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Abstract—Cloud computing is emerging as an alternative to
supercomputers for some of the high-performance computing
(HPC) applications that do not require a fully dedicated machine.
With cloud as an additional deployment option, HPC users are
faced with the challenges of dealing with highly heterogeneous
resources, where the variability spans across a wide range of
processor configurations, interconnections, virtualization environ-
ments, and pricing rates and models.

In this paper, we take a holistic viewpoint to answer the
question – why and who should choose cloud for HPC, for what
applications, and how should cloud be used for HPC? To this
end, we perform a comprehensive performance evaluation and
analysis of a set of benchmarks and complex HPC applications
on a range of platforms, varying from supercomputers to clouds.
Further, we demonstrate HPC performance improvements in
cloud using alternative lightweight virtualization mechanisms
– thin VMs and OS-level containers, and hypervisor- and
application-level CPU affinity. Next, we analyze the economic
aspects and business models for HPC in clouds. We believe that
is an important area that has not been sufficiently addressed
by past research. Overall results indicate that current public
clouds are cost-effective only at small scale for the chosen HPC
applications, when considered in isolation, but can complement
supercomputers using business models such as cloud burst and
application-aware mapping.
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I. INTRODUCTION

Increasingly, some academic and commercial HPC users
are looking at clouds as a cost effective alternative to dedi-
cated HPC clusters [1]. Renting rather than owning a cluster
avoids the up-front and operating expenses associated with a
dedicated infrastructure. Clouds offer additional advantages of
a) elasticity – on-demand provisioning, and b) virtualization-
enabled flexibility, customization, and resource control.

Despite these advantages, it still remains unclear whether,
and when, clouds can become a feasible substitute or com-
plement to supercomputers. HPC is performance-oriented,
whereas clouds are cost and resource-utilization oriented. Fur-
thermore, clouds have traditionally been designed to run busi-
ness and web applications. Previous studies have shown that
commodity interconnects and the overhead of virtualization
on network and storage performance are major performance
barriers to the adoption of cloud for HPC [1–4]. While the

outcome of these studies paints a rather pessimistic view of
HPC clouds, recent efforts towards HPC-optimized clouds,
such as Magellan [1] and Amazon’s EC2 Cluster Compute [5],
point to a promising direction to overcome some of the
fundamental inhibitors.

Unlike previous works [1–4, 6–9] on benchmarking clouds
for science, we take a more holistic and practical viewpoint.
Rather than limiting ourselves to the problem – what is
the performance achieved on cloud vs. supercomputer, we
address the bigger and more important question – why and
who should choose (or not choose) cloud for HPC, for what
applications, and how should cloud be used for HPC? In our
efforts to answer this research question, we make the following
contributions in this work.

• We evaluate the performance of HPC applications on a
range of platforms varying from supercomputer to cloud,
analyze bottlenecks and the correlation between applica-
tion characteristics and observed performance, identifying
what applications are suitable for cloud. (§ III,§ IV)

• We analyze the impact of virtualization on HPC applica-
tions and propose techniques, specifically thin hypervi-
sors, OS-level containers, and hypervisor and application-
level CPU affinity, to mitigate virtualization overhead and
noise, addressing – how to use cloud for HPC. (§ V)

• We investigate the economic aspects of running in cloud
vs. supercomputer and discuss why it is challenging to
make a profitable business for cloud providers for HPC
compared to traditional cloud applications. We also show
that small/medium-scale HPC users are the most likely
candidates who can benefit from an HPC-cloud. (§ VI)

• Instead of considering cloud as a substitute of supercom-
puter, we investigate the co-existence of supercomputer
and cloud addressing – how to use cloud for HPC.(§ VII)

We believe that it is important to consider views of both,
HPC users and cloud providers, who sometimes have con-
flicting objectives: users must see tangible benefits (in cost
or performance) while cloud providers must be able to run
a profitable business. The insights from comparing HPC
applications execution on different platforms is useful for both.
HPC users can better quantify the benefits of moving to a



TABLE I: Testbed

Resource Platform
Ranger Taub Open Cirrus Private Cloud Public Cloud

Processors
in a Node

16×AMD Opteron
QC @2.3 GHz

12×Intel Xeon
X5650 @2.67 GHz

4×Intel Xeon
E5450 @3.00 GHz

2×QEMU Virtual
CPU @2.67 GHz

4×QEMU Virtual
CPU @2.67 GHz

Memory 32 GB 48 GB 48 GB 6 GB 16 GB
Network Infiniband

(1 GB/s)
QDR
Infiniband

10GigE internal,
1GigE x-rack

Emulated
1GigE

Emulated
1GigE

OS Linux Sci. Linux Ubuntu 10.04 Ubuntu 10.04 Ubuntu 10.10

cloud and identify which applications are better candidates
for the transition from in-house to cloud. Cloud providers can
optimize the allocation of applications to their infrastructure
to maximize utilization, while offering best-in-class cost and
quality of service.

