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ABSTRACT
For many applications, computation load varies over time.
Such applications require dynamic load balancing to improve
performance. Centralized load balancing schemes, which
perform the load balancing decisions at a central location,
are not scalable. In contrast, fully distributed strategies are
scalable but typically do not produce a balanced work dis-
tribution as they tend to consider only local information.

This paper describes a fully distributed algorithm for load
balancing that uses partial information about the global
state of the system to perform load balancing. This algo-
rithm, referred to as GrapevineLB, consists of two stages:
global information propagation using a lightweight algo-
rithm inspired by epidemic [21] algorithms, and work unit
transfer using a randomized algorithm. We provide analysis
of the algorithm along with detailed simulation and perfor-
mance comparison with other load balancing strategies. We
demonstrate the effectiveness of GrapevineLB for adaptive
mesh refinement and molecular dynamics on up to 131,072
cores of BlueGene/Q.

General Terms
Algorithms, Performance

Keywords
load balancing, distributed load balancer, epidemic algo-
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1. INTRODUCTION
Load imbalance is an insidious factor that can reduce the

performance of a parallel application significantly. For some
applications, such as basic stencil codes for structured grids,
the load is easy to predict and does not vary dynamically.
However, for a significant class of applications, load rep-
resented by pieces of computations varies over time, and
may be harder to predict. This is becoming increasingly
prevalent with the emergence of sophisticated applications.
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For example, atoms moving in a molecular dynamics simu-
lation will lead to (almost) no imbalance when they are dis-
tributed statically to processors. But, they create imbalance
when spatial partitioning of atoms is performed for more so-
phisticated and efficient force evaluation algorithms. The
presence of moisture and clouds in weather simulations, ele-
ments turning from elastic to plastic in structural dynamics
simulations and dynamic adaptive mesh refinements are all
examples of sophisticated applications which have a strong
tendency for load imbalance.

All the examples above are of “iterative” applications: the
program executes series of time-steps, or iterations, lead-
ing to convergence of some error metric. Consecutive itera-
tions have relatively similar patterns of communication and
computation. There is another class of applications, such
as combinatorial search, that involves dynamic creation of
work and therefore has a tendency for imbalance. This class
of applications has distinct characteristics and load balanc-
ing needs, and has been addressed by much past work such
as work-stealing [25, 3, 32]. This paper does not focus on
such applications but instead on the iterative applications,
which are predominant in science and engineering. We also
do not focus on approaches that partition the fine-grained
application data. For example, in unstructured mesh based
applications, the entire mesh (consisting of billions of ele-
ments) may be partitioned by a library such as METIS [13].
This approach is expensive and not widely applicable; in-
stead we focus on scenarios where the application work has
already been partitioned into coarser work units.

For iterative applications, the basic scheme we follow is:
The application is assumed to consist of a large number
of migratable units (for example, these could be chunks of
meshes in adaptive mesh refinement application). The ap-
plication pauses after every so many iterations, and the load
balancer decides whether to migrate some of these units to
restore balance. Load balancing is expensive in these sce-
narios and is performed infrequently or whenever significant
imbalance is detected. Note that a reactive strategy such
as work-stealing, which is triggered when a processor is idle,
is almost infeasible (e.g. Communication to existing tasks
must be redirected on the fly). Schemes for arriving at a
distributed consensus on when and how often to balance
load [28], and how to avoid the pause (carrying out load
balancing asynchronously with the application) have been
addressed in the past. In this paper we focus on a syn-
chronous load balancer. Since scientific applications have
synchronizations at various points, this can be used without
extra overhead of synchronization.
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Various strategies have been proposed to address the load
balancing problem. Many applications employ centralized
load balancing strategies, where load information is collected
on to a single processor, and their decision algorithm is run
sequentially. Such strategies have been shown to be effec-
tive for a few hundred to thousand processors, because the
total number of work units is relatively small (on the order
of ten to hundred per processor). However, they present a
clear performance bottleneck beyond a few thousand proces-
sors, and may become infeasible due to the memory capacity
bottleneck on a single processor.

An alternative to centralized strategies are distributed
strategies that use local information, e.g. diffusion based [9].
In a distributed strategy, each processor makes autonomous
decisions based on its local view of the system. The local
view typically consists of the load of its neighboring proces-
sors. Such strategies are scalable, but tend to yield poor
load balance due to the limited local information [1].

Hierarchical strategies [35, 23, 1] overcome some of the
aforementioned disadvantages. They create subgroups of
processors, and collect information at the root of each sub-
group. Higher levels in the hierarchy only receive aggre-
gate information and deliver decisions in aggregate terms.
Although effective in reducing memory costs, and ensuring
good balance, these strategies may suffer from excessive data
collection at the lowest level of the hierarchy and work being
done at multiple levels.

We propose a fully distributed strategy, GrapevineLB,
that has been designed to overcome the drawback of other
distributed strategies by obtaining a partial representation
of the global state of the system and basing the load bal-
ancing decisions on this. We describe a light weight in-
formation propagation algorithm based on epidemic algo-
rithm [21](also known as the gossip protocol [10]) to propa-
gate the load information about the underloaded processors
in the system to the overloaded processors. This spreads the
information in the same fashion as gossip spreads through
the grapevine in a society. Based on this information,
GrapevineLB makes probabilistic transfer of work units to
obtain good load distribution. The proposed algorithm is
scalable and can be tuned to optimize for either cost or per-
formance.

