 IEEE

the CRAC temperature, use DVFS to limit the processor
temperature and perform load balancing automatically based
on the information collected by the runtime system. This work
extends the cool load balancer approach [4] and builds upon
on the concept of an automated load balancing framework [6].

The key contributions of this paper are:

• We introduce a generic technique that can be used to
automatically control the temperature of the proces-
sors and avoid hot-spots.

• We demonstrate that our dynamic technique has less
timing penalty and can be used with a wide range of
applications having different characteristics.

• We present an implementation of our concept as
MetaTempController in CHARM++ runtime system
which executes in the background and is transparent
to the application programmer.

II. BACKGROUND

Our approach to saving cooling energy involves setting a
high CRAC temperature value. But to prevent overheating and
formation of hot spots, we use DVFS to control the temperature
of each chip. In order to efficiently control the temperature and
minimize the timing penalty, we rely on an adaptive runtime
system with the capability for load balancing. We chose the
CHARM++ parallel programming system for this purpose.

A. Charm++ and its Load Balancing Framework

CHARM++ [7] is a message driven parallel programming
model which has parallel entities called objects or chares.
Chares form the basic unit of computation. Programmer di-
vides the computation into chares which are distributed among
processors by the runtime system. It hinges on the idea of over-
decomposition, i.e. dividing the problem into more work units
than the total number of processors in the system. In turn, this
over-decomposition improves the performance by overlapping
communication and computation. Each of these tasks or chares
is a migratable C++ object that can reside on any processor and
can be migrated to any processor. This migratable nature of
chares provides the capability for load balancing. When there
is an imbalance of load, migrating the objects from overloaded
processors to underloaded processors helps achieve balance
and improve the performance of the application. CHARM++
runtime system records the computation load and the commu-
nication pattern of these chares and use this information for
load balancing. The load balancing framework in CHARM++ is
based on a heuristic known as the principle of persistence [8]
which states that the recent past is a good indication of the
future. CHARM++ provides the application programmer with
a suite of load balancers and the capability to add new custom
load balancing strategies. These load balancers can be easily
plugged in to the application at runtime. The key advantage of
this approach is that it is application independent.

B. Temperature Control using DVFS

Dynamic voltage frequency scaling (DVFS) is a widely
used technique to automatically adjust the frequency of a
processor either to conserve power or to reduce the amount of

heat generated. Several manufacturers have developed proces-
sors capable of global dynamic frequency and voltage scaling.
This ability can be used to conserve energy using the simple
principle that the frequency and power are directly proportional
to the minimum operational voltage, which is also proportional
to the square of voltage.

Algorithms using DVFS have shown dramatic energy sav-
ings while providing the necessary peak computation power in
general-purpose systems [9]. Fine-grained DVFS has emerged
as a popular way for designers to exploit growing transistor
budgets [10] in chip-multiprocessors (CMPs). The decrease in
temperature allows the system to decrease the power dedicated
for cooling or, if possible, to be turned off entirely increasing
the overall system power savings.

However, reducing the frequency level slows down the
computation. Ideally, DVFS techniques are used to manage the
frequency and/or voltage so as to provide the minimum speed
the processor needs to manage its workload while maintaining
computational time constraints or throughput constraints and
thereby reducing its energy consumption [11].

III. RELATED WORK

Minimizing energy consumption has become an important
subject for research in HPC. Cooling energy optimizations
have been primarily addressed for data centers [12], [13].
In general, these techniques involve placing the most heat
generating jobs in the coolest areas of the data center. This par-
ticular solution can not be applied to our current work because
different tasks in a HPC application behave very similarly and
thus consume the same amount of energy and produce the same
amount of heat. Another approach to reducing total energy
consumption presented in [14] limits the temperature of the
cores by turning the different nodes on and off as needed.
This solution is problematic when applied to HPC because of
the high interdependence between tasks, and the time penalty
in execution time it would incur.

In HPC, controlling CPU frequency and voltage to reduce
the energy have been studied before. For example, a previous
work showed significant energy savings by using DVFS to
change the frequency of the cores during the communication
phase of an MPI application [15]. The major drawback of
this approach is the time penalty incurred in the execution
time of the application. Another interesting work proposed
in [16] creates a schedule for when DVFS should be run for
a particular HPC application. The schedule tries minimize the
timing penalty for a given power limit. In [17] a kernel-level
DVFS governor is proposed that would try to determine an
optimal frequency for a particular workload.