II. EVALUATION METHODOLOGY

In this section, we describe the platforms which we com-
pared and the applications which we chose for this study.

A. Experimental Testbed

We selected platforms with different interconnects, operat-
ing systems, and virtualization support to cover the dominant
classes of infrastructures available today to an HPC user.
Table I shows the details of each platform. In case of cloud a
node refers to a virtual machine and a core refers to a virtual
core. For example, “2 × QEMU Virtual CPU @2.67GHz”
means each VM has 2 virtual cores. Ranger [10] at TACC
was a supercomputer with a theoretical peak performance of
579 Tera FLOPS1, and Taub at UIUC is an HPC-optimized
cluster. Both use Infiniband as interconnect. Moreover, Taub
uses scientific Linux as OS and has QDR Infiniband with band-
width of 40 Gbps. We used physical nodes with commodity
interconnect at Open Cirrus testbed at HP Labs site [11]. The
final two platforms are clouds – a private cloud setup using
Eucalyptus [12], and a public cloud. We use KVM [13] for
virtualization since it has been shown to be a good candidate
for HPC virtualization [14].

In case of cloud, most common deployment of multi-
tenancy is not sharing individual physical cores, but rather
done at the node, or even coarser level. This is even more
true with increasing number of cores per server. Hence, our
cloud experiments involve physical nodes (not cores) which
were shared by VMs from external users, hence providing a
multi-tenant environment.

Another dedicated physical cluster at HP Labs Singapore
(HPLS) is used for controlled tests of the effects of virtual-
ization (see Table II). This cluster is connected with a Gigabit
Ethernet network on a single switch. Every server has two
CPU sockets, each populated with a six-core CPU, resulting
in 12 physical cores per node. The experiment on the HPLS
cluster involved benchmarking on four configuration: physical
machines (bare), LXC containers [15], VMs configured with
the default emulated network (plain VM), and VMs with pass-
through networking (thin VM). Both the plain VM and thin

1Ranger was decommissioned in Feb 2013, concurrent with the deployment
of a new supercomputer – Stampede at TACC. Ranger was ranked 50 in the
November 2012 top500 supercomputer list.

VM run on top of the KVM hypervisor. In the thin VM setup,
we enable Input/Output Memory Management Unit (IOMMU)
on the Linux hosts to allow VMs to directly access the Ethernet
hardware, thus improving the network I/O performance [16].

TABLE II: Virtualization Testbed

Resource Virtualization
Phy., Container Thin VM Plain VM

Processors in
a Node/VM

12×Intel Xeon
X5650
@2.67 GHz

12×QEMU
Virtual CPU
@2.67 GHz

12×QEMU Vir-
tual CPU
@2.67 GHz

Memory 120 GB 100 GB 100 GB
Network 1GigE 1GigE Emulated 1GigE
OS Ubuntu 11.04 Ubuntu 11.04 Ubuntu 11.04

B. Benchmarks and Applications

To gain insights into the performance of selected platform
over a range of applications, we chose benchmarks and ap-
plications from different scientific domains and those which
differ in the nature, amount, and pattern of inter-processor
communication. Moreover, we selected benchmarks written in
two different parallel programming environments – MPI [17]
and CHARM++ [18]. Similarly to previous work [2, 3, 6, 9],
we used NAS Parallel Benchmarks (NPB) class B [19] (the
MPI version, NPB3.3-MPI), which exhibit a good variety of
computation and communication requirements. Moreover, we
chose additional benchmarks and real world applications:

• Jacobi2D – A 5-point stencil kernel to average values
in a 2-D grid. Such stencil kernels are common in
scientific simulations, numerical linear algebra, numerical
solutions of Partial Differential Equations (PDEs), and
image processing.

• NAMD [20] – A highly scalable molecular dynamics
application and representative of a complex real world
application used ubiquitously on supercomputers. We
used the ApoA1 input (92k atoms) for our experiments.

• ChaNGa [21] (Charm N-body GrAvity solver) – A cos-
mological simulation application which performs colli-
sionless N-body interactions using Barnes-Hut tree for
calculating forces. We used a 300,000 particle system.

• Sweep3D [22] – A particle transport code widely used for
evaluating HPC architectures. Sweep3D is the heart of a
real Accelerated Strategic Computing Initiative (ASCI)
application and exploits parallelism via a wavefront pro-
cess. We ran the MPI-Fortran77 code in weak scaling
mode maintaining 5 × 5 × 400 cells per processor with
10 k-planes/3 angles per block.