The primary contributions of this paper are:

• GrapevineLB, a fully distributed load balancing algo-
rithm that attains a load balancing quality compara-
ble to the centralized strategies while incurring signif-
icantly less overhead.
• Analysis of propagation algorithm used by

GrapevineLB which leads us to an interesting
observation that good load balance can be achieved
with significantly less information about underloaded
processors in the system.
• Detailed evaluations that experimentally demonstrate

the scalability and quality of GrapevineLB using sim-
ulation.
• Demonstration of its effectiveness in comparison to

several other load balancing strategies for adaptive
mesh refinement and molecular dynamics on up to
131,072 cores of BlueGene/Q.

2. BACKGROUND
Load characteristics in dynamic applications can change
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Table 1: Choice of load imbalance metric

over time. Therefore, such applications require periodic load
balancing to maintain good system utilization. To enable
load balancing, a popular approach is overdecomposition.
The application writer exposes parallelism by overdecom-
posing the computation into tasks or objects. The problem
is decomposed into communicating objects and the run-time
system can assign these objects to processors and perform
rebalancing.

The load balancing problem in our context can be summa-
rized as: given a distributed collection of work units, each
with a load estimate, decide which work units should be
moved to which processors, to reduce the load imbalance.
The load balancer needs information about the loads pre-
sented by each work-unit. This can be based on a model
(simple examples being associating a fixed amount of work
with each grid point, or particle). But for many applications,
another metric turns out to be more accurate. For these
applications, a heuristic called principle of persistence [20]
holds which allows us to use recent instrumented history as
a guide to predicting load in near-future iterations. The
load balancing strategy we describe can be used with ei-
ther model-based or persistence-based load predictions. In
persistence-based load balancer, the statistics about the load
of each task on a processor is collected at that processor. The
database containing the task information is used by the load
balancers to produce a new mapping. The run-time system
then migrates the tasks based on this mapping.

It is important to choose the right metric to quantify load
imbalance in the system. Using standard deviation to mea-
sure load imbalance may seem like an appropriate metric,
but consider the two scenarios shown in Table 1. In both
the cases, the average load of the system is 2. If we consider
standard deviation, σ, to be a measure of imbalance, then
we find that in case 1 and case 2 we obtain the same σ of√

6 whereas the utilization and the total application times
differ. A better indicator of load imbalance in the system is
the ratio of maximum load to average load. More formally,
load imbalance (I) can be measured using

I =
Lmax
Lavg

− 1 (1)

In case 1, I is 0.5 and in case 2, I is 1. We use this metric of
load imbalance as one of the evaluation criteria to measure
the performance of the load balancing strategy. Notice that
this criteria is dominated by the load of the single processor
— viz. the most overloaded processor — because of the
max operator. This is correct, since the execution time is
determined by the worst-loaded processor and others must
wait for it to complete its step.

Apart from how well the load balancer can balance load,



it is important to incur less overhead due to load balancing.
Otherwise, the benefit of load balancing is lost in the over-
head. Therefore, we evaluate quality of load balance, cost of
the load balancing strategy and the total application time.

3. RELATED WORK
Load balancing has been studied extensively in the liter-

ature. For applications with regular load, static load bal-
ancing can be performed where load balance is achieved by
carefully mapping the data onto processors. Numerous al-
gorithms have been developed for statically partitioning a
computational mesh [12, 5, 6, 16]. These model the com-
putation as a graph and use graph partitioning algorithms
to divide the graph among processors. Graph and hyper-
graph partitioning techniques have been used to map tasks
on to processors to balance load while considering the local-
ity. They are generally used as a pre-processing step and
tend to be expensive. Our algorithm is employed where the
application work has already been partitioned and used to
balance the computation load imbalance that arises as the
application progresses. Our algorithm also takes into con-
sideration the existing mapping and moves tasks only if a
processor is overloaded.

For irregular applications, work stealing is employed in
task scheduling and is part of runtime systems such as
Cilk [3]. Work stealing is traditionally used for task par-
allelism of the kind seen in combinatorial search or divide-
and-conquer applications, where tasks are being generated
continuously. A recent work by Dinan et al. [11] scales work
stealing to 8192 processors using the PGAS programming
model and RDMA. In work that followed, a hierarchical
technique described as retentive work stealing was employed
to scale work-stealing to over 150K cores by exploiting the
principle of persistence to iteratively refine the load balance
of task-based applications [23]. CHAOS [31] provides an
inspector-executor approach to load balancing for irregular
applications. Here the data and the associated computation
balance is evaluated at runtime before the start of the first
iteration to rebalance. The proposed strategy is more fo-
cused towards iterative computational science applications,
where computational tasks tend to be persistent.

Dynamic load balancing algorithms for iterative applica-
tions can be broadly classified as centralized, distributed and
hierarchical. Centralized strategies [7, 29] tend to yield good
load balance but exhibit poor scalability. Alternatively, sev-
eral distributed algorithms have been proposed in which pro-
cessors autonomously make load balancing decisions based
on localized workload information. Popular nearest neigh-
bor algorithms are dimension-exchange [34] and the diffu-
sion methods. Dimension-exchange method is performed
in an iterative fashion and is described in terms of a hy-
percube architecture. A processor performs load balancing
with its neighbor in each dimension of the hypercube. Dif-
fusion based load balancing algorithms were first proposed
by Cybenko [9] and independently by Boillat [4]. This algo-
rithm suffers from slow convergence to the balanced state.
Hu and Blake [17] proposed a non-local method to deter-
mine the flow which is minimal in the l2-norm but requires
global communication. The token distribution problem was
studied by Peleg and Upfal [30] where the load is consid-
ered to be a token. Several diffusive load balancing policies,
like direct neighborhood, average neighborhood, have been
proposed in [8, 14, 19]. In [33], a sender-initiated model is

compared with receiver-initiated in an asychronous setting.
It also compares Gradient Method [24], Hierarchical Method
and DEM (Dimension exchange). The diffusion based load
balancers are incremental and scale well with number of pro-
cessors. But, they can be invoked only to improve load bal-
ance rather than obtaining global balance. If global balance
is required, multiple iterations might be required to con-
verge [15]. To overcome the disadvantages of centralized
and distributed, hierarchical [35, 23, 1] strategies have been
proposed. It is another type of scheme which provides good
performance and scaling.