The closest work to the present paper is the ‘Cool’ load
balancer by co-author Sarood [4]. In that work, an approach
was proposed for saving cooling energy by constraining core
temperature while minimizing the associated timing penalty
using task migration. It uses DVFS and a temperature-aware
load balancer to achieve this task. Although this scheme has
shown substantial energy reduction for HPC applications at the
cost of some modest timing penalty in the computation time,
it relies on the user to specify a fixed period for temperature
check and load balancing. Our approach, which is a part of the
run time system, will automatically and dynamically perform

Algorithm 1 Periodic temperature-aware dynamic load bal-
ancing
Input:
P - Set of processors
T - Temperature threshold
Temppi - Temperature of processor pi

At user specified period p

1: Enforce a global barrier
2: for all pi ∈ P do
3: if Temppi > T then
4: Decrease the frequency of pi
5: else
6: if Temppi < T then
7: Increase the frequency of pi
8: end if
9: end if

10: end for
11: Invoke the load balancer

the task of temperature check and load balancing without any
input from the user.

IV. LIMITATIONS OF PERIODIC APPROACH

Although the recent work proposed in [4] is successful in
reducing the cooling energy significantly, it has certain short
comings. In this scheme, a temperature-aware load balancing
strategy is proposed which is invoked periodically at the user
specified interval. At the specified period, a global barrier is
enforced and temperature-aware load balancing is performed
at the central location. As a part of the load balancing
framework, the temperature of each processor is checked and if
it exceeds the pre-set threshold, the frequency of that processor
is decreased. If the temperature is below the threshold, then the
frequency is increased. Adjustment of frequencies can result in
load imbalance and to handle that, the load balancer is invoked.
This scheme is depicted in Algorithm 1.

In this section, we will highlight the drawbacks of this
scheme. Notice that the temperature check is triggered peri-
odically every p seconds, where p is specified by the user.
After the global barrier, DVFS is used to limit the tempera-
ture of cores and load balancing is performed to reduce the
timing penalty due to load imbalance. Here, the application
programmer has the responsibility of identifying the period
for temperature checks and load balancing. This becomes
increasingly a burden as the period is application and system
dependent. This not only puts the burden on the application
programmer but also may result in not being able to control
the temperature in a dynamic environment. Processors tend
to have higher temperatures in computation intensive applica-
tions, while some applications with lower system utilization
generate less heat. This indicates that the ideal temperature
check and load balancing period is application dependent.
Further, invoking the load balancer also incurs overhead. If the
load balancing cost exceeds the benefit, it results in increasing
the total execution time.

Figure 1 shows the maximum temperature and timing
penalty using this algorithm with different user specified
periods for a run of wave2D on 128 cores. The CRAC is set
to 74◦F and the threshold temperature is 50◦C. Details of the

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Base LB_1m LB_20s LB_10s LB_5s
 50

 55

 60

 65

 70

 75

 80

 85

 90

T
o
ta

l e
xe

cu
ti
o
n

ti
m

e
(s

)

M
ax

im
um

 t
em

pe
ra

tu
re

 (
C

)

Execution time and Max temperature

Execution time
Max temp

Fig. 1. Comparison for maximum temperature and timing penalty for various
user specified period

application and the experimental setup are described in Sec-
tion VI. If the temperature check is performed frequently, the
overhead due to barriers and load balancing may increase the
timing penalty. Whereas if the temperature check is performed
infrequently, it could result in overheating of cores. Leaving it
to the application programmer to manually identify the period
in a dynamic application is inefficient.

V. METATEMPCONTROLLER

MetaTempController framework is implemented as a part
of the CHARM++ adaptive runtime system. The generic idea of
this framework is to let the runtime system monitor the system
temperature and application characteristics, and based on the
collected information, make decisions to adjust the frequencies
or invoke the load balancer. We choose to implement this
framework in CHARM++, however it is possible to implement
this approach in any other programming models. MetaTemp-
Controller consists of two major components, namely, auto-
matic temperature control and automatic load balancing.