• NQueens – A backtracking state space search problem
where the goal is to determine a placement of N queens
on an N ×N chessboard (18-queens in our runs) so that
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Fig. 1: Execution Time vs. Number of cores (strong scaling for all except Sweep3D) for different applications. All
applications scale very well on Taub and Ranger and moderately well on Open Cirrus. On Private and Public Clouds,
IS does not scale at all, LU and NAMD stop scaling after 8–32 cores whereas EP, Jacobi2D and NQueens scale well.

no two queens can attack each other. This is implemented
as a tree structured computation, and communication
happens only for load-balancing purposes.

On Ranger and Taub, we used available MVAPICH2 [23]
for MPI and CHARM++ ibverbs layer. On rest of the platforms
we installed Open MPI [24] and used net layer of CHARM++.

III. BENCHMARKING HPC PERFORMANCE

Figure 1 shows the scaling behavior of our testbeds for
the selected applications. These results are averaged across
multiple runs (5 executions) performed at different times.
We show strong scaling results for all applications except
Sweep3D, where we chose to perform weak scaling runs.
For NPB, we present results for only Embarrassingly parallel
(EP), LU solver (LU), and Integer sort (IS) benchmarks due
to space constraints. The first observation is the difference in
sequential performance: Ranger takes almost twice as long
as the other platforms, primarily because of the older and
slower processors. The slope of the curve shows how the
applications scale on different platforms. Despite the poor
sequential speed, Ranger’s performance crosses Open Cirrus,
private cloud and public cloud for some applications at around
32 cores, yielding a much more linearly scalable parallel

performance. We investigated the reasons for better scalability
of these applications on Ranger using application profiling,
performance tools, and microbenchmarking and found that
network performance is a dominant factor (section IV).

We observed three different patterns for applications on
these platforms. First, some applications such as, EP, Ja-
cobi2D, and NQueens, scale well on all the platforms up to
128–256 cores. The second pattern is that some applications
such as LU, NAMD, and ChaNGa scale on private cloud till
32 cores, and stop scaling afterwards. These do well on other
platforms including Open Cirrus. The likely reason for this
trend is the impact of virtualization on network performance
(which we confirm below). On public cloud, we used VM
instances with 4 virtual cores, hence inter-VM communication
starts after 4 cores, resulting in sudden performance penalty
above 4 cores. Finally, some applications, especially the NPB
IS (Integer Sort) benchmark, fail to scale on the clouds and
Open Cirrus. IS is a communication intensive benchmark and
involves data reshuffling operations for sorting. Sweep3D also
exhibits poor weak scaling after 4 – 8 cores on cloud.

When running experiments on cloud, we observed variabil-
ity in the execution time across runs, which we quantified
by calculating the coefficient of variation (standard devia-



tion/mean) for execution time across 5 executions. Figure 2
shows that there is a significant amount of variability on cloud
compared to supercomputer (Ranger) and that the amount of
variability increases as we scale up, partially due to decrease in
computational granularity. For the case of 256 cores at public
cloud, standard deviation is equal to half the mean, implying
that on average, values are spread out between 0.5 × mean
and 1.5×mean resulting in low predictability of performance
across runs. In contrast, private cloud shows less variability.

One potential reason for the significant performance vari-
ation is the use of shared resources. We deliberately chose
shared systems, shared at node level, not at the core level, for
cloud. Using isolated system would be misleading and likely
result in far better performance than what one can get from
current cloud offerings. Noise induced by multi-tenancy is an
intrinsic component of the cloud, inherent in the fundamental
business model of the cloud providers.

Further analysis is required to determine what application
and platform characteristics are affecting achieved perfor-
mance and variability. We present our findings in the next
section.

IV. PERFORMANCE BOTTLENECKS FOR HPC IN CLOUD

We used the Projections [25] tool to analyze the per-
formance bottlenecks on cloud. Figure 3 shows the CPU
utilization for a 64-core Jacobi2D experiment on private cloud,
x-axis being the (virtual) core number. It is clear that CPU is
under-utilized for almost half the time, as shown by the idle
time (white portion) in the figure. A detailed time-line view
revealed that this time was spent waiting to receive data from
other processes. Similarly, for NAMD, communication time is
a considerable portion of the parallel execution time on cloud.

Since many HPC applications are highly sensitive to com-
munication, we focused on network performance. Figures 4a–
4b show the results of a simple ping-pong benchmark written
in Converse, the underlying substrate of CHARM++ [26].
Unsurprisingly, we found that the latencies and bandwidth on
cloud are a couple of orders of magnitude worse compared to
Ranger and Taub, making it challenging for communication-
intensive applications, such as IS, LU, and NAMD, to scale.