In our proposed algorithm, global information is spread
using a variant of gossip protocol [10]. Probabilistic gossip-
based protocols have been used as robust and scalable meth-
ods for information dissemination. Demers et al. use a
gossip-based protocol to resolve inconsistencies among the
Clearinghouse database servers [10]. Birman et al. [2] em-
ploy gossip-based scheme for bi-modal multicast which they
show to be reliable and scalable. Apart from these, gossip-
based protocols have been adapted to implement failure de-
tection, garbage collection, aggregate computation etc.

4. GRAPEVINE LOAD BALANCER
Our distributed load balancing strategy, referred to as

GrapevineLB, can be conceptually thought of as having two
stages. 1) Propagation: Construction of the local represen-
tation of the global state at each processor. 2) Transfer :
Load distribution based on the local representation.

At the beginning of the load balancing step, the average
load is calculated in parallel using an efficient tree based all-
reduce. This is followed by the propagation stage, where the
information about the underloaded processors in the system
is spread to the overloaded processors. Only the processor
ID and load of the underloaded processors is propagated. An
underloaded processor starts the propagation by selecting
other processors randomly to send information. The receiv-
ing processors further spread the information in a similar
manner.

Once the overloaded processors have received the informa-
tion about the underloaded processors, they autonomously
make decisions about the transfer of the work units. Since
various processors do not coordinate at this stage, the trans-
fer has to happen such that the probability that an under-
loaded processor becomes overloaded is low. We propose a
randomized algorithm that meets this goal. We elaborate
further upon the above two stages in the following sections.

4.1 Information propagation
To propagate the information about the underloaded pro-

cessors in the system, GrapevineLB follows a protocol which
is inspired by the epidemic algorithm [21] (also known as the
gossip protocol [10]). In our case, the goal is to spread the
information about the underloaded processors such that ev-
ery overloaded processor receives this information with high
probability. An underloaded processor starts the ‘infection’
by sending its information to a randomly chosen subset of
processors. The size of the subset is called fanout, f . An
infected processor further spreads the infection by forward-
ing all the information it has to another set of randomly
selected f processors. Here, each processor makes an inde-
pendent random selection of peers to send the information.

We show that the number of rounds required for all pro-
cessors to receive the information with high probability is



Algorithm 1 Informed selection at each processor Pi ∈ P
Input:
f - Fanout
Lavg - Average load of the system.
k - Target number of rounds
Li - Load of this processor

1: S ←− ∅ . Set of underloaded processors
2: L←− ∅ . Load of underloaded processors
3: if (Li < Lavg) then
4: S ←− Pi; L←− Li
5: Randomly sample

{
P 1, . . . , P f

}
∈ P

6: Send (S,L) to
{
P 1, . . . , P f

}
7: end if
8: for (round = 2→ k) do
9: if (received msg in previous round) then

10: R←− P \ S . Informed selection
11: Randomly sample

{
P 1, . . . , P f

}
∈ R

12: Send (S,L) to
{
P 1, . . . , P f

}
13: end if
14: end for

1: when (Snew, Lnew) is received . New message
2: S ←− S ∪ Snew; L←− L ∪ Lnew . Merge information

O(logf n), where n is the number of processors. We propose
two randomized strategies of peer selection as described be-
low. Note that although we discuss various strategies in
terms of rounds for the sake of clarity, there is no explicit
synchronization for rounds in our implementation.
Naive Selection: In this selection strategy, each under-
loaded processor independently initiates the propagation by
sending its information to a randomly selected set of f peers.
A receiving processor updates its knowledge with the new
information. It then randomly selects f processors, out of
the total of n processors, and forwards its current knowledge.
This selection may include other underloaded processors.
Informed Selection: This strategy is similar to the Naive
strategy except that the selection of peers to send the infor-
mation is done incorporating the current knowledge. Since
the current knowledge includes a partial list of underloaded
processors, the selection process is biased to not include
these processors. This helps propagate information to the
overloaded processors in fewer number of rounds. This strat-
egy is depicted in Algorithm 1.

4.2 Probabilistic transfer of load
In our distributed scheme the decision making for trans-

fer of load is decentralized. Every processor needs to make
these decisions in isolation given the information from the
propagation stage. We propose two randomized schemes to
transfer load.
Naive Transfer: The simplest strategy to transfer load is
to select processors uniformly at random from the list of
underloaded processors. An overloaded processor transfers
load until its load is below a specified threshold. The value
of threshold indicates how much of an imbalance is accept-
able. As one would expect, this random selection results
in overloading processors whose load is closer to the aver-
age. This is illustrated in Figure 1 and described in detail
in Section 7.1.
Informed Transfer: A more informed transfer can be
made by randomly selecting underloaded processors based

Algorithm 2 Informed transfer at each processor Pi ∈ P
Input:
O - Set of objects in this processor
S - Set of underloaded processors
T - Threshold to transfer
Li - Load of this processor
Lavg - Average load of the system

