
Parallel Branch-and-Bound for
Two-Stage Stochastic Integer Optimization

Akhil Langer‡, Ramprasad Venkataraman‡, Udatta Palekar∗, Laxmikant V. Kale‡
‡Department of Computer Science, ∗College of Business

University of Illinois at Urbana-Champaign
{alanger, ramv, palekar, kale}@illinois.edu

Abstract---Many real-world planning problems require search-
ing for an optimal solution in the face of uncertain input.
One approach to is to express them as a two-stage stochastic
optimization problem where the search for an optimum in one
stage is informed by the evaluation of multiple possible scenarios
in the other stage. If integer solutions are required, then branch-
and-bound techniques are the accepted norm. However, there
has been little prior work in parallelizing and scaling branch-
and-bound algorithms for stochastic optimization problems.

In this paper, we explore the parallelization of a two-stage
stochastic integer program solved using branch-and-bound. We
present a range of factors that influence the parallel design for
such problems. Unlike typical, iterative scientific applications,
we encounter several interesting characteristics that make it
challenging to realize a scalable design. We present two design
variations that navigate some of these challenges. Our designs
seek to increase the exposed parallelism while delegating sequen-
tial linear program solves to existing libraries.

We evaluate the scalability of our designs using sample aircraft
allocation problems for the US airfleet. It is important that these
problems be solved quickly while evaluating large number of
scenarios. Our attempts result in strong scaling to hundreds
of cores for these datasets. We believe similar results are not
common in literature, and that our experiences will feed usefully
into further research on this topic.

I. Introduction
This paper presents our parallel algorithms for scalable

stochastic integer optimization. Specifically, we are interested
in problems with integer solutions, and hence, in Branch-and-
Bound (BnB) approaches. Although BnB is a well-studied
method, there has been little prior work in parallelizing or
scaling two-stage, stochastic Integer Programs (IPs).
We structure this paper to expose the design influences on

parallel solutions of stochastic IPs. Once past the introductory
sections (II--IV), we present our approach to parallelizing
stochastic IPs (V), and discuss the factors we considered
while designing a parallel BnB for such optimization problems
(VI). This section presents some of the challenges that set
this problem apart from typical parallel computational science
applications. We pick a programming model that enables the
expression and management of the available parallelism in
section VII. Finally, we present two primary design variations
(VIII and IX), and analyze their performance in section X.
The context for our work is a US fleet management problem

where aircraft are allocated to cargo movement missions under
uncertain demands (III). However, the design discussions and
parallelization techniques are not specific to it.

II. Two-stage Stochastic Integer Optimization

In real world situations, future outcomes are often dependent
on factors that cannot be deterministically predicted (e.g:
weather in agriculture, product demands in the manufacturing,
stock prices for an investor). However, resources have to be
allocated before these uncertain influences become known.
When resource use has to be optimized under such conditions,
the problem falls under the purview of stochastic optimization.
Unlike deterministic programming, stochastic programming
explicitly incorporates uncertain parameters by assuming a
probabilistic distribution to make a more rational decision
for optimal resource allocation. Application of stochastic
programming spans a diverse set of fields ranging from
production, financial modeling, transportation (road as well
as air), supply chain and scheduling to environmental and
pollution control, telecommunications and electricity.
In multi-stage stochastic programs, decisions are made in

multiple stages. For example, in portfolio management, a fixed
amount of cash available at time t0 has to be invested across
times t1, t2, ..tn. Decisions taken at time ti will depend on the
decisions/outcomes from ti−1. Unlike the case of portfolio
management in which the unknown parameters are realized
over a sequence of stages, in two-stage stochastic programs, all
the unknown parameters are realized in a single stage. In the
first stage, strategic decisions are made (the known resources
are allocated to the different fields of activities) and in the sec-
ond stage operational decisions are made for every scenario.
A specific instantiation of the unknown parameters is called
a scenario. Most applications can be formulated as two-stage
programs. Multi-stage programs can be solved by conversion
to two-stage programs or by applying the nested version of
the methods used to solve two-stage programs. Therefore we
focus our work on two-stage stochastic programs.
Two-stage stochastic optimization is commonly solved us-

ing Benders decomposition [1], where candidate solutions are
generated in Stage 1 and are evaluated in Stage 2 for every
scenario (Figure 1). Stage 1 (Eq.1) gets feedback from Stage 2
(Eq.2) in the form of cuts (Eq.3), which are used by the Stage
1 to improve the candidate solution. The process iterates until
no improvement can be made.

min cx+

s∑
s=1

psθs s.t. Ax ≤ b (1)

..min cx +

S∑
s=1

psθs

s.t. Ax ≤ b
Eslx + θs ≤ esl

. Stage 1 Linear/Integer
Program

.

min qsy
s.t.Wy ≤ hs − Tx∗

.

Stage 2 Linear Program

.

x∗

.

cuts
θs ≥ π∗

s (hs − Tx)

Fig. 1. Benders decomposition for 2-stage stochastic programs

θs = min(qsT y) s.t. Wy ≤ hs − Tsx (2)
θs ≥ π∗

s (hs − Tx∗) (3)

where, x is the candidate solution, c is the cost coefficient
vector, θ = {θs|s = 1..S} are the Stage 2 costs for the S
scenarios, ps is the probability of occurrence of scenario s, π∗

s

is the optimal dual solution vector for Stage 2 Linear Program
(LP) of scenario s. This method is also called the multicut L-
shaped method [2] in which one cut per scenario is added to
the Stage 1 in every iteration/round.
We restrict our work to the problems in which Stage 2

has only linear variables. When only linear variables are
present in Stage 1 also, we call it a stochastic LP. And
when Stage 1 has integer variables, we call it a stochastic
IP or a stochastic Mixed Integer Program (MIP). Louveaux
and Schultz [3], Sahinidis [4], in the broader context of
decision-making under uncertainty, give excellent overviews
of stochastic IP problems.