While the inferior network performance explains the large
idle time in Figure 3, the surprising observation is the notable
difference in idle time for alternating cores (0 and 1) of each
VM. We traced this effect to network virtualization. The light
(green) colored portion at the very bottom in the figure rep-
resents the application function begin_iteration which
initiates inter-processor communication through socket opera-
tions (such as select, recv, send), and interacts with
the virtual network. The application process on core 0 of the
VM shares the CPU with the network emulator. This interfer-
ence (noise or jitter) increases as the application communicates
more over the network. Hence, virtualized network degrades
HPC performance in multiple ways: increases network latency,
reduces bandwidth, interferes with application process.

We also observed that, even when we used only core 0 of
each VM, for iterative applications containing a barrier after
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Fig. 3: CPU utilization for execution of Jacobi2D (4K by
4K) on 32 2-core VMs of private cloud. White portion:
idle time, colored portions: application functions.
each iteration, there was significant idle time on some pro-
cesses at random times. Communication time could not explain
such random idle times. Hence, we used the Netgauge [27] tool
for measuring OS noise. We ran a benchmark that performs a
fixed amount of work multiple times and records the time
it takes for each run (Figure 4c). Each benchmark step is
designed to take 1000 microseconds in the absence of noise,
but as evident from Figure 4c, a large fraction of steps takes
significantly longer time – from 20% up to 200% longer.

In general, system noise has detrimental impact on per-
formance, especially for bulk-synchronous HPC applications
since the slowest thread dictates the speed [28]. Unlike super-
computers, where OS is specifically tuned to minimize noise,
e.g., Scientific Linux on Taub, cloud deployments typically run
non-tuned operating systems. Clouds have a further intrinsic
disadvantage due to the presence of the hypervisor.

V. OPTIMIZING CLOUD VIRTUALIZATION FOR HPC

To mitigate the virtualization overhead, we investigate two
optimizations: lightweight virtualization and CPU affinity.

A. Lightweight Virtualization

We consider two lightweight virtualization techniques, thin
VMs configured with PCI pass-through for I/O, and containers,
that is OS-level virtualization. Lightweight virtualization re-
duces the latency overhead of network virtualization by grant-
ing VMs native accesses to physical network interfaces. In
the thin VM configuration with IOMMU, a physical network
interface is allocated exclusively to a VM, preventing the
interface to be shared by the sibling VMs and the hypervisor.
This may lead to under utilization when the thin VM generates
insufficient network load. Containers such as LXC [15] share
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Fig. 6: Impact of CPU Affinity on CPU Performance

the physical network interface with its sibling containers and
its host. However, containers must run the same operating
system as their underlying host. Thus, there is a trade-off
between resource multiplexing and flexibility offered by VM.

Figure 5 validates that network virtualization is the primary
bottleneck of cloud. These experiments were conducted on
the virtualization testbed described earlier (Table II). On plain
VM, the scalability of NAMD and ChaNGa (Figure 5a–5b)
is similar to that of private cloud (Figure 1). However, on
thin VM, NAMD execution times closely track that of the
physical machine even as multiple nodes are used (i.e., 16
cores onwards). The performance trend of containers also
resembles the one of the physical machine. This demonstrates
that thin VM and containers impose a significantly lower com-
munication overhead. This low overhead is further validated
by the ping-pong test (Figure 5c).

We note that there are other HPC-optimized hypervisors [29,

30]. However, an exhaustive comparison of hypervisors is not
our intention. Our goal is to focus on the current state of device
virtualization and provide valuable insights to cloud operators.

B. Impact of CPU Affinity

CPU affinity instructs the operating system to bind a process
(or thread) to a specific CPU core. This prevents the operating
systems to inadvertently migrate a process. If all important
processes have non-overlapping affinity, it practically prevents
multiple processes or threads to share a core. In addition, cache
locality can be improved by processes or threads remaining
on the same core throughout their execution. However, in the
cloud, CPU affinity can be enforced at the application level,
which refers to binding processes to the virtual CPUs of a VM,
and at the hypervisor level, which refers to binding virtual
CPUs to physical CPUs.