A. Temperature Control

If the CRAC temperature is increased to reduce the cooling
energy, it may result in overheating of the processors. To
ensure that the processors are not over heated and hot spots are
not created, the temperature of the chip needs to be controlled.
Temperature control plays an important part in reducing the
cooling energy. In order to control the temperature effectively,
MetaTempController collects the temperature information for
each core in a distributed fashion. Temperature measurements
for all the cores on a chip is collected frequently and deci-
sions to control the temperature are made. Note that in this
scheme, the temperature control is done independently on each
processor, whereas in [4] there is a global barrier. Since the
computer hardware in the cluster does not allow frequency
change of a single core, DVFS is applied to the entire chip.
Also, the hardware has discrete voltage and frequency levels
built into it, called the ’P-states’. The chip frequencies can
be set only to those discrete operating points. Whenever the
temperature of a core exceeds the specified threshold, the
MetaTempController identifies this and triggers mechanism to
limit the temperature. It uses DVFS to lower the frequency by
one step (increase P-state by one level). Running the processor

at a lower frequency reduces the amount of heat generated
and helps reducing the machine and cooling energy. But if
all the cores on a chip have temperatures below the specified
threshold, then the frequency of the chip is increased by
one step. Since the temperature statistics are collected in a
distributed manner without enforcing a barrier, this scheme
incurs very little overhead.

B. Load Balancing

Even though DVFS limits the processor temperature and
eliminates hot spots, it incurs timing penalty. This timing
penalty can occur due to: 1) processors operating at lower
frequency 2) load imbalance due to different processor speeds.
In order to reduce the timing penalty, load balancing needs to
be performed. But performing load balancing entails overheads
which includes the time spent on collecting load balancing
statistics, finding a new mapping and migrating the objects
based on the mapping. Since the load balancer incurs overhead,
it becomes necessary to determine whether invoking the load
balancer is profitable. If the load balancer is invoked too
frequently, the overhead of load balancing may exceed the
benefit and result in increased execution time. A common
practice is to invoke the load balancer periodically at a period
specified by the user. But this prevents load balancing from
adapting to the dynamic application and system characteristics.
MetaTempController relies on the concept of an automated
load balancing framework [6]. This framework collects a
minimum set of load balancing statistics in an asynchronous
manner via a reduction tree. Once the aggregate information is
available, it determines whether there is any load imbalance. If
there is load imbalance, it may lead to performance loss. But
if the overhead of load balancing is more than the benefit,
performing load balancing won’t be beneficial. MetaTemp-
Controller identifies an ideal load balancing period based on
the application characteristics and the cost of load balancing.

VI. RESULTS

In this section, we present an evaluation of the effectiveness
of MetaTempController and compare it with other schemes
using three applications wave2D, leanMD and kNeighbor. We
show that MetaTempController is able to constrain the core
temperature to a specified threshold, invoke the load balancer
whenever beneficial and extract the best performance for the
application automatically at run time.

A. Experimental Setup

The experiments were run on a cluster with 160 cores
(40 nodes). Each node of the cluster is a single socket Dell
T5500 machine with a quad-core Intel Xeon E5520 chip. The
Intel Xeon E5520 chip supports seven different frequencies
ranging from 1.6GHz to 2.53GHz through Intel’s Turbo Boost
Technology. The cpufreq module which is available in Ubuntu
10.04 allows us to step up or down the frequency by 0.13GHz
in each step. A frequency shift from one level to another takes
a processor a few microseconds. For all our runs, we use 128
cores out of the 160 cores.

For all the experiments, the computer room air conditioning
temperature was set to 74◦ F and the threshold temperature
was fixed at 50◦ C. These are independent variables which

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100 120 140

T
em

pe
ra

tu
re

 (
C

)

Cores

Per Processor Max Temperature

Base
Naive DVFS 1min

Naive DVFS 20s
Naive DVFS 10s

Naive DVFS 5s
MetaTemp
Threshold

Fig. 2. Maximum Temperature of the Processors for wave2D

can effect the power reduction greatly. The effect of those
to power reduction is discussed in detail in our previous
work [4]. The focus of this paper is not to study their effect,
hence we evaluate the proposed strategy with a fixed set of
CRAC temperature and threshold. However, we expect similar
behavior with different configuration of threshold and cooling
temperature.