1: Compute pj ∀ Pj ∈ S . Using eq. 2
2: Compute Fj =

∑
k<j pk . Using eq. 3

3: while (Li > (T × Lavg)) do
4: Select object Oi ∈ O
5: Randomly sample X ∈ S using F . Using eq. 4
6: if (LX + load(Oi) < Lavg) then
7: LX = LX + load(Oi)
8: Li = Li − load(Oi)
9: O ←− O \Oi

10: end if
11: end while

on their initial load. We achieve this by assigning to each
processor a probability that is inversely proportional to its
load in the following manner:

pi =
1

Z
×
(

1− Li
Lavg

)
(2a)

Z =

N∑
1

(
1− Li

Lavg

)
(2b)

Here pi is the probability assigned to the ith processor,
Li its load, Lavg is the average load of the system and Z is
a normalization constant. To select processors according to
this distribution we use the inversion method for generating
samples from a probability distribution. More formally if
p(x) is a probability density function, then the cumulative
distribution function F (y) is defined as:

F (y) = p(x < y) =

∫ y

−∞
p(x)dx (3)

Given a uniformly distributed random sample rs ∈ [0, 1], a
sample from the target distribution can be computed by:

ys = F−1(rs) (4)

Using the above, we randomly select the processors ac-
cording to pi for transferring load. This is summarized in
Algorithm 2. Figure 1 illustrates the results.

4.3 Partial Propagation
An interesting question to ask is what happens if the over-

loaded processors have incomplete information. This may
happen with high probability if the propagation stage is ter-
minated earlier than logn rounds. We hypothesize that to
obtain good load balance, information about all the under-
loaded processors is not necessary. An overloaded processor
can have a partial set of underloaded processors and still
achieve good balance. We empirically confirm our hypothe-
sis by a set of experiments in Section 7.1.

4.4 Grapevine+
Even though the scheme where every processor makes au-

tonomous decision for randomized transfer of work is less
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Figure 1: (a) Initial load of the underloaded processors, (b) Probabilities assigned to each of the processors, (c) Work units
transferred to each underloaded processor, (d) Final load of the underloaded processors after transfer.

likely to cause underloaded processors to become overloaded,
this may still happen. To guarantee that none of the under-
loaded processors get overloaded after the transfer, we pro-
pose an improvement over the original GrapevineLB strat-
egy. In the improved scheme, referred to as Grapevine+LB,
we employ a negative-acknowledgement based mechanism to
allow an underloaded processor to reject a transfer of work
unit. For every potential work unit transfer, the sender ini-
tially sends a message to the receiver which contains details
about the load of the work unit. The receiver, depending on
the current load, chooses to either accept or reject. If accept-
ing the work unit makes the receiver overloaded, then it re-
jects with a Nack (negative-acknowledgement). A sender on
receiving a Nack will try to find another processor from the
list of underloaded processors. This trial is carried out for a
limited number of times after which the processor gives up.
This scheme will ensure that no underloaded processor gets
overloaded. Although this requires exchanging additional
messages, the cost is not significant as the communication
is overlapped with the decision making process.

5. ANALYSIS OF THE ALGORITHM
This section presents an analysis of the information prop-

agation algorithm. We consider a system of n processors
and, for simplicity, assume that the processors communi-
cate in synchronous rounds with a fanout f . Note that in
practice the communication is asynchronous (Section 6). We
show that the expected number of rounds required to prop-
agate information to all the processors in the system with
high probability is O(logf n). Although we analyze the case
of single sender, the results are same for multiple senders
since they communicate concurrently and independently.

In round r = 1, one processor initiates the information
propagation by sending out f messages. In all successive
rounds, each processor that received a message in the pre-
vious round sends out f messages. We are interested in the
probability, ps, that any processor Pi received the message
by the end of round s. We can compute it by ps = 1 − qs,
where qs is the probability that the processor Pi did not
receive any message by the end of round s.

Probability that a processor Pi did not receive a message
sent by some other processor is (1− 1

n−1
) ≈ (1− 1

n
),∵ n� 1.

Further, the number of messages sent out in round r is fr,
since the fan-out is f .

Clearly,

q1 =

(
1− 1

n

)f
(5)

Therefore, the probability that Pi did not receive any mes-
sage in any of the r ∈ {1, . . . , s} rounds is

qs =

s∏
r=1

(
1− 1

n

)fr
=

(
1− 1

n

)(f+f2+f3+···+fs)

=

(
1− 1

n

)f fs−1
f−1

≈
(

1− 1

n

)γfs
, Where γ =

f

f − 1

Here fs − 1 ≈ fs,∵ fs � 1. Taking log of both sides

log qs ≈ γfs log

(
1− 1

n

)
≈ −γf

s

n

∴ qs ≈ exp

(
−γfs

n

)
Approximating by the first two terms of the Taylor ex-

pansion of ex

qs ≈ 1− γfs

n

Since we want to ensure that the probability that a pro-
cessor Pi did not receive any message in s rounds is very low
i.e. qs ≈ 0, substituting this in the above yields

γfs ≈ n As qs → 0

∴ s log f ≈ logn− log γ

s ≈ logf n− logf

(
f

f − 1

)
= O(logf n)

Our simulation results shown in figure 3 concur with the
above analysis. It is evident that increasing the fan-out re-
sults in significant reduction of the number of rounds re-
quired to propagate the information.