Figure 6 presents the results of our micro-benchmarks with
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Fig. 7: Application Performance with various CPU Affinity Settings, thin VM and plain VM; legend is at the bottom
various CPU affinity settings on different types of virtual
environments. In this experiment, we executed 12 processes
on a single 12-core virtual or physical machine. Each pro-
cess runs 500 iterations, where each iteration executes 200
millions of y = y + rand()/c operations. Without CPU
affinity (Figure 6a), we observe wide fluctuation on the process
execution times, up to over twice of the minimum execution
time (i.e., 2.7s). This clearly demonstrates that frequently two
or more of our benchmark processes are scheduled to the same
core. The impact of CPU affinity is even more profound on
virtual machines: Figure 6b shows the minimum and maxi-
mum execution times of the 12 processes with CPU affinity
enabled on the physical machine, while only application-level
affinity is enabled on the thin VM. We observe that the gap
between minimum and maximum execution times is narrowed,
implying that load balance takes effect. However, on the thin
VM, we still notice the frequent spikes, which is attributed to
the absence of hypervisor-level affinity. Hence, even though
each process is pinned to a specific virtual CPU core, multiple
virtual cores may still be mapped onto the same physical core.
When hypervisor-level affinity is enabled, execution times
across virtual cores stabilizes close to those of the physical
machine (Figure 6c). In conducting these experiments, we
have learned several lessons. Firstly, virtualization introduces
a small amount of computation overhead, where the execution
times on containers, thin VM, and plain VM are higher
by 1–5% (Figure 6c). We also note that it is crucial to
minimize I/O operations unrelated to applications to attain
the maximum application performance. Even on the physical
machine, the maximum execution time is increased by 3–5%
due to disk I/O generated by the launcher shell script and its
stdout/stderr redirection (result not shown due to space
limitation). The spikes on the physical machine in Figure 6c
are caused by short ssh sessions which simulate the scenarios
where users log in to check the job progress. Thus, minimizing
the unrelated I/O is another important issue for HPC cloud
providers to offer maximum performance to their users.

Figure 7 shows the positive impact of CPU affinity on thin
VM and plain VM. HyperAFF denotes the execution where
hypervisor-level affinity is enabled. Similarly appAFF means
application-level affinity is enabled. Significant benefits are
obtained for thin-VM, when using both application-level and
hypervisor-level affinity compared to the case with no affinity.

However, the impact on NAMD on plain VMs is not clear,
which indicates that optimizing cloud for HPC is non-trivial.
Then the question is why and when should one move to cloud?

VI. HPC ECONOMICS IN THE CLOUD

There are several reasons why many commercial and web
applications are migrating to public clouds from fully owned
resources or private clouds. Variable usage in time (resulting
in lower utilization), trading CAPEX (capital expenditure) for
OPEX (operating expenditure), and the shift towards a delivery
model of Software as a Service are some of the primary
motivations fueling the shift to the cloud in commercial
environments. These arguments apply both to cloud providers
and cloud users. Cloud users benefit from running in the
cloud when their applications fit the profile we described
e.g., variable utilization. Cloud providers can justify their
business if the aggregated resource utilization of all their
tenants can sustain a profitable pricing model when compared
to the substantial infrastructure investments required to offer
computing and storage resources through a cloud interface.

HPC applications are however quite different from the
typical web and service-based applications. First, utilization
of the computing resources is typically quite high on HPC
systems. This conflicts with the desirable properties of high-
variability and low average utilization that make the cloud
business model viable. Moreover, an HPC cloud user would
ideally want a dedicated instance, but for a cloud provider
that means that the multi-tenancy opportunities are limited
and the pricing has to be increased to be able to profitably
rent a dedicated computing resource to a single tenant. As
evident from our analysis, the noise caused by virtualization
and multi-tenancy can significantly affect HPC applications
in terms of performance predictability and scalability. Virtu-
alization is a foundational technology for the cloud to enable
improved consolidation and easier management (moving VMs
around for performance, support, and reliability), but it needs
to be carefully tuned for HPC applications. Secondly, the
performance of many HPC applications is very sensitive to
the interconnect, as we showed in our experimental evaluation.
In particular, low latency requirements are typical for the
HPC applications that incur substantial communication. This
is in contrast with the commodity Ethernet network (1Gbps
today moving to 10Gbps) typically deployed in most cloud
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Fig. 8: Cost ratio of running in cloud and a dedicated supercomputer for different scale (cores) and cost ratios (1x–5x).
Ratio>1 imply savings of running in the cloud, <1 favor supercomputer execution.
infrastructures to keep costs small. These limitations constrain
the number of HPC application that are a good fit for the cloud:
when networking performance is important, we quickly reach
diminishing returns of scaling-out a cloud deployment to meet
a certain performance target. Depending on the pricing model,
if too many VMs are required to meet performance because
of lack of scalability, the cloud deployment quickly becomes
uneconomical. Finally, the CAPEX/OPEX argument is less
clear-cut for HPC users. Publicly funded supercomputing cen-
ters typically have CAPEX in the form of grants, and OPEX
budgets may actually be tighter and almost fully consumed by
the support and administration of the supercomputer with little
headroom for cloud bursting. Software-as-a-Service offering
are also rare in HPC to date, although that might change in
the future. Data movement to and from cloud and the security
aspects are other challenges for HPC in cloud. However, they
are out of scope of this paper.