B. Applications

wave2D is a computation-intensive finite differencing ap-
plication. It is implemented using a 2-D mesh structure. Our
runs execute 25, 000 iterations with a mesh of size 128× 16.

leanMD is a molecular dynamics application written in
Charm++, that simulates the behavior of atoms based on the
Lennard-Jones potential. The computations performed in this
program are similar to the force calculation in NAMD [18].
The simulation is in a three-dimensional space consisting of
atoms which are divided into cells. In each iteration, force
calculations are done for all pairs of nearby atoms. Once
the force calculation is performed by the computes, the cells
update the acceleration, velocity and position of the atoms
within their space. We benchmark leanMD on a system of
128, 000 atoms for 500 iterations.

kNeighbor is a micro-benchmark with a near-neighbor
communication pattern. In this benchmark, each object ex-
changes 16KB sized messages with a fixed set of fourteen
neighbors in every iteration. We evaluate this benchmark by
executing 25, 000 iterations.

All the above applications do not have any inherent load
imbalance. Thus, any imbalance that occurs is a result of
changes to processor frequencies.

C. Experimental Results

We use the following metrics to evaluate the effectiveness
and behavior of MetaTempController: 1) Temperature Control,
2) Timing Penalty 3), Frequency, 4) Overhead, 5) Power and
Energy

1) Temperature Control: wave2D: wave2D being compu-
tation intensive benchmark, results in an increase in core
temperature and hot-spots. Figure 3 shows that for a run
of wave2D without any temperature control, the maximum
temperature on any core reaches 82◦ C . Figure 2 indicates

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200 1400 1600

T
em

pe
ra

tu
re

 (
C

)

time (s)

Cluster Maximum Temperature

Base
Naive DVFS 1min

Naive DVFS 20s
Naive DVFS 10s

Naive DVFS 5s
MetaTemp
Threshold

Fig. 3. Maximum Temperature of the Processors Over Time for wave2D

 40

 45

 50

 55

 60

 65

 70

 0 20 40 60 80 100 120 140

T
em

pe
ra

tu
re

 (
C

)

Cores

Per Processor Max Temperature

Base
Naive DVFS 1min

Naive DVFS 20s
Naive DVFS 10s

Naive DVFS 5s
MetaTemp
Threshold

Fig. 4. Maximum Temperature of the Processors for kNeighbor

that some of the cores are hot-spots. Core temperatures are
checked periodically and DVFS is used to keep the temperature
of a core within the threshold of 50◦ C. Figure 3 shows
the maximum temperature of any core over time for various
temperature check period. A period of 1 min is able to bring the
maximum temperature down to 62◦ C but it is insufficient to
keep the temperature within the threshold. Temperature check
with 20s period is able to reduce the temperature further but it
is still above the threshold. For this application, a periodicity of
5 seconds is necessary to ensure that the maximum temperature
of any core is within the threshold. MetaTempController is able
to automatically control the temperature using DVFS and keep
it within the threshold.

kNeighbor: Unlike wave2D or leanMD, kNeighbor is a
communication intensive benchmark because of which the
temperature of the cores reaches a maximum of 61◦ C without
any temperature control as shown in Figure 5. Again Figure 4
indicates the formation of hot-spots. A periodicity of 1 min
for temperature check is not sufficient to keep the temperature
within threshold of 50◦ C. Whereas a periodicity of 10
or 5 seconds controls the temperature. MetaTempController
successfully controls the temperature to within the specified
threshold of 50◦ C. The key thing to note here is that the ideal
period to control the temperature is application dependent. For
wave2D the ideal period was 5 seconds whereas for kNeighbor
it is 10 seconds. MetaTempController automatically adjusts the

 40

 45

 50

 55

 60

 65

 70

 0 50 100 150 200 250 300 350 400

T
em

pe
ra

tu
re

 (
C

)

time (s)

Cluster Maximum Temperature

Base
Naive DVFS 1min

Naive DVFS 20s
Naive DVFS 10s

Naive DVFS 5s
MetaTemp
Threshold

Fig. 5. Maximum Temperature of the Processors Over Time for kNeighbor

 40

 45

 50

 55

 60

 65

 70

 75

 80

 0 20 40 60 80 100 120 140

T
em

pe
ra

tu
re

 (
C

)

