
Conclusions
– Cost effective: some HPC applications in cloud not all

– Multiple platforms + intelligent mapping promising

– Significant performance improvement with LB (40%)

– Substantial throughput improvement with application
aware consolidation (32%)

Abhishek Gupta, 4th year Ph.D. student, CS, UIUC. Advisor: Laxmikant V. Kale gupta59@illinois.edu

Motivation and Problem

– Why clouds for HPC

• Rent vs. own, pay-as-you-go

• Elastic resources

• Virtualization benefits – customization, isolation,
migration, resource control

– HPC cloud divide

• Performance vs. resource utilization

• Dedicated execution vs. multi-tenancy

• Homogeneity vs. inherent heterogeneity

• HPC-optimized interconnects vs. commodity and
virtualized networks

Mismatch: HPC requirements and cloud
characteristics

• Only embarrassingly parallel or small scale HPC
applications currently run in clouds

TOWARDS EFFICIENT HPC IN THE CLOUD

HPC-cloud: What (applications),
why (benefits), who (users)

How:
Bridge HPC-cloud Gap

(1) Perf
evaluation

and analysis

(4) Heterogeneity,
Multi-tenancy
aware HPC

HPC in cloud

Tools Extended

Techniques

Goals

Charm++ Load
Balancing

OpenStack
Nova Scheduler

Task
Migration

CloudSim
Simulator

(3) Application
aware VM

consolidation

(2) Cost analysis
and smart

platform selection

Research Goals and Contributions 1. Performance Evaluation

3. HPC-aware Cloud Schedulers 4. Cloud-aware HPC Load Balancer 2. Cost Analysis and Platform Selection

Related Publications
• A. Gupta and D. Milojicic, “Evaluation of HPC Applications on Cloud,” in Open Cirrus Summit (Best Student

Paper), Atlanta, GA, Oct.
• A. Gupta et al., “Exploring the Performance and Mapping of HPC Applications to Platforms in the cloud,” in

HPDC ’12. New York, NY, USA: ACM, 2012
• A. Gupta, D. Milojicic, and L. Kale, “Optimizing VM Placement for HPC in Cloud,” in Workshop on Cloud

Services, Federation and the 8th Open Cirrus Summit, San Jose, CA, 2012.
• A. Gupta et al., “HPC-Aware VM Placement in Infrastructure Clouds ,” in IEEE Intl. Conf. on Cloud Engineering

IC2E ’13.
• A. Gupta et al., “Improving HPC Application Performance in Cloud through Dynamic Load Balancing,” in

IEEE/ACM CCGRID ’13.

 1b. Performance of standard platforms

Platform/

Resource

Ranger

(TACC)

Taub

(UIUC)

Open Cirrus

(HP Labs)
Private Cloud

(HP Labs)

Public Cloud

Network Infiniband

(10Gbps)

Voltaire

QDR

Infiniband

10 Gbps Ethernet

internal; 1 Gbps

Ethernet x-rack

Emulated network

card, KVM (1Gbps

physical Ethernet)

Emulated network

, KVM (1Gbps

physical Ethernet)

i) Some applications
are cloud-friendly
NQueens, NPB-EP, Jacobi2D

ii) Some applications
scale till 16-64 cores
ChaNGa, NAMD,NPB- LU

iii) Some applications
cannot survive in cloud
NPB-IS

 1a. Experimental Testbed

Critical factors: cloud commodity interconnect, network
virtualization overhead, heterogeneity, and multi-tenancy

Interesting cross-over points when considering cost. Best
platform depends on scale, budget, and application
characteristics.

– Platform selection algorithms (meta-scheduler)

• Minimize cost meeting performance target

• Maximize performance under cost constraint

• Consider an application set as a whole

• Which application, which cloud

– Benefits: Performance, Cost, Improved resource utilization

Time constraint

Low is better

Cost = Charging rate($ per core-hour) × P × Time

Low is better

Choose this

Cost constraint

Low is better

3a. Topology, Hardware
aware VM placement

3c. HPC-aware consolidation
– Dedicated execution for extremely tightly-

coupled HPC applications

– For rest, Multi-dimensional Online Bin
Packing (MDOBP): Memory, CPU

• Dimension aware heuristic

– Cross application interference aware

• Co-locate apps with complementary execution
profile (using 3b)

Decrease in

execution time

– OpenStack cloud on Open Cirrus (KVM as hypervisor)

– HPC Performance (dedicated) vs. cloud utilization (shared)

3b. Characterize apps for
shared mode execution
a) Cache intensiveness and b) Network sensitivity

Shared mode (2 apps on each node – 2 cores each on 4
core node) performance normalized wrt. dedicated mode

Challenge: Interference

 High is
better

Scope

Careful co-locations can actually improve performance. Why?
Correlation : LLC misses/sec and shared mode performance.

– Multi-tenancy => Interference => Dynamic heterogeneity

– Random and unpredictable

– For HPC, one slow process => all underutilized processes

– Challenge: Load imbalance application intrinsic or caused
by extraneous factors such as interference.

Background/ Interfering VM
running on same host

Load balancer migrates objects from
overloaded to under loaded VM

Physical Host 1 Physical Host 2

HPC VM1 HPC VM2

Periodically measuring idle time and
migrating load away from time-shared
VMs works well in practice.

Multi-tenancy
awareness

Heterogeneity
awareness

1. Estimate CPU Frequencies
2. Instrument task times
3. Instrument interference
4. Normalize times to ticks

using estimated frequencies
5. Predict future loads using

loads from recent iterations
6. Periodically migrate tasks

from overloaded to
underloaded VMs

interference

Objects
(Work/Data Units)

Approach

Results
Up to 45% benefits for
different applications –
Stencil2D, Waive2D, Mol3D

Ongoing Work
– Application characterization (cloud vs. supercomputer)

– Simulate/emulate cloud environment for larger-scale
results

Past research has focused on just the “What” question

• Parallel workload archive, Simulated 1500 jobs on 1K cores, 100 seconds
• Assigned each job a cache score from (0-30) using a uniform distribution

random number generator
• β=Cache threshold = degree of resource packing
• Modified execution times (adjust) to account for the improvement in

performance resulting from cache-awareness

High is
better

259
jobs

Low is
better