So, what are the conditions that can make HPC in the
cloud a viable business model for both HPC users and cloud
providers? Unlike large supercomputing centers, HPC users
in small-medium enterprises are much more sensitive to the
CAPEX/OPEX argument. For example, startups with HPC
requirements (e.g., simulation or modeling) in general have
little choice but to go to the cloud for their resources and
buying a supercomputer is not an option. Similarly, small-
medium enterprises with growing business and an existing
HPC infrastructure may be reluctant to grow on-premise re-
sources in volatile markets and would rather take a pay-as-you-
go approach. The ability to take advantage of a large variety of
different architectures (with different interconnects, processor
types, memory sizes, etc.) can result in better utilization at
global scale, compared to the limited choices available in
any individual organization. Running HPC applications on the
most economical architecture while meeting the performance
expectations can result in overall savings for consumers.

To illustrate a few possible HPC-in-the-cloud scenarios, we
collected and compared cost and price data of supercom-
puter installation and typical cloud offering. Based on our
survey of cloud prices, known financial situations of cloud
operators, published supercomputing costs, and a variety of
internal and external data sources [31], we estimate that a
cost ratio between 2x and 3x is a reasonable approximate range
capturing the differences between a cloud deployment and on-
premise supercomputing resources today. In our terminology,

2x indicates the case where 1 supercomputer core-hour is
twice as expensive as 1 cloud core-hour. Since these values
will continue to fluctuate, possibly in unforeseen ways, we
expand the range between 1x and 5x to capture different future
scenarios.

Using the performance evaluations for different applications
that we presented in Figure 1, we calculated the cost differ-
ences of running the application in the public cloud vs. running
it in a dedicated supercomputer (Ranger), assuming different
per-core-hour cost ratios from 1x to 5x. Figure 8a-c show
the cost differences for three applications, where values>1
indicate savings of running in the cloud and values<1 an
advantage of running it on a dedicated supercomputer. We
can see that for each application there is a scale in terms of
the number of cores up to which it is more cost-effective to
execute in the cloud vs. on a supercomputer. For example,
for Sweep3D, NAMD, and ChaNGa, this scale is higher
than 4, 8, and 16 cores respectively. Smaller-scale executions
in the cloud are advantageous, but after a certain scale it
becomes counterproductive. The break-even point is a function
of the application scalability and the cost ratio. However our
observation is that there is little sensitivity to the cost ratio
and it is relatively straightforward to determine the breakpoint.
This is true even for the cost ratio of 1. This might be the
artifact of slower processors for the Ranger vs. newer and
faster processors in the cloud.

VII. DISCUSSION: CLOUD BURSTING AND BENEFITS

In the previous sections, we provided empirical evidence
that applications behave quite differently on different plat-
forms, and interesting cross-over points appear when taking
cost into the equation. This observation opens up several
opportunities to optimize the mapping between applications
and platforms, and pass the benefits to both cloud providers
and end users. In this section, we discuss the case when the
dedicated infrastructure cannot meet peak demands and the
user is considering “cloud bursting” as a way to offload the
peaks to the cloud. In this case, the knowledge of application
and platform characteristics and their impact on performance
can help answer (1) which applications from a set to burst to
cloud, and (2) which cloud to burst to.

Consider (1), a simple allocation scheme may not even
find a feasible solution, regardless of the cost. For example,
first-come-first-served may exhaust the dedicated resources on



TABLE III: Findings
Question Answers

Who Small and medium scale organizations (pay-as-you-go benefits),
with applications which result in best performance/cost ratio in cloud vs. other platforms.

What Applications with less-intensive communication patterns, less sensitivity to noise/interference, small to medium scale
Why HPC users in small-medium enterprises much more sensitive to the CAPEX/OPEX argument.

Ability to exploit a large variety of different architectures (Better utilization at global scale, potential savings for consumers)
How Technical approaches: Lightweight virtualization, CPU affinity

Business models: cloud bursting, hybrid supercomputer–cloud approach with application-aware mapping

cloud-friendly applications, and attempt bursting to the cloud,
applications that do not scale and have no chance of meeting
the performance target.

Knowledge of application characteristics can also help to
answer (2), that is which cloud to select from the several
commercially available options, each having different charac-
teristics and pricing rates. For example, for some applications
demonstrating good scalability within a given range, it would
be cost effective to run on a low-cost ($ per core-hour) cloud.
For other communication-intensive applications a higher-cost
HPC-optimized cloud would be more effective.