Cores

Per Processor Max Temperature

Base
Naive DVFS 1min

Naive DVFS 20s
Naive DVFS 10s

Naive DVFS 5s
MetaTemp
Threshold

Fig. 6. Maximum core temperature for the entire run for leanMD. This
indicates region of hot-spots.

temperature without any support from the user.

leanMD: Figure 7 shows the maximum temperature for
any core in the system for the entire run of leanMD using
various periodicity for temperature control. It can be seen that
for the run of leanMD without any temperature control, the
maximum temperature goes up to 73◦ C. This is above the
threshold of 50◦ C. Figure 6 indicates that there are few hot-
spots created resulting in high temperature. A periodicity of
1 min is able to control the temperature to a certain extend
but still causes the temperature to reach 59◦ C. This indicates
that periodicity of 1 min is not frequent enough to keep the
temperature within the threshold. For leanMD, a periodicity of
10 seconds is required to ensure that the maximum temperature
of any core in the system is within the threshold. We find that,
MetaTempController is successful in keeping the temperature
within the threshold of 50◦ C.

2) Timing Penalty: wave2D: Using DVFS to control tem-
perature results in load imbalance which leads to low system
utilization. Figure 8 shows the average system utilization when
the temperature is controlled. The system utilization drops
from 89% to 60% during the run. The frequency of the
cores which are hot-spots are reduced which results in load
imbalance. Figure 8 shows the average system utilization when
load balancing is performed. It can be seen that the load
balancer is successful in improving the utilization and attains

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

Base Naive_DVFS LB_10s LB_5s MetaTemp
 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

T
o
ta

l
e
x
e
cu

ti
o
n
 t

im
e
 (

s)

M
ax

im
u
m

 t
e
m

p
e
ra

tu
re

 (
C

)

Wave2D

Execution time
Max temp

(a) wave2D

 0

 100

 200

 300

 400

 500

 600

Base Naive_DVFS LB_10s LB_5s MetaTemp
 40

 45

 50

 55

 60

 65

 70

T
o
ta

l
e
x
e
cu

ti
o
n
 t

im
e
 (

s)

M
ax

im
u
m

 t
e
m

p
e
ra

tu
re

 (
C

)

kNeighbor

Execution time
Max temp

(b) kNeighbor

 0

 100

 200

 300

 400

 500

 600

Base Naive_DVFS LB_10s LB_5s MetaTemp
 40

 45

 50

 55

 60

 65

 70

 75

 80

T
o
ta

l
e
x
e
cu

ti
o
n
 t

im
e
 (

s)

M
ax

im
u
m

 t
e
m

p
e
ra

tu
re

 (
C

)

LeanMD

Execution time
Max temp

(c) leanMD

Fig. 9. Execution time and temperature for different strategies

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300 350 400

T
em

pe
ra

tu
re

 (
C

)

time (s)

Cluster Maximum Temperature

Base
Naive DVFS 1min

Naive DVFS 20s
Naive DVFS 10s

Naive DVFS 5s
MetaTemp
Threshold

Fig. 7. Maximum temperature on any core over time for leanMD. Without
any control, temperature reaches 73◦ C and MetaTempController keeps it
within threshold.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

A
ve

ra
ge

 u
ti
liz

at
io

n

Time

wave2D Naive DVFS 5s
wave2D MetaTemp

leanMD Naive DVFS 10s
leanMD MetaTemp

Fig. 8. Average utilization over time with and without MetaTempControler

a minimum utilization of 73%.

Load balancing incurs overhead which includes the time for
finding a new assignment of objects to processors as well as the
time for migration. Figure 9 compares various schemes includ-
ing no temperature control, temperature control without load
balancing, periodic load balancing and MetaTempController.
In the no temperature control case, the total execution time
is 1069 seconds but the core temperature reaches 82◦ C.