III. Case Study: Military Aircraft Allocation

The US Air Mobility Command manages a large fleet of
aircraft that are assigned to cargo and personnel movement
missions. These missions operate under varying demands
and experience sudden changes. The aim is to plan for an
upcoming time period by accounting for the uncertainty in
upcoming demands and allocating aircraft to missions such
that the overall costs are minimized. The uncertainty in
demands definitely puts this problem in the class of stochastic
programs. Integer solutions are required because aircraft need
to be dedicated completely to individual missions.
We use representative datasets that model this problem.

They are classified based on the number of time periods (days)
in the planning window and the number of possible scenarios
that need to be evaluated to account for the uncertainty. The
sizes of the LPs are given in Table I. For e.g., the 5t-120
dataset has approximately 135 integer variables in the Stage 1
IP, 1.6M variables in the Stage 2 LP, and about 1M Stage 2
constraints when evaluating 120 Stage 2 scenarios. Similarly,
3t-240 stands for the 3t model with 240 scenarios, and so on.

TABLE I
jetAlloc datasets: Stage 1 IP and Stage 2 LP sizes

Test 1st Stage 2nd-Stage Scenario Nonzero Elements
Problem Vars. Constrs. Vars. Constrs. A Wi Ti

2t 54 36 6681 4039 114 20670 84
3t 81 54 8970 5572 171 27991 88
4t 108 72 11642 7216 228 36422 140
5t 135 90 13862 8669 285 43518 168
8t 216 144 20944 13378 456 66881 252
10t 270 180 25573 16572 570 82797 308

These models can be downloaded in SMPS1 format from our
website2.

IV. Prior Work
Parallelizing IP optimizations using BnB is in itself a

challenging problem. Large scale solvers for Mixed Integer
Programs (MIPs) have been studied before [5], [6]. The diffi-
culty in achieving high efficiencies has been documented. Kale
et al [7] have studied the challenges of dynamic load balancing
in parallel tree search implementations. Gurobi [8] has a state-
of-the art mixed integer program solver that exploits multi-
core architectures. However, Koch et al in [6] observe that
Gurobi suffers from poor efficiency (typically about 0.1) as it
scales from 1 to 32 threads, the reason being that the number of
BnB vertices needed to solve an instance varies substantially
with different number of threads.
Our work involves optimization of stochastic IPs, which

have decomposable program structure and large size. It
presents further challenges that make it even harder to paral-
lelize than just IPs. Examples of the uses of stochastic integer
programming can be found in literature. Bitran et al [9] model
production planning of style goods as a stochastic mixed IP.
Dempster et al [10] consider heuristic solutions for a stochastic
hierarchical scheduling problems. A comprehensive listing of
work on stochastic IPs can be found here [11].
A stochastic program can be solved using its extensive

formulation, which is its deterministic equivalent in which
variables and constraints from all the scenarios are combined
together in a single large LP. This LP can then be fed to any
of the several open or commercial LP/IP solvers. However,
Escudero et al [12] note that MIP solvers such as CPLEX
[13] do not provide solution for even toy instances of two
stochastic IPs in a viable amount of time.
We have not found systematic studies of large-scale stochas-

tic integer optimization in literature. . PySP [14], [15] is a
generic decomposition-based solver for large-scale multistage
stochastic MIPs. It provides a Python based programming
framework for developing stochastic optimization models. For
the solution of the stochastic programs, it comes with parallel
implementations of algorithms such as Rockafellar and Wets'
progressive hedging. These tend to be heuristic algorithms
that require substantial parameter tuning. To the extent of
our knowledge, the computational and scaling behavior of
this framework have not been explored and the solver suffers

1http://myweb.dal.ca/gassmann/smps2.htm
2http://ppl.cs.illinois.edu/jetAlloc/

 100

 1000

 10000

 4 8 16 32 64 128

ti
m

e
 (

s
)

num processors

Stage 2 walltime
Stage 1 walltime
Total walltime

Fig. 2. Scaling limited by Amdahl's law in a master-worker design for
stochastic linear optimization (earlier work). Results for 10t-1000 model
obtained on Abe (dual quad-core 2.33GHz Intel Clovertown nodes with GigE)

from poor parallel efficiency because of MIP solve times.
Recent work of Lubin et al [16] is based on parallelizing
the dual decomposition of Stage 1 integer program by using
interior-point solvers. Their study is limited to 32 cores and
the approach suffers from load imbalance.

V. Parallelization Approach
Two-stage stochastic optimization problems have a natural

expression in a two-stage software structure. The first stage
proposes candidate solutions and the second stage evaluates
multiple scenarios that helps refine the solution from the first
stage. In earlier work [17] on stochastic LP, we focused on an
iterative, two-stage master-worker design for the solution of
stochastic linear programs. This tapped the readily available
parallelism in Stage 2 by evaluating multiple possible sce-
narios simultaneously (3a). Although such a design captured
much of the low-hanging, easily exploitable parallelism, it was
quickly limited by the serial bottleneck of performing Stage 1
computations (Figure 2).
In contrast to earlier work, this paper focuses on the solution

of stochastic integer programs (IP), which requires that Stage
1 solve an IP for every iteration. Since solving an IP is much
more computationally expensive than an LP, this will magnify
the serial bottleneck of the master-worker design such that
it becomes completely untenable. Thus, it is imperative to
reduce and hide this sequential bottleneck by exposing more
parallelism.
Our approach to parallelizing stochastic IPs is by using BnB

to obtain integer solutions to Stage 1 variables. We start by
relaxing the integrality constraints in Stage 1 and solve the
stochastic LP. BnB proceeds by branching on fractional parts
of a solution obtained from the stochastic LP and restricting
each branch to disjoint portions of the search space until
gradually all variables in the solution become integral. This
yields a tree where each vertex has one additional constraint
imposed on the feasible space of solutions than its parent.
We find a solution to this additionally constrained two-stage
stochastic LP at this vertex, and then continue to branch.
Therefore, each vertex in our BnB tree is a stochastic LP.
The stochastic LP at each vertex permits evaluating each of
the multiple scenarios in parallel. Additionally, the BnB search
for integer solutions permits exploring the disjoint portions of

the search space (i.e. the tree vertices) in parallel. Thus there
are two sources of parallelism - simultaneous evaluation of
Stage 2 scenarios and the simultaneous exploration of BnB
tree vertices. This nested parallelism has to be exploited for
any reasonable scalability.
A relevant observation that influences processor utilization