Hence, we propose the co-existence of supercomputer and
cloud with a two step methodology – 1) characterize applica-
tions using theoretical models, instrumentation, or simulation
and 2) intelligently match applications to platforms based on
user preferences. In [32,33], we developed a proof-of-concept
mapper tool, and demonstrated that such intelligent mapping
can reduce cost by 60% while limiting the performance penalty
to 10-15% vs. a non optimized configuration.

VIII. RELATED WORK

Walker [2], followed by several others [3,6,7], conducted the
study on HPC in cloud by benchmarking Amazon EC2 [34].
The work by He et al. [35] extended the research to three
public clouds and real applications and compared the results
with dedicated HPC systems. Ekanayake et al. [36] compared
applications with different communication and computation
complexities and observed that latency-sensitive applications
experience higher performance degradation than bandwidth-
sensitive applications.

We address these issues by exploring techniques in open-
source virtualization, and quantify how close we can get to
physical machine performance for HPC workloads. There are
other recent efforts on HPC-optimized hypervisors [29,30,37].

Perhaps the most comprehensive evaluation of HPC in cloud
to date was performed under the US Department of Energy’s
(DoE) Magellan project [1, 4]. Jackson et al. [4] compared
conventional HPC platforms to Amazon EC2 and used real
applications representative of the workload at a typical DoE
supercomputing center. They concluded that the interconnect
and I/O performance on commercial cloud severely limits
performance and causes significant variability in performance
across different executions. A key take-away of the Magellan
project is that it is more cost-effective to run DOE applications
on in-house supercomputers rather than on current public
cloud offerings. However, their analysis is based on heavy
usage (like DoE) which justifies building a dedicated super-
computer, and benefits from economy of scale. Our work looks

at similar questions from the perspective of smaller scale HPC
users, such as small companies and research groups who have
limited access to supercomputer resources and varying demand
over time. We also consider the perspective of cloud providers
who want to expand their offerings to cover the aggregate of
these smaller scale HPC users, for whom an attractive option is
to look at a combination of own infrastructure and commercial
clouds based on pricing and demand.

Kim et al. [38] present three usage models for hybrid HPC
grid and cloud computing: acceleration, conservation, and
resilience. However, they use cloud for sequential simulation
and do not consider execution of parallel applications on cloud.
Napper and Bientinesi [8], Gupta and Milojicic [9,32], Roloff
et al. [39], and Marathe et al. [40] performed HPC-cloud cost
evaluation. Their conclusions are that different clouds have
different performance-cost tradeoffs for different applications.

Our approach in this paper is somewhat different: We take
a holistic viewpoint and consider all the different aspects of
running in cloud - performance, cost, and business models.

IX. CONCLUSIONS, LESSONS AND FUTURE WORK

Through a performance and economic analysis of HPC
applications and a comparison on a range of platforms, we
have shown that different applications exhibit different char-
acteristics that make them more or less suitable to run in a
cloud environment. Table III presents our conclusions.

Although some of the findings are similar to the behavior
of early Beowulf clusters, those clusters are quite different
from today’s clouds: processor, memory, and networking tech-
nologies have tremendously progressed. The appearance of
virtualization introduces multi-tenancy, resource sharing and
several other new effects. We believe our research will help
better understand which applications are cloud candidates, and
where we should focus our efforts to improve the performance.
Next, we summarize the lessons learned from this research and
the emerging future research directions.

A hybrid cloud-supercomputer platform environment can out-
perform its individual constituents. By using an underutilized
resource which is “good enough” to get the job done sooner
and more cheaply, it is possible to get better performance for
the same cost on one platform for some applications, and on
another platform for another application. More work is needed
to better quantify the “good enough” dimension, as well as the
deep ramification of cloud business models on HPC.

Lightweight virtualization is necessary to remove overheads
for HPC in cloud. With low-overhead virtualization, the same
hardware of a web-oriented cloud infrastructure can be reused



for HPC. We envisage hybrid clouds that can support both
HPC and commercial workloads. Such a hybrid cloud stack
would require proper tuning or VM re-provisioning for HPC
applications, which is a fertile topic for future research.

Application characterization for analysis of the performance-
cost tradeoffs for complex HPC applications is a non-trivial
task, but the economic benefits are substantial. More research
is necessary to be able to quickly identify important traits for
complex applications such as those with dynamic and irregular
communication patterns. A related future direction is to eval-
uate applications with irregular access patterns and dynamic
datasets, such as those arising from 4-D CT imaging, 3-D
moving meshes, and Computational Fluid Dynamics (CFD)
applications.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Lavanya Ramakrishnan
of US DoE’s Magellan project and Robert Schreiber of HP labs
for reviewing this paper and providing valuable feedback.