Controlling the temperature using DVFS keeps the temperature
within the threshold but the execution time increases by 40%
to 1499 seconds. Performing load balancing frequently incurs
overhead which may overshoot the gains from load balancing.
A periodic load balancer with a period of 5 seconds has
an execution time of 1477 seconds and therefore does not
provide much benefit. A period of 10 seconds is insufficient to
keep the temperature within threshold and causes temperature
to rise till 57◦ C. MetaTempController successfully controls
the temperature and removes hot-spots using DVFS and also
reduces the timing penalty by 10%.

kNeighbor: kNeighbor being communication intensive, its
characteristics is different from wave2D or leanMD. Figure 9
shows the maximum temperature and the total execution time
for various schemes including no temperature control, tempera-
ture control, periodic load balancing and MetaTempController.
Without any temperature control, the execution time is 368
seconds and the maximum temperature is 61◦ C. It can be
seen that controlling the temperature with DVFS results in a
slowdown of only 4%. This indicates that there is no significant
load imbalance. Therefore, performing load balancing very
often will not yield any benefit and instead will incur more
overhead. Figure 9 shows that the periodic load balancer incur
more overhead and increases the total execution time by 13%
in comparison to the no temperature control run and 8% to the
temperature control run. MetaTempController automatically
calls the load balancer only if the benefit of load balancing
exceeds the overhead. It identifies that load balancing does
not improve and hence invokes load balancing only once.
The timing penalty of MetaTempController is 4% over the
no temperature control run. Thus MetaTempController is able
to automatically control the temperature within the threshold
as well as minimize the timing penalty depending on the
application characteristics.

leanMD: In order to control the temperature, the frequency
of the chip is adjusted using DVFS. Decreasing the frequency
results in load imbalance which leads to lower system utiliza-
tion. Figure 8 shows the average utilization of the system when
the temperature is controlled using DVFS. In the beginning of
the run, the average utilization is 85% and reduces to 67%.
This is due to the load imbalance created as a result of the
reduction in the frequency of the cores which are hot-spots.
Figure 8 shows the average utilization using the load balancer.
The average utilization of the system improves in comparison

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 200 400 600 800 1000 1200 1400 1600

F
re

q
u
e
n
cy

 (
G

h
z)

time (s)

Cluster Min Frequency

Base
Naive DVFS 1min

Naive DVFS 20s
Naive DVFS 10s
Naive DVFS 5s

MetaTemp

(a) wave2D

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 50 100 150 200 250 300 350 400

F
re

q
u
e
n
cy

 (
G

H
z)

time (s)

Cluster Minimum Frequency

Base
Naive DVFS 1min

Naive DVFS 20s
Naive DVFS 10s
Naive DVFS 5s

MetaTemp

(b) kNeighbor

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 50 100 150 200 250 300 350 400

F
re

q
u
e
n
cy

 (
G

h
z)

time (s)

Cluster Minimum Frequency

Base
Naive DVFS 1min

Naive DVFS 20s
Naive DVFS 10s
Naive DVFS 5s

MetaTemp

(c) leanMD

Fig. 10. Minimum frequency of the processors over time

to no load balancer and attains a minimum utilization of 73%.

In Figure 9, without any temperature control, the total
execution time is 247 seconds but the maximum temperature
reaches 73◦ C. Performing temperature control without any
load balancing results in a total execution time of 335 seconds
and a slowdown of 35%. Periodic load balancing reduces the
timing penalty by 5% with a total execution time of 318
seconds. MetaTempController automatically performs temper-
ature control and load balancing leading to an execution time
of 313 seconds. This shows that MetaTempController is able
to keep the temperature within the threshold as well as reduce
the timing penalty automatically without any user support.

3) Frequency: Without load balancing the processor with
the slowest frequency dictates the total execution time of the
application. In the timing penalty section we have shown that
when the temperature check period decreases, total execution
time increases. The reason for this behavior can be seen in
Figure 10. Frequent temperature checks causes to reach the
minimum frequency at a faster rate and the stable minimum
frequency to be lower.

Because of the load balancing MetaTempController is able
to maintain a higher frequency compared to naive DVFS in
all of the applications as the Figure 10 shows. It removes the
work from the overloaded processors so that they do not heat
up that much and need to decrease the frequency. Without load
balancing the processor with the slowest frequency dictates the
total execution time of the application. In the timing penalty
section we have shown that when the temperature check period
decreases, total execution time increases. The reason for this
behaviour can be seen in Figure 10. Frequent temperature
checks causes to reach the minimum frequency at a faster rate
and the stable minimum frequency to be lower.