is the mutual exclusivity of the two stages of the stochastic
programs. For a given vertex, Stage 1 cannot proceed while it
is waiting for feedback from Stage 2, and Stage 2 is necessarily
dependent on Stage 1 for each new candidate solution. Ensur-
ing high utilization of compute resources will therefore require
interleaving the iterative two-stage evaluation of multiple BnB
vertices. This is also what makes this application distinct from
the traditional applications of BnB. In traditional applications
of BnB such as integer programming, traveling salesman
problem (TSP), game tree search algorithms, etc. each tree
vertex is an atomic unit of work i.e. when a vertex is processed
it is either pruned or tagged as an incumbent solution or
branches to generate children. No further processing of that
vertex is required. On the other hand, in our application, each
tree vertex is a stochastic LP optimization and therefore can
require multiple rounds of Stage 1 and Stage 2 computations
for optimization. While a vertex is being processed in Stage
2, its Stage 1 state has to be saved, so that it can be retrieved
for the next Stage 1 computation (which will happen when the
corresponding current Stage 2 finishes).

VI. Design Considerations
A. Coarse-Grained Decomposition
In our designs, we choose to delegate sequential LP so-

lutions in Stage 1 and Stage 2 to an existing optimization
library. This allows us to leverage the expertise encapsulated
in these highly tuned libraries and focus on the parallelization
and accompanying artifacts. Hence, the fundamental unit of
sequential computation in our designs is a single linear pro-
gram solve. This results in very coarse grain sizes.

B. Unpredictable Grain Sizes
There is sizeable variation in the time taken for an LP

solve in both Stage 1 and Stage 2. Additionally, there is no
persistence in the time taken for LP solves. A single Stage 1
LP for a given vertex may take widely varying times as a result
of the addition of a few cuts from Stage 2. Likewise, we do not
observe any persistence in Stage 2 LP solve times either across
different scenarios for a given Stage 1 candidate solution, or
for the same scenario across different candidate solutions. An
illustrative execution profile is presented in Figure 4.

C. Varying Amounts of Available Parallelism
The BnB tree exposes a varying amount of parallelism as

the search for an optimum progresses. The search starts with a
single vertex (the tree root) being explored. More parallelism
is gradually uncovered in a ramp-up phase, as each vertex
branches and creates new vertices. However, once candidate
integer solutions are found, the search tree can be pruned to
avoid unnecessary work. For large enough search trees, there is

Stg1Solver
Integer Program

Manager

Stg2Solver
LP

Stg2Solver
LP

Stg2Solver
LP

allocation

scenarios, allocations

cuts

(a) Naive parallelisation with Benders decomposition

𝑥1 ≤ 3 𝑥1 ≥ 4

𝑥2 ≥ 2 𝑥2 ≤ 1 𝑥3 ≥ 3 𝑥3 ≤ 2

(b) Nested parallelism with Branch-and-Bound and Benders decomposition

Fig. 3. Exploiting nested prallelism in stochastic integer programs

Fig. 4. Sample execution profile of evaluating multiple Stage 2 scenarios
for candidate Stage 1 solutions. Each processor (horizontal line) is assigned
a specific Stage 2 scenario, and evaluates multiple candidate solutions from
Stage 1 one after the other. Colored bars represent an LP solve, while white
stretches are idle times on that processor. LP solve times vary significantly
and show no persistence, both across scenarios and across candidate solutions.

usually a middle phase when there are a large, but fluctuating
number of vertices on the exploration front depending on
branching and pruning rates. Once the optimum is found, the
remaining work involves proving its optimality by exploring
the tree until all other vertices are pruned. Towards the end,
pruning starts to dominate and the front of exploration shrinks
rapidly. Any parallel design has to necessarily cope with, and
harness these varying levels of available concurrency.

D. Load Balance
The utter lack of persistence in the sizes of the sequential

grains of computation and the constantly varying amount of
available parallelism imply that a static a priori partition of
work across different compute objects (or processors) will
not ensure high utilization of the compute resources. It also
precludes the use of any persistence-based dynamic load
balancing solutions. Hence, our designs adopt pull-based or
stealing-based load balancing techniques to ensure utilization.
To avoid idle time, a parallel design must maintain pools of
available work that can be doled out upon pull requests.

E. Solver Libraries Maintain Internal State
Unlike other numerical libraries, LP solvers maintain in-

ternal state across calls. They maintain the optimal basis of
the previous problem that was solved. Most use cases for
such solvers involve iterating over a problem with repeated

calls to the library. Typically, each call supplies only mildly
modified inputs as compared to the previous invocation. In
such cases, the search for an optimum can be greatly sped
up by starting from the previous solution. Hence, it is highly
desirable to retain this internal state across calls as it greatly
shortens the time to solution. This is known as a ``warm'' start
or ``advanced'' start.
The two-stage optimization problems that interest us follow

this pattern too. There are many iterations (rounds) to converge
to a solution. In Stage 1, each iteration only adds/deletes a
few constraints on the feasible search space. In Stage 2, the
coefficient matrix of the LP remains the same, and only the
right-hand sides of the constraints are modified across calls.
A more detailed discussion on the impact of advanced starts
can be found in [17].
Hence, it is beneficial to (a) allow all the solver library

instances in the parallel execution to maintain state across
calls and, (b) to maintain an affinity between the solvers
and the problems that they work on across iterations. It is
desirable to pick a parallel programming paradigm that will
permit encapsulating and managing multiple solver instances
per processor.

F. Concurrency Limited by Library Memory Footprint

The lowest levels of the BnB tree that have not been pruned
constitute the ``front'' of exploration. The number of vertices
on this front at any given instant represents the maximum
available concurrency in exploring the tree. Each vertex on this
front represents a unique combination of branching constraints.
Since each vertex goes through multiple iterations (rounds), it
is desirable to exploit warm starts for each vertex. This can
be achieved by assigning one solver instance for each vertex
that is currently being explored. However, LP solvers have
large memory footprints. The memory usage required for a LP
solver instance for 3t, 5t, 10t, 15t are 50MB, 100MB, 230MB,
950 MB, respectively in Stage 1 and 10MB, 15MB, 30MB,
45MB, respectively in Stage 2. This implies that the number
of solver instances is limited by available memory, and can
be substantially smaller than the number of vertices in a large
BnB search tree.