6. IMPLEMENTATION
We provide an implementation of the proposed algorithm

as a load balancing strategy in Charm++. Charm++ is a
parallel programming model which has message driven par-
allel objects, chares, which can be migrated from one pro-
cessor to another. Chares are basic units of parallel com-
putation in Charm++, which are mapped onto processors
initially using a default mapping or any custom mapping.
--withing Charm++ load balancing framework supports in-
strumenting load information of work units from the recent
past and using it as a guideline for the near future. The key
advantage of this approach is that it is application indepen-
dent, and has been shown to be effective for a large class of
applications, such as NAMD [27] and ChaNGa [18].

Charm++ has a user-friendly interface for obtaining dy-
namic measurements about chares. The load balancers,
which are pluggable modules in Charm++, can use this
instrumented load information to make the load balancing
decisions. Based on these decisions Charm++ RTS migrates
the chares. Since the Charm++ RTS stores information
about chares and processors in a distributed database, it
is compatible with GrapevineLB ’s implementation require-
ments.

Although we have described the GrapevineLB algorithm
in terms of rounds, an implementation using barriers to en-
force the rounds will incur considerable overhead. Therefore,
we take an asynchronous approach for our implementation.
But such an approach poses the challenge of limiting the
number of messages in the system. We overcome this by
using a TTL (Time To Live) based mechanism which lim-
its the circulation of information forever. It is implemented
as a counter embedded in the messages being propagated.
The first message initiated by an underloaded processor is
initialized with the TTL of desired number of rounds before
being sent. A receiving processor incorporates the informa-
tion and sends out a new message with updated information
and decremented TTL. A message with TTL = 0 is not for-
warded and is considered expired. The key challenge that
remains is to detect quiescence, i.e. when all the messages
have expired. To this end, we use a distributed termination
detection algorithm [26].

7. EVALUATION
We evaluate various stages of GrapevineLB with simula-

tions using real data and compare it with alternative strate-
gies using real world applications.

7.1 Evaluation using Simulation
We first present results of simulation of

GrapevineLB strategy using real data on a single pro-
cessor. This simulation allows us to demonstrate the effect
of various choices made in different stages of the algorithm.
For the simulations, the system model is a set of 8192
processors, initialized with load from a real run of an
adaptive mesh refinement application with same number of
cores on IBM BG/Q. This application was decomposed into
253, 405 work units. Figure 2 shows the load distribution
for this application when the load balancer was invoked.
The average load of the system is 35, the maximum load
is 66, therefore I, metric for imbalance from Equation 1,
is 0.88. Note that the value of I ≈ 0 indicates perfect
balance in the system. Among the 8192 processors, 4095 are
overloaded and 4097 are either underloaded or have their
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load close to average. We perform a step-by-step analysis
of all the stages of the proposed algorithm based on this
system model. It is to be noted that we have simulated
synchronous rounds. The experiments were run 50 times
and we report the results as mean along with its standard
deviation.

Number of Rounds and Fanout: Figure 3 illustrates
the dependence of expected number of rounds required to
spread information on the system size. Here we consider
only one source initiating the propagation and report when
99% of processors have received the information. As the
system size (n) increases, the expected number of rounds
increase logarithmically, O(logn), for a fixed fanout. This
is in accordance with our analysis in Section 5. Note that
the number of rounds decreases with increase in the fanout
used for the information propagation. A system size of 16K,
fanout of 2, requires 17 rounds to propagate information to
99% processors whereas, fanout of 4, takes 8 rounds.

Naive vs Informed Propagation: Figure 4 compares
the expected number of rounds taken to propagate infor-
mation using Naive and Informed propagation schemes.
Although, the expected number of rounds for both the
schemes is on the order of O(logn), the Informed scheme
takes one less round to propagate the information. This
directly results in the reduction of the number of messages
as most of the messages are sent in the later rounds. We
can also choose to vary the fanout adaptively to reduce



 8

 10

 12

 14

 16

 18

 0  4096  8192  12288  16384

R
ou

nd
s

System Size (n)

Naive
Informed

Figure 4: Expected number of rounds taken to spread infor-
mation from one source to 99% of the overloaded processors
using Naive and Informed schemes for different system sizes.
Here f = 2 and 50% of the system size is underloaded

the number of rounds required, while not increasing the
number of messages significantly. Instead of having a fixed
fanout, we increase the fanout in the later stages. This is
based on the observation that messages in the initial stages
do not carry a lot of information. We evaluated this for
a system of 4096 processors where 50% were overloaded.
Information propagation without the adaptive variation
requires 13 rounds with a total of 79600 messages. While
an adaptive fanout strategy, where we use a fanout of 2
initially and increase the fanout to 3 beyond 5 rounds and
further increase to 4 beyond 7 rounds, helps reduce the
number of rounds to 10 with a total of 86400 messages.

Naive vs Informed Transfer: We compare the perfor-
mance of the two randomized strategies for transfer given in
Section 4. Figure 1 shows the Naive scheme for the transfer
of load where an underloaded processor is selected uniformly
at random. Here we also show the probability distribution of
the underloaded processors for the Informed transfer strat-
egy using the equation 2 and the transfer of load which
follows this distribution which are shown in Figure 1. It
shows the initial load distribution of the underloaded pro-
cessors, probability assigned to each processor (uniform dis-
tribution), number of transfers based on the probability dis-
tribution and the final load of the underloaded processors.
It can be seen that the maximum load of the initially under-
loaded processors is 44 while the average is 35. Comparison
with Figure 1 clearly shows that the final distribution of load
is much more reasonable. Further, the maximum load of the
underloaded processors is 38 while the system average is 35.