4) Overhead: Figure 11 shows the slowdown caused by
the load balancing and temperature check. The starting point
of the y-axis is the execution time of the plain run. MetaTemp-
Controller has less slowdown caused by frequency decrease
comparing to both naive DVFS and periodic load balancing
as it has a higher stable frequency as stated in the previous
section. Moreover, MetaTempController has a negligible load
balancing overhead. The reason for this is its smart load
balancing strategy. kNeighbor represents an exceptional case.
Because of its high communication bound, naive DVFS does
not cause a significant overhead. The processors does not

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

LB_periodic MetaTemp

Wave2D
KNeighbor

LeanMD

Fig. 12. Machine energy normalized according to naive DVFS

heat up and exceed the threshold temperature, and thus fre-
quency decrease and load balancing is not needed. MetaTemp-
Controller understands this and only does load balancing two
times in the beginning of the application. On the other hand,
periodic temperature check strategy continues load balancing
until the end, which is the main reason for the significant differ-
ence between MetaTempController and the periodic approach.
MetaTempController has more severe frequency slowdown
than naive DVFS, but this is a cost worth paying for the
universality.

5) Power and Energy: In this section, we evaluate the
ability of MetaTempController to reduce energy consump-
tion in comparison to the naive DVFS scheme and peri-
odic temperature-aware load balancer. We don’t discuss the
cooling energy saving in this paper due to space contrains.
But the cooling energy calculation model is presented in
our previous work in section 8.1 of [4] which shows that
setting CRAC to a higher temperature and constraining the
core temperatures reduces the cooling energy. We also reduce
the timing penalty for applications while limiting the core
temperatures to the specified thresholds. While we get savings
from cooling energy, we also manage to improve the machine
energy. Figure 12 shows the normalized machine energy for
periodic strategy and MetaTempController with respect to the
naive DVFS. Machine energy is calculated as the product of
the average power and the execution time. For leanMD and
wave2D, the hand tuned periodic temperature-aware load bal-
ancer and MetaTempController are able to reduce the machine
energy in comparison to the naive DVFS scheme. For leanMD,
periodic scheme gives 2% whereas MetaTempController gives

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

Naive_DVFS LB_5s MetaTemp

T
o
ta

l
e
x
e
cu

ti
o
n
 t

im
e
 (

s)
freq_slowdown

lb_overhead

(a) wave2D

 370

 380

 390

 400

 410

 420

 430

 440

 450

Naive_DVFS LB_10s MetaTemp

T
o
ta

l
e
x
e
cu

ti
o
n
 t

im
e
 (

s)

freq_slowdown
lb_overhead

(b) kNeighbor

 260

 280

 300

 320

 340

 360

 380

 400

Naive_DVFS LB_10s MetaTemp

T
o
ta

l
e
x
e
cu

ti
o
n
 t

im
e
 (

s)

freq_slowdown
lb_overhead

(c) leanMD

Fig. 11. Execution time breakdown into temp check and lb overhead

5% reduction in machine energy. We see a much higher
reduction for wave2D where periodic scheme provides 9%
and MetaTempController provides 12% reduction in machine
energy. Since kNeighbor is a communication intensive bench-
mark, naive DVFS results in only slight increase in the total ex-
ecution time. We also saw in Section VI-C2 that invoking load
balancer frequently results in increase of execution time. This
results in increasing the machine energy for periodic scheme
by 15.5%. Since MetaTempController automatically identifies
this, it invokes load balancing less frequently. Therefore, even
though it increases the machine energy it is not as bad as the
periodic scheme.

VII. CONCLUSION

Increase in power demands and total energy consumption
in HPC has become an important issue in the construction
and maintenance of machines. In this paper, we extended
our previous work on temperature-aware load balancing and
automated load balancing framework to implement an auto-
matic control system for reducing the cooling energy. We
introduced MetaTempController, which automatically controls
the temperature using DVFS and performs load balancing to
minimize the overhead without any input from the user. We
demonstrated the effectiveness of MetaTempController using
three applications. We showed that MetaTempController is able
to successfully limit the temperature and reduce the timing
penalty in comparison to the existing schemes.