The actual subset of vertices on the front that are currently
being explored are known as ``active'' vertices. The parallel de-
sign should account for the memory usage by solver instances,
carefully manage the number of active vertices, and expose as
much parallelism as permitted by memory constraints.

G. Stage 2 Feedback Can Be Shared Across the BnB Tree
While the set of branching constraints for each vertex are

unique to it, the cut constraints from Stage 2 are not. The
branching constraints influences the candidate allocations that
are generated in Stage 1. These, in turn, only affect the
right hand sides in the Stage 2 LPs, which simply alters the
objective function in dual of the Stage 2 LP. The dual polytope
of the Stage 2 LPs remains the same across all the vertex
in the BnB tree. This implies that the dual optimal solutions
obtained in Stage 2 for a candidate solution from the Stage
1 LP of a given vertex, are all valid dual extreme points for
any vertex in the BnB tree. Hence, the Benders cuts that are
generated from the Stage 2 LPs remain valid irrespective of
the branching constraints imposed on a vertex, implying that
cuts generated from evaluating scenarios for a given vertex
are also valid for all vertices in the BnB tree.
This observation provides a powerful solution to increasing

the exposed parallelism while remaining within the memory
usage constraints. Since cuts can be shared across vertices,
two vertices only differ in the branching constraints unique
to them. By applying this delta of branching constraints, a
Stage 1 LP solver instance can be reused to solve a Stage
1 LP from another vertex. Solver libraries typically expose
API to add / remove constraints. Hence, it becomes possible
to reuse a single solver instance to interleave the exploration
of multiple BnB vertices. We can simply remove branching
constraints specific to the vertex that was just in a Stage 1 LP
solve, and reapply constraints specific to another vertex that
is waiting for such a Stage 1 solve. This permits exploring
more vertices than the available number of solver instances,
and also retains the ability to exploit warm starts for Stage 1
LP solves.
The reasoning presented here also implies that the same

Stage 2 solver instance can evaluate scenarios across multiple
vertices. Hence, we can share both Stage 1 and Stage 2 solvers.

H. Total Amount of Computation is Variable and Perturbable
The total amount of computation performed to complete

the BnB exploration depends on the number of BnB vertices
explored and the number of Stage 1--Stage 2 rounds for each
vertex. Unlike traditional iterative HPC algorithms, this total
work required is variable and not known a priori. This is
compounded by the fact that the shape and size of the BnB tree
is easily perturbed. The number of vertices explored depends
on the branching and pruning decisions during the exploration.
Any factor that affects these decisions can alter the time to
solution.
1) Incumbent Ordering: A parallel exploration of the BnB

tree implies that even if the explored trees are identical across
two runs, the order in which incumbent solutions are generated

can vary slightly because of LP solve times, system noise,
network interference in message communication, etc. This
order affects the pruning of vertices from the tree. Some cases
might even cause a slightly worse incumbent to prune a vertex
that would have yielded a slightly better incumbent (but within
the pruning threshold) simply because the worse incumbent
was generated slightly early on another processor.
2) Degeneracy: Degeneracy occurs when the same extreme

point on the feasible space polytope can be represented by
several different bases. When this happens at the optimal
extreme point, there can multiple dual optimal solutions. LPs
often have degenerate solutions. While solving LPs, depending
upon the starting point of the simplex method, one can end
up with different solutions. If we share solver resources in an
attempt to circumvent memory limitations, we cause an LP
solve to start with an internal state that was the result of the
previous LP solve for a different vertex. Thus, sharing solvers
can yield different solutions to an LP depending on the order
in which vertices use the shared LP solver instance. This can
happen in both Stage 1 and Stage 2. Different LP solutions can
impact the branching decisions under that vertex in the BnB
tree. This reasoning implies that sharing LP solver instances
can lead to different BnB tree structures.

I. Better Utilization ̸= Better Performance

For many parallel, HPC applications, load balance ensures
minimal overall compute resource idle time, and hence results
in better performance by maximizing the rate of computations.
However, parallel, BnB search confounds such thinking. In-
deed, reducing idle time by eagerly exploring as much of the
tree as possible might be counter-productive by using compute
resources for exploring sub-trees that might have been easily
pruned later.

VII. Programming Model

The designs that we discuss here are implemented in
an object-based, sender-driven parallel programming model
called Charm++ [18], [19] . Charm++ is a runtime-assisted
parallel programming framework in C++. Programs are de-
signed using C++ constructs by partitioning the algorithm into
classes. Charm++ permits elevating a subset of the classes
and methods into a global space that spans all the processes
during execution. Parallel execution then involves interact-
ing collections of objects, with some objects and methods
being invoked across process boundaries. Data transfer and
messaging are all cast in the form of such remote method
invocations. Such remote methods are always one-sided (only
sender initiates the call), asynchronous (sender completes
before receiver executes method), non-blocking (sender's side
returns before messaging completion) and also do not return
any values (remote methods are necessarily of void return
type). Charm++ supports individual instances of objects, and
also collections (or chare arrays of objects). Some features of
Charm++ that enable the designs discussed in this paper:

Stage 1
Manager

Vertex Pool

Vertex
request

Vertex

Add vertices

M*X Tree Explorers
on M processors

S1-1

S2-1

S1-2

CharmRTS
Priority
Queue

Cut Manager

N*X Scenario Evaluators
of N processors

S2-2

S1-3

S2-3

S3-1

S4-1

S3-2

CharmRTS
Priority
Queue

Cut Manager

S4-2

S3-3

S4-3

Processor
M+N

Processor
 M+1

Processor
1 to M

candidate
solution

cuts

Parent Vertex cuts

Processor 0

(a) Design A: Every vertex in the BnB tree performs its own iterative, two-
stage linear optimization in isolation from other vertices. There are X Tree
Explorers on every Stage 1 processor. S1-3 corresponds to the Scenario
Evaluator for scenario 1 of Tree Explorer 3, and similarly others.