REFERENCES

[1] “Magellan Final Report,” U.S. Department of Energy (DOE), Tech. Rep.,
2011.

[2] E. Walker, “Benchmarking Amazon EC2 for high-performance scientific
computing,” LOGIN, pp. 18–23, 2008.

[3] P. Mehrotra, J. Djomehri, S. Heistand, R. Hood, H. Jin, A. Lazanoff,
S. Saini, and R. Biswas, “Performance Evaluation of Amazon EC2
for NASA HPC applications,” in Proceedings of the 3rd workshop on
Scientific Cloud Computing, ser. ScienceCloud ’12. New York, NY,
USA: ACM, 2012, pp. 41–50.

[4] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia,
J. Shalf, H. J. Wasserman, and N. J. Wright, “Performance Analysis
of High Performance Computing Applications on the Amazon Web
Services Cloud,” in CloudCom’10, 2010.

[5] “High Performance Computing (HPC) on AWS,” http://aws.amazon.
com/hpc-applications.

[6] C. Evangelinos and C. N. Hill, “Cloud Computing for parallel Scientific
HPC Applications: Feasibility of Running Coupled Atmosphere-Ocean
Climate Models on Amazon’s EC2.” Cloud Computing and Its
Applications, Oct. 2008.

[7] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “Performance Analysis of Cloud Computing Services for
Many-Tasks Scientific Computing,” IEEE Trans. Parallel Distrib. Syst.,
vol. 22, pp. 931–945, June 2011.

[8] J. Napper and P. Bientinesi, “Can Cloud Computing reach the Top500?”
ser. UCHPC-MAW ’09. ACM, 2009.

[9] A. Gupta and D. Milojicic, “Evaluation of HPC Applications on Cloud,”
in Open Cirrus Summit (Best Student Paper), Atlanta, GA, Oct. 2011,
pp. 22 –26. [Online]. Available: http://dx.doi.org/10.1109/OCS.2011.10

[10] “Ranger User Guide,” http://services.tacc.utexas.edu/index.php/
ranger-user-guide.

[11] A. I. Avetisyan et al., “Open Cirrus: A Global Cloud Computing
Testbed,” Computer, vol. 43, pp. 35–43, April 2010.

[12] D. Nurmi et al., “The Eucalyptus Open-source Cloud-computing Sys-
tem,” in Proceedings of Cloud Computing and Its Applications, Oct.
2008.

[13] “KVM – Kernel-based Virtual Machine,” Redhat, Inc., Tech. Rep., 2009.
[14] A. J. Younge, R. Henschel, J. T. Brown, G. von Laszewski, J. Qiu,

and G. C. Fox, “Analysis of Virtualization Technologies for High
Performance Computing Environments,” Cloud Computing, IEEE In-
ternational Conference on, vol. 0, pp. 9–16, 2011.

[15] D. Schauer et al., “Linux containers version 0.7.0,” June 2010,
http://lxc.sourceforge.net/.

[16] “Intel(r) Virtualization Technology for Directed I/O,” Intel Corporation,
Tech. Rep., Feb 2011, http://download.intel.com/technology/computing/
vptech/Intel(r) VT for Direct IO.pdf.

[17] “MPI: A Message Passing Interface Standard,” in M. P. I. Forum, 1994.

[18] L. Kale and S. Krishnan, “Charm++: A portable concurrent object
oriented system based on C++,” in Proceedings of the Conference on
Object Oriented Programming Systems, Languages and Applications,
September 1993.

[19] “NPB,” http://www.nas.nasa.gov/Resources/Software/npb.html.
[20] A. Bhatele et al., “Overcoming Scaling Challenges in Biomolecular

Simulations across Multiple Platforms,” in IPDPS 2008.
[21] P. Jetley, F. Gioachin, C. Mendes, L. V. Kale, and T. R. Quinn,

“Massively Parallel Cosmological Simulations with ChaNGa,” in IPDPS
2008, 2008, pp. 1–12.

[22] “The ASCII Sweep3D code,” http://wwwc3.lanl.gov/pal/software/
sweep3d.

[23] M. Koop, T. Jones, and D. Panda, “MVAPICH-Aptus: Scalable high-
performance multi-transport MPI over InfiniBand,” in Parallel and Dis-
tributed Processing, 2008. IPDPS 2008. IEEE International Symposium
on, april 2008, pp. 1 –12.

[24] E. Gabriel et al., “Open MPI: Goals, Concept, and Design of a Next
Generation MPI Implementation,” in Proc. of 11th European PVM/MPI
Users’ Group Meeting, Budapest, Hungary, 2004.
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