Evaluation of a Pathological Case: We evaluate the
behavior of the proposed algorithm under the pathological
case where just one out of 8192 processors is significantly
overloaded (I is 6.18). Analysis in Section 5 shows that qs
decreases rapidly with rounds for a particular source. Since
all underloaded processors will initiate information propaga-
tion, this scenario shouldn’t be any worse in expectation. We
experimentally verify this and find that for a fanout value
of 2 and using the Naive strategy for information propa-
gation, it takes a maximum of 14 rounds to propagate the
information which is similar to the case where many proces-
sors are overloaded. Once the information is available at the
overloaded processor, it randomly transfers the work units,
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Figure 5: Evaluation of load balancer with partial informa-
tion. Max load(left) and Imbalance(right) decrease as more
information about underloaded processors is available. It is
evident that complete information is not necessary to obtain
good performance.

reducing the I from 6.18 to 0.001.
Evaluation of Quality of Load Balancing: To answer

the question posed in the earlier section as to what happens
if the overloaded processors have incomplete information, we
simulate this scenario by providing information about only
a partial subset of underloaded processors to the overloaded
processors. The subset of underloaded processors for each
processor is selected uniformly at random from the set of un-
derloaded processors and the probabilistic transfer of load
is then carried out based on this partial information. The
quality is evaluated based on the metric I given by equa-
tion 1. Figure 5 shows the expected maximum load of the
system along with standard deviation, σ and the value of I
metric. It can be seen that on one hand having less infor-
mation, 10− 50 underloaded processors, yields considerable
improvement of load balance although not the optimal possi-
ble. On the other hand, having complete information is also
not necessary to obtain good load balance. Therefore, this
gives us an opportunity to trade-off between the overhead
incurred and load balance achieved.

Evaluation of Information Propagation: Based on
the earlier experiment, it is evident that complete informa-
tion about the underloaded processors is not required for
good load balance. Therefore, we evaluate the expected
number of rounds taken to propagate partial information
about the underloaded processors to all the overloaded pro-
cessors. Figure 6 shows the percentage of overloaded proces-
sors that received the information as the rounds progress for
a fanout of 2. The x-axis is the number of rounds and the y-
axis is the percentage of overloaded processors who received
the information. We plot the number of rounds required
to propagate information about 200, 400, 2048, 4097 under-
loaded processors to all the overloaded processors. In the
case of propagating information about at least 200 under-
loaded processors in the system, 100% of the overloaded pro-
cessors receive information about at least 200 underloaded
processors in 12 rounds and 99.8% received in 9 rounds.
It took 18 rounds to propagate information about all the
underloaded processors in the system to all the overloaded
processors. This clearly indicates that if we require only par-
tial information, the total number of rounds can be reduced
which will result in reduction of the load balancing cost.
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From the above experiments, it is evident that good load
balance could be attained with partial information. This is
particularly useful as propagating partial information takes
fewer number of rounds and incurs lesser overhead. We uti-
lize this observation to choose a value of TTL much lower
than logn for comparison with other strategies on real ap-
plications.

7.2 Evaluation using Applications
We evaluate our GrapevineLB load balancing strategy on

two applications, LeanMD and adaptive mesh refinement
(AMR), by comparing against various load balancing strate-
gies. We use GrapevineLB with a fixed set of configurations,
{f = 2, TTL = 0.4 × log2 n, Informed Propagation, In-
formed Transfer }, and focus on comparing with other load
balancing strategies. Results presented here are obtained
from experiments run on IBM BG/Q Mira. Mira is a 49, 152
node Blue Gene/Q installation at the ALCF. Each node con-
sists of 16 64-bit PowerPC A2 cores run at 1.6GHz. The
interconnect in this system is a 5D torus. In the following
sections, we first provide details about the applications and
the load balancers and then present our evaluation results.

7.2.1 Applications
Adaptive Mesh Refinement: AMR is an efficient tech-
nique used to perform simulations on very large meshes
which would otherwise be difficult to simulate even on
modern-day supercomputers. This application simulates a
popular yet simple partial differential equation called Ad-
vection. It uses a first-order upwind method in 2D space
for solving the advection equation. The simulation begins
on a coarse-grained structured grid of uniform size. As
the simulation progresses, individual grids are either refined
or coarsened. This leads to slowly-growing load imbalance
which requires frequent load balancing to maintain high ef-
ficiency of the system. This application has been imple-
mented using the object-based decomposition approach in
Charm++ [22].
LeanMD: It is a molecular dynamics simulation program
written in Charm++, that simulates the behavior of atoms
based on the Lennard-Jones potential. The computations
performed in this code are similar to the short-range non-

bonded force calculation in NAMD [27], an application that
has won the Gordon Bell award. The three-dimensional sim-
ulation space consisting of atoms is divided into cells. In
each iteration, force calculations are done for all pairs of
atoms that are within a specified cutoff distance. For a pair
of cells, the force calculation is assigned to a set of objects
called the computes. After the force calculation is performed
by the computes, the cells update the acceleration, velocity
and position of the atoms within their space. The load im-
balance in LeanMD is primarily due to the variable number
of atoms in a cell. The load on computes is proportional
to the the number of atoms in the cells which changes over
time as the atoms move based on the force calculation. We
present simulation of LeanMD for a 2.8 million atom sys-
tem. The load imbalance is gradual therefore load balancing
is performed infrequently.