𝑁 Scenario Evaluators
on N Processors

Stage 1
Manager

Stage 2
Manager

M Tree Explorers
on M processors

candidate solutions

vertex request by
 starving tree

explorers

issues vertex
migration

Send work
 request

Candidate
Solutions

cuts

vertices
& cuts

Processor 0

Processors
1 to M

Processors
M+1 to M+N

Processor 0

(b) Design B: BnB vertices share resources (Stage 1 and Stage 2 solver
objects) and constraints on the feasible solution space (cuts) while iteratively
solving the nested two-stage linear programs.

Fig. 5. Schematics of the parallel components in the two design variants

a) One-sided messaging: helps express and exploit the
synchronization-free parallelism found in parallel BnB. Ex-
tracting performance in a bulk synchronous programming
model can be quite challenging.

b) Object-based expression: of designs facilitate the easy
placement and dynamic migration of specific computations on
specific processors. It also permits oversubscribing processors
with multiple objects to hide work-starvation of one with
available work in another.

c) Non-blocking reductions: for any required data collec-
tion, notifications etc avoids any synchronization that could be
detrimental to performance. A programming model well suited
to such problems, should unlock all the available parallelism
without bridling it with synchronization constructs.

d) Prioritized execution: allows us to simply tag mes-
sages with appropriate priorities and allow the Charm++
runtime system to pick the highest priority tasks from the
available pool.

VIII. Design A:
Each BnB Vertex is an Isolated Two-Stage LP

A. Stage 1 Tree Explorers
A collection of compute objects (chare array in Charm++)

explore the BnB tree in parallel. Each Tree Explorer hosts
an instance of the Gurobi LP library. Tree Explorers are
constrained to explore only one vertex at a time. Whenever a
new vertex is picked, the library instance is reset and reloaded
with a known collection of cuts from an ancestor vertex.
When the vertices are waiting on Stage 2 feedback, the Tree
Explorer idles. The processors dedicated to exploring the tree
are oversubscribed by placing multiple Tree Explorers on each.
The Charm++ runtime automatically overlaps idle time in
one object with computation in another object by invoking

any objects which are ready to compute. In the situation
when multiple objects on a processor are ready to compute,
execution is prioritized according to the search policy. This
is indicated to the Charm++ runtime by tagging the messages
with a priority field. This field can be an integer (tree depth),
a fraction (bounds / cost), or a bitvector (vertex identifier).

B. Cut Dump Manager
Solving stochastic LP at each vertex from scratch can be

very expensive as this potentially repeats a lot of avoidable
Stage 1--Stage 2 rounds to regenerate all the cuts that would
have been generated by vertex's ancestors. Each vertex, there-
fore, starts with the cuts of its parent. This significantly re-
duces the number of rounds required to optimize the stochastic
LPs.
We precompute the available memory on the system and

corral a portion of it for storing dumps of cut collections.
Whenever a vertex converges, we extract its collection of
cuts from the library instance and store it in the available
memory. The dump is tagged with the bitvector id of the
vertex. Whenever an immediate child of this vertex is picked
for exploration, the parent's cut collection is retrieved and
applied to the library instance. Once both children of a vertex
are explored, the parent's dump is discarded. Hence, at any
given time, the number of cut dumps stored is a linear
function of the number of vertices on the tree frontier. The
cut collection dumps are managed by a third chare collection
called the Cut Manager. Objects of this collection are not
placed on processors with Tree Explorers in order to keep
them reasonably responsive to requests.

C. Scenario Evaluators
Akin to the Tree Explorers, the Scenario Evaluators are

a collection of compute objects each of which hosts an LP

instance. These evaluate the candidate solutions for one or
more scenarios and send the generated cuts directly back to the
Tree Explorer that hosts the specific BnB vertex. We dedicate a
collection of Scenario Evaluators to each Tree Explorer. Each
Tree Explorer object interacts directly with its collection of
Scenario Evaluators. We place these multiple collections of
Scenario Evaluators on the same subset of processors. Idle
time in one is overlapped with computation in another. The
execution of Stage 2 computations for the most important
vertices is again achieved by simply tagging the messages
with the priorities of the corresponding vertices.

D. Load Balancing
When a Tree Explorer converges to an LP solution on

a vertex, on its currently assigned vertex, further work is
generated only if the vertex branches. In this case, the children
are deposited with the Stage 1 Manager vertex queue. After
every Stage 1 LP convergence, the Tree Explorer requests the
Stage 1 Manager for a new vertex to work on. The Stage 1
Manager dequeues the highest priority vertex from its vertex
queue and sends it to requesting Tree Explorer. Thus all Tree
Explorers always pull from a global pool of available work.
This effectively balances Stage 1 load and also ensures a
globally prioritized tree exploration.

IX. Design B:
BnB Vertices Share Cut Constraints, Tree Explorers and

Scenario Evaluators

A. Stage 1 Tree Explorers
Each Tree Explorer object stores and explores several

vertices. The vertices are divorced from the library instance
by separately storing the set of branching constraints specific
to each vertex. Every object maintains a set of private vertex
queues to manage the vertices in different stages of their lifes-
pan. When the LP library completes a solve, the next vertex
is picked from a ``ready'' queue. This queue is prioritized
according to the search policy (depth-first, most-promising-
first, etc). The delta of branching constraints between the
previously solved vertex and the currently picked vertex is
applied to the LP library to reconstruct the Stage 1 LP for
the newly selected vertex. The Stage 1 LP is then solved to
yield a new candidate solution for the current vertex. This
candidate solution is sent for evaluation against the set of
Stage 2 scenarios and the vertex is moved to a ``waiting''
queue. The compute object repeats the process as long as there
are vertices waiting to be solved in the ready queue. Vertices
move back from the waiting queue into the ready queue when
the cuts from evaluating all the scenarios for the generated
candidate allocation are sent back to the Tree Explorer. When
a vertex ``converges'', that is, when the optimal fractional
solution to the stochastic LP described by the vertex is found,
it is ``retired'' by either pruning it or branching further.
The number of Tree Explorer objects is smaller than the

number of vertices in the search tree. We also find from
experiments that it is sufficient for the number of such Tree