ACKNOWLEDGMENT

This research was supported by the US Department of
Energy under grant DOE DE-SC0001845.

REFERENCES

[1] R. Mullins, “Hp service helps keep data centers cool,” IDG News Ser-
vice, Tech. Rep., July 2007. http://www.pcworld.com/article/id,135052/
article.html.

[2] H. Simon, T. Zacharia, R. Stevens et al., “Modeling and simulation at
the exascale for energy and the environment,” Department of Energy
Technical Report, 2007.

[3] R. Sawyer, “Calculating total power requirements for data centers,”
White Paper, American Power Conversion, 2004.

[4] E. T. Osman Sarood, Phil Miller and L. V. Kale, “‘Cool’ Load Balancing
for High Performance Computing Data Centers,” in IEEE Transactions
on Computer - SI (Energy Efficient Computing), September 2012.

[5] O. Sarood and L. V. Kalé, “A ‘cool’ load balancer for parallel
applications,” in Proceedings of the 2011 ACM/IEEE conference on
Supercomputing, Seattle, WA, November 2011.

[6] H. Menon, N. Jain, G. Zheng, and L. V. Kalé, “Automated load
balancing invocation based on application characteristics,” in IEEE
Cluster 12, Beijing, China, September 2012.

[7] L. Kalé and S. Krishnan, “CHARM++: A Portable Concurrent Object
Oriented System Based on C++,” in Proceedings of OOPSLA’93,
A. Paepcke, Ed. ACM Press, September 1993, pp. 91–108.

[8] L. V. Kalé, “The virtualization model of parallel programming : Run-
time optimizations and the state of art,” in LACSI 2002, Albuquerque,
October 2002.

[9] P. P. K. G. Shin, “Real-time dynamic voltage scaling for low-power
embedded operating systems,” Proceedings of the eighteenth ACM
symposium on Operating systems principles, 2001.

[10] S. Herbert, “Analysis of dynamic voltage/frequency scaling in chip-
multiprocessors,” International Symposium on Low Power Electronics
and Design, 2007.

[11] K. Choi, R. Soma, and M. Pedram, “Fine-grained dynamic voltage
and frequency scaling for precise energy and performance trade-off
based on the ratio of off-chip access to on-chip computation times,”
in Proceedings of the conference on Design, automation and test in
Europe-Volume 1. IEEE Computer Society, 2004, p. 10004.

[12] C. Bash and G. Forman, “Cool job allocation: measuring the power
savings of placing jobs at cooling-efficient locations in the data center,”
in 2007 USENIX Annual Technical Conference on Proceedings of the
USENIX Annual Technical Conference. USENIX Association, 2007,
pp. 1–6.

[13] L. Wang, G. von Laszewski, J. Dayal, and T. R. Furlani, “Thermal
aware workload scheduling with backfilling for green data centers,”
in Performance Computing and Communications Conference (IPCCC),
2009 IEEE 28th International. IEEE, 2009, pp. 289–296.

[14] S. Li, H. Le, N. Pham, J. Heo, and T. Abdelzaher, “Joint optimization
of computing and cooling energy: Analytic model and a machine room
case study,” in Distributed Computing Systems (ICDCS), 2012 IEEE
32nd International Conference on. IEEE, 2012, pp. 396–405.

[15] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal, “Adaptive, transpar-
ent cpu scaling algorithms leveraging inter-node mpi communication
regions,” Parallel Computing, vol. 37, no. 10, pp. 667–683, 2011.

[16] R. Springer, D. K. Lowenthal, B. Rountree, and V. W. Freeh, “Min-
imizing execution time in mpi programs on an energy-constrained,
power-scalable cluster,” in Proceedings of the eleventh ACM SIGPLAN
symposium on Principles and practice of parallel programming. ACM,
2006, pp. 230–238.

[17] S. Huang and W. Feng, “Energy-efficient cluster computing via accurate
workload characterization,” in Proceedings of the 2009 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid. IEEE
Computer Society, 2009, pp. 68–75.

[18] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kalé, “NAMD: Biomolec-
ular simulation on thousands of processors,” in Proceedings of the 2002
ACM/IEEE conference on Supercomputing, Baltimore, MD, September
2002, pp. 1–18.