7.2.2 Load Balancers
We compare the performance of GrapevineLB against sev-

eral other strategies including centralized, distributed and
hierarchical strategies. The load balancing strategies are
GreedyLB: A centralized strategy that uses greedy heuris-
tic to assign heaviest tasks onto least loaded processors it-
eratively. This strategy does not take into consideration the
current assignment of tasks to processors.
AmrLB: A centralized strategy that does refinement based
load balancing taking into account the current distribution
of work units. This is tuned for the AMR application [22].
HierchLB: A hierarchical strategy [35] in which processors
are divided into independent groups and groups are orga-
nized in a hierarchical manner. At each level of the hier-
archy, the root node performs the load balancing for the
processors in its sub-tree. This strategy can use different
load balancing algorithms at different levels. It is an opti-
mized implementation that is used in strong scaling NAMD
to more than 200K cores.
DiffusLB: A neighborhood averaging diffusion strategy [8,
33] where each processor sends information to its neighbors
in a domain and load is exchanged based on this information.
A domain constitutes of a node and all its neighbors where
the neighborhood is determined by physical topology. On
receiving the load information from all its neighbors, a node
will compute the average of the domain and determines the
amount of work units to be transfered to each of its neigh-
bors. This is a two phase algorithm: in the first phase tokens
are sent and in the second phase actual movement of work
units is performed. There are multiple iterations of token
exchange and termination is detected via quiescence [26].

We use the following metrics to evaluate the performance
of various load balancing strategies: 1) Execution time per
step for the application, which indicates the quality of the
load balancing strategy. 2) Load balancing overhead, which
is the time taken by a load balancing strategy. 3) Total
application time, which includes the time for each iteration
as well as the time for load balancing strategy.

7.2.3 Evaluation with AMR
We present an evaluation of different load balancing

strategies on the AMR application on BG/Q ranging from
4096 to 131072 cores. AMR requires frequent load balancing
to run efficiently because coarsening and refinement of the
mesh introduces dynamic load imbalance.

Time per Iteration: First we compare the execution
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ancing time) for various load balancing strategies for AMR
on Mira (IBM BG/Q). GV+ achieves quality similar to other
best performing strategies. Note that axes are log scale.

LB
Number of Cores

4K 8K 16K 32K 65K 131K
Hierc 9.347 5.505 2.120 0.888 0.560 0.291
Amr 2.018 3.321 4.475 7.836 11.721 21.147
Diff 0.018 0.017 0.016 0.016 0.016 0.015
Gv 0.012 0.012 0.013 0.014 0.016 0.018

Gv+ 0.012 0.013 0.013 0.014 0.016 0.018

Table 2: Average cost (in seconds) per load balancing step
of various strategies for AMR

time per iteration of the application to evaluate the qual-
ity of the load balancers. This directly relates to I met-
ric given in equation 1 because as I → 0, the maximum
load of the system approaches the average load, resulting
in least time per iteration. Figure 7 shows, on logarithmic
scale, the time taken per iteration with various load balanc-
ing strategies. The base run was made without any load
balancing and is referred to as NoLB. It is evident that
with NoLB the efficiency of the application reduces as it
is scaled to higher number of cores. The Grapevine+LB
load balancer (shown as GV+ LB) reduces the iteration
time by 22% on 4K cores and 50% on 131K cores. Am-
rLB and HierchLB also show comparable performance for
this metric. We see an increase in gain because on larger
number of cores, the load imbalance becomes significant.
This is because the number of work units per processor de-
creases and the chance that a processor becomes overloaded
increases. DiffusLB also shows some improvement but much
less than the aforementioned ones on larger scale. For 131K,
it reduces the time per step by 22% while others (AmrLB ,
HierchLB and Grapevine+LB) reduce it by 50%. An in-
teresting thing to note here is that, Grapevine+LB load
balancer performs better than GrapevineLB (shown as GV
LB) for core counts more than 32K. This is due to the
fact that Grapevine+LB ensures that no underloaded pro-
cessor gets overloaded using a Nack mechanism. From this
it is evident that the quality of load balance performed by
Grapevine+LB is at-par with the quality of the centralized
and hierarchical strategies.

Overhead: Table 2 shows the overhead incurred by var-
ious load balancers in one load balancing step for different
system sizes. The overhead(load balancing cost) includes the

LB
Number of Cores

4K 8K 16K 32K 65K 131K
No 27.61 17.30 10.06 6.11 3.98 2.94

Hierc 87.58 41.23 21.06 9.84 6.03 3.25
Amr 36.98 35.40 37.55 58.42 84.19 149.22
Diff 22.26 12.16 7.23 4.41 3.24 2.21
Gv 22.21 12.00 6.56 4.21 2.76 1.69

Gv+ 21.50 11.48 6.44 3.73 2.34 1.48

Table 3: Total application time (in seconds) for AMR on
BG/Q. Proposed strategies Gv and Gv+ perform the best
across all scales.

time for finding the new assignment of objects to processors
and the time for migrating the objects. The overhead in-
curred by AmrLB is 2.01 s for 4K cores and increases with
the increase in the system size to a maximum of 21.14 s for
131K cores. HierchLB incurs an overhead of 5.5 s for 8K
cores and thereafter the cost reduces to a minimum of 0.29 s
for 131K cores. This is due to the fact that as the num-
ber of processors increases, the number of sub groups also
increase resulting in a reduction of work units per group.
Hence, the time taken for the root to carry out the load
balancing strategy reduces. The distributed load balancing
strategies, GrapevineLB and DiffusLB , incur considerably
less overhead in comparison to other strategies.