Explorers to be a small fraction of the number of processors
in a parallel execution.
Cuts generated from a scenario evaluation can be used in

all the Stage 1 LPs. However, we have found that this results
in a deluge of cuts added to the Stage 1 library instances.
In earlier work [17], we have observed a strong correlation
between the number of cuts added to a library instance and the
time taken for the LP solve. Hence, instead of sharing the cuts
across the entire BnB tree, we share cuts only across vertices
hosted by a single Tree Explorer. Cuts generated from the
evaluation of a candidate solution are hence messaged directly
to the solver hosting the corresponding vertex. However, the
collection of cuts accumulated in a library instance continues
to grow as more vertices are explored. Since some of these
may be loose constraints, we discard them to make space for
newer constraints. If these constraints are required again later
on, they will be regenerated by the algorithm. We implement
bookkeeping mechanisms that track the activity of cuts and
retires cuts identified as having low impact (longest-unused,
most-unused, combination of the two, etc). This maintains a
fixed window of recent cuts that are slowly specialized to the
collection of active vertices sharing that library instance. The
impact of cut retirement on solve times is illustrated in [17].

B. Stage 2 Manager
Candidate solutions from the Tree Explorers are sent to a

Stage 2 Manager object. This object helps implement a pull-
based work assignment scheme across all Scenario Evaluators.
To do this, it maintains a queue of such candidate solutions and
orchestrates the evaluation of all scenarios for each candidate.
In order to remain responsive and ensure the quick completion
of pull requests, the object is placed on its own dedicated
core and other compute objects (which invoke, long, non-
preempted LP solves) are excluded from that core. The Stage
2 Manager ensures that each Tree Explorer gets an equal share
of Stage 2 evaluation resources by picking candidates from
Tree Explorers in round-robin fashion.

C. Stage 2 Scenario Evaluators
In this design variant, all Tree Explorers share the same

collection of Scenario Evaluators. A Scenario Evaluator re-
quest the Stage 2 Manager for candidate Stage 1 solutions
and evaluate these solutions for one or more scenarios. Upon
evaluation, they send the generated cuts directly back to
the Tree Explorer that hosts the specific BnB vertex. This
pull-based scheme ensures good utilization of the processors
hosting Scenario Evaluators, and also balances the scenario
evaluation workload across all the Stage 2 processors. Given
that the Stage 2 LP solve times are typically much larger
than the messaging overhead to obtain work, the pull-based
approach has negligible overhead.

D. Load Balancing
A Tree Explorer maintains a private list of vertices. It

regularly updates the Stage 1 Manager of the total number of
vertices that it currently has. Whenever a Tree Explorer runs

1 2 3 1 2 4 6 5 10 15 20 5 10 15 20 30 40 15 20 30 40 60 40 60 80 10
0

12
0

14
0

16
0

number of stage 1 tree explorers
22
23
24
25
26
27
28
29

210
211
212

tim
e

to
 s

ol
ut

io
n

(s
ec

on
ds

)

p6 p15 p30 p60 p120 p240

(a) Design A

1 1 2 3 1 2 3 4 6 1 2 3 4 6 8 10 1 2 3 4 6 8 10 12 16 20 2 4 6 8 10 12 16 20 24 32

number of stage 1 tree explorers
22
23
24
25
26
27
28
29

210
211
212

tim
e

to
 s

ol
ut

io
n

(s
ec

on
ds

)

p3 p6 p15 p30 p60 p120

(b) Design B

Fig. 6. Strong Scaling for the 3t-120 model. Colors correspond to the scale (number of processors) e.g. p6 is for 6 processors, p15 for 15, and so on. At
each scale, runs for performed for varying number of Tree Explorers. For each configuration 5 trials are performed to measure the variability

TABLE II
Average Stage 1 LP solve time comparison between Design A and Design B

Model Stage 1 LP solve time (s)
Design A Design B

3t-120 0.38 0.04
3t-240 0.98 0.08
5t-120 2 0.25

out of work i.e. has evaluated all its vertices, it requests the
Stage 1 Manager for work. Stage 1 Manager selects the most
loaded Tree Explorer and sends it a request to offload half of
its workload to the starving Tree Explorer. The max loaded
Tree Explorer sends half of its vertices and its LP solver state
(cuts) to the starving Tree Explorer.

X. Performance and Analysis
All experiments were performed on the 268 node (3216

cores) Taub cluster installed at University of Illinois. Each
node has Intel HP X5650 2.66 GHz 6C processors and
24GB of memory. The cluster has a QDR Infiniband network
communications with a Gigabit Ethernet control network. We
used Gurobi [8] as the LP solver.
As noted in 5a and 5b, Stage 1 Manager and Stage

2 Manager (in Design B) are placed on processor 0. Tree
Explorer and Scenario Evaluator are place on disjunct set of
processors, with Tree Explorer objects placed on processors
1 through M , and Scenario Evaluator objects placed on
processors M + 1 through N , where M +N + 1 is the total
number of processors. We use depth first search as the BnB
vertex prioritization policy, where depth is determined by the
total number of branching decisions taken on the path from
the root node to that vertex. For vertices with the same depth,
one with a smaller lower bound is given higher priority.

A. Variability in Execution time
As discussed in subsection VI-H, both designs suffer from

variability in execution times across runs with identical con-
figurations. Design A ensures that the branching order remains

the same across all runs of the same model. However, as
discussed in VI, the chronology of incumbent discoveries
might vary slightly across runs, thereby causing different
pruning decisions and different BnB tree sizes. Design B, in
addition, has another source of variation. The order in which
the Stage 1 and Stage 2 solves are done can alter the LP
solutions to the same problem because of the combined effect
of advanced start and degenerate Stage 1, Stage 2 LPs. This
changes the branching decisions and hence different trees are
generated. This can cause significant variation in the time to
solution.
Figure 6 plots the performance of the two designs for 3t-

120. On x-axis is the number of Tree Explorers. Each color
corresponds to a scale e.g. p3 is for 3 processors, p6 for 6,
and so on. At each scale, we measured the performance for
varying number of Tree Explorers. For every configuration,
we did 5 trials to measure the variability. The time to solution
in these trials is plotted with markers in the same vertical
line. Design A has much less variability as the markers are
very close to each other as compared to the Design B, where
performance varies even by an order of magnitude in some
cases. In Figure 7, we plot the BnB trees explored in two
identically configured executions of Design B on the 5t-120
model. This explains the large variation in performance of
Design B.