Total Application Time: The total application time
using various strategies is given in Table 3. In this appli-
cation frequent load balancing is required. The overhead of
the centralized strategies diminishes the benefit of load bal-
ancing. AmrLB does not improve the total application time
because of the overhead of load balancing. This is true for
the hierarchical strategy as well. The DiffusLB results in a
reduction of the execution time by 28% for 16K cores and
24.8% for 131K cores where as GrapevineLB gives a reduc-
tion of 35% and 49.6% respectively. GrapevineLB provides
a large performance gain by achieving a better load bal-
ance and incurring less overhead. It enables more frequent
load balancing to improve the efficiency. A future direction
would be to use MetaBalancer [28] to choose the ideal load
balancing period.

7.2.4 Evaluation with LeanMD
We evaluate LeanMD by executing a 1000 iterations and

invoking the load balancer first time at the 10th iteration
and periodically every 300 iterations there after.

Execution time per iteration: We compare the exe-
cution time per iteration of the application to evaluate the
quality of the load balancers. For 4K to 16K cores, the cen-
tralized, hierarchical and GrapevineLB strategies improve
the balance up to 42%. The diffusion-based strategy im-
proves the balance only by 35% at 8K cores and there after
it shows diminishing gains. GrapevineLB on the other hand
performs at-par to the centralized load balancer up to 32K.
At 131K cores, it only gives an improvement of 25% in com-
parison to 36% given by centralized scheme. This reduction
is because the number of tasks per processor decreases to
4 at 131K, causing refinement-based load balancers to per-
form suboptimally. GrapevineLB is consistently better than
the DiffusLB because it has a representation of the global
state of the system which helps it make better load balancing
decisions.
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LB
Number of Cores

4K 8K 16K 32K 65K 131K
Hierc 3.721 1.804 0.912 0.494 0.242 0.262
Grdy 7.272 7.567 8.392 12.406 18.792 21.913
Diff 0.080 0.057 0.051 0.035 0.027 0.018
Gv 0.017 0.013 0.014 0.016 0.015 0.018

Gv+ 0.017 0.013 0.013 0.015 0.015 0.018

Table 4: Average cost per load balancing step (in seconds)
of various strategies for LeanMD

Overhead: Table 4 presents a comparison of overhead
incurred by various strategies for a single load balancing
step. The load balancing cost of the centralized strategy is
very high and is on the order of tens of seconds. The high
overhead of GreedyLB is due to the overhead of statistics
collection, making the decision at the central location and
the migration cost. The hierarchical strategy, HierchLB , in-
curs less overhead. It takes 3.7 s for 4K cores and decreases
to 0.26 s as the system size increases to 131K. The overhead
of DiffusLB is 0.080 s for 4K cores and decreases thereafter.
This is because the number of work units per core decreases
as the number of cores increase. Finally, we observe that
GrapevineLB has an overhead of 0.017 s for 4K cores and
decreases with increase in system size to 0.013 s for 16K
cores and thereafter increases to 0.018 s for 131K. The load
balancing cost for GrapevineLB includes the time for infor-
mation propagation and transfer of work units. At 4K cores
the load balancing time is dominated by the transfer of work
units. As the system size increases, the work units per pro-
cessor decreases. This results in cost being dominated by
information propagation.

Total Application Time: Table 5 shows the total appli-
cation time for LeanMD. The centralized strategy improves
the total application time but only for core counts up to
16K. Beyond 16K cores, the overhead due to load balanc-
ing exceeds the gains and results in increasing the total ap-
plication time. DiffusLB incurs less overhead in comparison
to the centralized and hierarchical strategies but it does not
show substantial gains because the quality of load balance is
not good. At 32K cores, it gives a reduction of 12% in total
execution time while GrapevineLB gives 34% and HierchLB
gives 33%. HierchLB incurs less overhead in comparison
to the centralized strategies. It reduces the total execu-

LB
Number of Cores

4K 8K 16K 32K 65K 131K
No 519.19 263.30 131.56 67.19 41.49 27.20

Hierc 325.00 163.65 84.62 44.56 33.49 22.43
Grdy 336.34 184.09 112.23 90.19 99.51 105.35
Diff 342.15 170.41 99.67 58.47 34.91 24.29
Gv 311.12 157.34 80.45 45.58 31.91 22.79

Gv+ 305.20 152.21 79.94 43.88 31.30 21.53

Table 5: Total application time (in seconds) for LeanMD on
BG/Q

tion time by 37% for 8K cores while GrapevineLB reduces
it by 42%. GrapevineLB consistently gives better perfor-
mance than other load balancing strategies. Grapevine+LB
gives the maximum performance benefit by reducing the to-
tal application time by 20% for 131K, 40% for 16K cores,
around 42% for 4K and 8K cores. Thus, GrapevineLB and
Grapevine+LB provide an improvement in performance by
achieving a high quality load balance with significantly less
overhead.

8. CONCLUSION
We have presented GrapevineLB , a novel algorithm for

distributed load balancing. It includes a light weight infor-
mation propagation stage based on gossip protocol to obtain
partial information about the global state of the system.
Exploiting this information, GrapevineLB probabilistically
transfers work units to obtain high quality load distribution.

We have demonstrated performance gains of GrapevineLB
by comparing against various centralized, distributed and
hierarchical load balancing strategies for molecular dynam-
ics simulation and adaptive mesh refinement. GrapevineLB
is shown to match the quality of centralized strategies, in
terms of the time per iteration, while avoiding associated
bottlenecks. Our experiments demonstrate that it signifi-
cantly reduces the total application time in comparison to
other load balancing strategies as it achieves good load dis-
tribution while incurring less overhead.
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