B. Performance Comparison

The number of Tree Explorers at any given execution
scale has a significant effect on the performance. Expectedly,
increasing the number of Tree Explorers too much inundates
Stage 2 with work and deteriorates performance. We have
also ascertained that the concurrent execution of several Stage
1 LPs on the same compute node of the machine increases
the individual solve times because of memory bandwidth
limitations. From Figure 6 it is clear that Design B, despite
having high variability has significant advantage in terms of

Fig. 7. The Branch-and-Bound trees from two identically configured executions of Design B for the 3t-120 dataset. The trees from the two trials are
significantly different because of branching on different variables in different orders. This explains the large variation in performance across trials. Triangles
represent integer solutions (incumbents), while the vertices are colored by the value of bound

0 10 20 30 40 5010-4

10-3

10-2

10-1

100

fra
ct

io
n

of
 v

er
tic

es

number of rounds

(a) Design A

0 10 20 30 40 5010-4

10-3

10-2

10-1

100

fra
ct

io
n

of
 v

er
tic

es

number of rounds

(b) Design B

Fig. 8. Analyzing the cause of slower performance of Design A as compared
to Design B. (a) and (b) plot the histogram of the number of rounds taken to
solve the stochastic LP at the BnB tree vertices in the 5t-120 model.

solution speed over Design A. This advantage is two-fold.
First, the number of rounds to achieve convergence at the
tree vertices is much smaller in Design B. This effect is
shown in 8a, 8b in which we plot a histogram of the
number of rounds vertices take to converge in the two designs.
This difference can be attributed to the difference in the set
of Benders cuts that are maintained by the two designs. In
an effort to maintain repeatability, Design A always starts
with the cuts from the parent vertex. On the other hand,
Design B uses the most current set of cuts resident on the
processor being used. This means that Design B has access
to cuts generated in different parts of the tree and is therefore
likely to have more cuts that are binding and thus speed up
convergence. Secondly, the stage 1 linear programs also take
less time to solve in Design B (Table II). Since in Design
A, every new vertex starts with a fresh start of the Gurobi
library instance, a significant number of simplex iterations
are required to optimize the LP in the first round for each
vertex. Conversely, Design B always uses advanced start and
the most recent cut set. The LPs differs from the previous
vertex LP only in the few branching constraints and thereby,
the LP solves very quickly using advanced start.
Even though Design A has better repeatability, the worst

performance using Design B is better than the best perfor-
mance using Design A. Therefore, Design B is the design
of choice because of quicker time to solutions. Additionally,

TABLE III
Cumulative distribution of trials of Design B for a target minimum parallel

efficiencies on 3t-120 (baseline: 3 cores)

Efficiency(%) > Number of processors
6 15 30 60 120

100 1.0 0.9 0.95 0.066 0.0
90 1.0 1.0 0.95 0.066 0.2
80 1.0 1.0 0.95 0.466 0.4
70 1.0 1.0 1.0 0.733 0.4
60 1.0 1.0 1.0 0.866 0.6
40 1.0 1.0 1.0 1.0 1.0

TABLE IV
Cumulative distribution of trials of Design B for a target minimum parallel

efficiency on 5t-120 (baseline: 3 cores)

Efficiency(%) > Number of processors
6 15 30 60 120

100 0.95 0.7 0.8 0.2 0.0
90 0.95 0.75 0.85 0.4 0.0
80 0.95 0.8 0.85 0.4 0.0
70 1.0 0.8 0.9 1.0 0.2
60 1.0 0.85 0.9 1.0 0.6
40 1.0 0.85 1.0 1.0 0.8

Design A suffers from large memory requirements for cut
dump collection, which can become a bottleneck for larger
data sets in which the tree frontier becomes very large before
the solution is found.

C. Performance of Design B
Using large-scale parallel computing for an application is

advantageous when it is guaranteed that running the appli-
cation on more processors will give faster times to solution.
Unlike typical scientific iterative applications, Design B for
this application suffers from large variability in execution
times for runs with identical configurations, which makes
it difficult to measure its parallel efficiency. We therefore
need a different method to quantify its parallel efficiency
in the wake of variation. Our method is to measure the
probability of getting a certain parallel efficiency. To measure
the performance of Design B with this metric, we did 20
trials of Design B with each of 3t-120 and 5t-120 datasets.
In Table III and Table IV, first column has the parallel
efficiencies. Rest of the columns report, at different scales,
the fraction of trials that achieved greater efficiency than the
corresponding entry in the first column. For example, for 3t-

3 6 15 30 60 120 240 480
number of processors

23

24

25

26

27

28

29

210

211

212

213

tim
e

to
 s

ol
ut

io
n(

s)
Design A Design B

3t-240
3t-120
.

8t-120
5t-240
5t-120

3t-480
3t-240
3t-120

Fig. 9. Scaling of various models for Design A and Design B

120, the parallel efficiency was greater than 90% in 95% of the
trials at 6 processors and in 75% of the trials at 15 processors.
These results show that in majority of the cases efficiency
was greater than 40% at all scales for both the datasets. Also
note the super linear speedup in some cases. As compared to
Gurobi's typical efficiency of 10% for IPs [6], our algorithms
yield significantly higher parallel efficiencies even at larger
scales.
We further report the scaling of Design A and Design B in

Figure 9. We identify the best performing Tree Explorer count
at each scale by comparing the average time to solution across
5 trials. Average times to solutions for these Tree Explorer
counts are presented in Figure 9 for several datasets. We
get very good incremental speedups on up to 480 processors
for several datasets. The scaling at large scales is limited
by the root vertex optimization, which takes many rounds
to converge as compared to the other vertices. During root
node optimization there is only 1 vertex and hence no Stage 1
parallelism. Scaling at large scales is additionally limited by
the critical path to reach the optimal solution.

XI. Summary

We have discussed and presented several factors that in-
fluence the design and performance of parallel, two-stage
stochastic integer programs solved using Branch-and-Bound.
We have also presented two designs that prioritize different
factors: 1) a nested parallel decomposition that solves each
BnB vertex in isolation and 2) a design variant that shares
LP library solvers as well as Stage 2 feedback across BnB
vertices. The interplay between some of the factors like
memory usage, solver sharing, degeneracy and tree structure
are borne out by the performance results for both these designs
on multiple datasets. Sharing solvers and cuts results in more
variable, yet better performance. We also show strong scaling
from 6 cores up to 480 cores of a dual hex-core, 2.67 GHz,

Intel Xeon cluster. Because of the inherent variability in the
amount of computation required, we also report the spread in
performance by tabulating the fraction of trials that achieved
various parallel efficiencies. We believe these are noteworthy
results for strong scaling such an unconventional problem.
However, there is still a need for further characterizing

the behavior of parallel stochastic integer programs; and for
further research into techniques for improved scalability. We
feel our experiences and findings are a useful addition to the
literature and can seed further work in this direction.

Acknowledgments

This research was supported by MITRE Research Agree-
ment Number 81990 with UIUC. We acknowledge the use
of the Taub compute resource provided by the Computational
Science and Engineering Program at the University of Illinois.
We thank Wayne L. Hoyenga (UIUC) for his help with
licenses, configuration and access to the compute resources.
We used Gurobi [8] solvers under a license that permits
academic use at no cost.

References

[1] J. Benders. Partitioning Procedures for Solving Mixed Variables Pro-
gramming Problems. Numerische Mathematik 4, pages 238--252, 1962.

[2] J.R. Birge and F.V. Louveaux. A Multicut Algorithm for Two-stage
Stochastic Linear Programs. European Journal of Operational Research,
34(3):384--392, 1988.

[3] F.V. Louveaux and R. Schultz. Stochastic Integer Programming. Hand-
books in operations research and mgmt science, 10:213--266, 2003.

[4] N.V. Sahinidis. Optimization Under Uncertainty: State-of-the-art and
Opportunities. Computers & Chemical Engg, 28(6):971--983, 2004.

[5] Y. Xu, T.K. Ralphs, L. Ladányi, and M.J. Saltzman. Computational Ex-
perience with a Software Framework for Parallel Integer Programming.
INFORMS Journal on Computing, 21(3):383--397, 2009.

[6] T. Koch, T. Ralphs, and Y. Shinano. Could we use a Million Cores
to Solve an Integer Program? Mathematical Methods of Operations
Research, pages 1--27, 2012.

[7] Amitabh Sinha and L.V. Kale. A load balancing strategy for prioritized
execution of tasks. InWorkshop on Dynamic Object Placement and Load
Balancing, in co-operation with ECOOP's 92, Utrecht, The Netherlands,
April 1992.

[8] Gurobi Optimization Inc. Software, 2012. http://www.gurobi.com/.
[9] G.R. Bitran, E.A. Haas, and H. Matsuo. Production Planning of Style

Goods with High Setup Costs and Forecast Revisions. Operations
Research, 34(2):226--236, 1986.

[10] M.A.H. Dempster, ML Fisher, L. Jansen, BJ Lageweg, JK Lenstra, and
A.H.G.R. Kan. Analysis of Heuristics for Stochastic Programming: Re-
sults for Hierarchical Scheduling Problems. Mathematics of Operations
Research, 8(4):525--537, 1983.

[11] Maarten H. van der Vlerk. Stochastic Integer Programming Bibliogra-
phy. http://www.eco.rug.nl/mally/biblio/sip.html, 1996-2007.

[12] L.F. Escudero, M. Araceli Garín, G. Pérez, and A. Unzueta. Scenario
Cluster Decomposition of the Lagrangian Dual in Two-stage Stochastic
Mixed 0-1 Optimization. Computers & Operations Research, 2012.

[13] IBM CPLEX Optimization Studio. Software, 2012. http://www-01.ibm.
com/software/integration/optimization/cplex-optimization-studio/.

[14] J.P. Watson, D.L. Woodruff, and W.E. Hart. PySP: Modeling and
Solving Stochastic Programs in Python. Mathematical Programming
Computation, pages 1--41, 2011.

[15] PySp: Python-based Stochastic Programming Modeling and Solving
Library, 2012. https://software.sandia.gov/trac/coopr/wiki/PySP.

[16] Miles Lubin, Kipp Martin, Cosmin Petra, and Burhaneddin Sandıkçı. On
Parallelizing Dual Decomposition in Stochastic Integer Programming.
Operations Research Letters, 2013.

http://www.gurobi.com/
http://www.eco.rug.nl/mally/biblio/sip.html
http://www-01.ibm.com/software/integration/optimization/cplex-optimization-studio/
http://www-01.ibm.com/software/integration/optimization/cplex-optimization-studio/
https://software.sandia.gov/trac/coopr/wiki/PySP

[17] Akhil Langer, Ramprasad Venkataraman, Udatta Palekar, Laxmikant V.
Kale, and Steven Baker. Performance Optimization of a Parallel,
Two Stage Stochastic Linear Program: The Military Aircraft Allocation
Problem. In Proceedings of the 18th International Conference on
Parallel and Distributed Systems (ICPADS 2012). To Appear, Singapore,
December 2012.

[18] L.V. Kalé and S. Krishnan. CHARM++: A Portable Concurrent Object
Oriented System Based on C++. In A. Paepcke, editor, Proceedings of
OOPSLA'93, pages 91--108. ACM Press, September 1993.

[19] Laxmikant Kale, Anshu Arya, Nikhil Jain, Akhil Langer, Jonathan
Lifflander, Harshitha Menon, Xiang Ni, Yanhua Sun, Ehsan Totoni,
Ramprasad Venkataraman, and Lukasz Wesolowski. Migratable Objects
+ Active Messages + Adaptive Runtime = Productivity + Performance
A Submission to 2012 HPC Class II Challenge. Technical Report 12-47,
Parallel Programming Laboratory, November 2012.

