
A Multi-resolution Emulation + Simulation Methodology

Laxmikant V. Kale and Nikhil Jain‡

Akhil Langer, Esteban Meneses, Phil Miller, Osman Sarood and Ehsan Totoni
Department of Computer Science, University of Illinois at Urbana-Champaign

‡{kale,nikhil}@illinois.edu

1. INTRODUCTION
As we design exascale applications and machines, it be-

comes important to be able to analyze and experiment with
alternate designs of both machines and applications. These
experiments have to be done before the machines are built
since it will be too expensive to build a large number of al-
ternate designs. One of the challenges in this process is how
to represent application behavior in such machines. For an-
alyzing network performance via simulations, for example,
one can use pre-designed injection patterns, but they do not
capture the feedback that occurs naturally in applications:
if an incoming message is late, the ordering of events may
change, and outgoing message injection will also change. To
achieve a high fidelity simulation is therefore challenging.

One method that has shown promise is that of emulation-
followed-by-simulation: one carries out a full-scale emulation
of the application with the correct number of nodes and con-
trol threads, facilitated by some overdecomposition based
system such as Charm++ [1], FG-MPI[2], or AMPI [3]. The
emulation captures dependencies between sequential compu-
tations and remote data in traces. A helpful point here is
the relative constancy provided by application steps, which
makes the emulation feasible. In biomolecular simulations,
for example, application behavior evolves slowly and is suffi-
ciently self-similar throughout execution; In astronomy sim-
ulations or in rocket simulations, or SAMR-based applica-
tions, for example, the simulation changes over time, but one
can sample timesteps in different phases of the simulation,
by sampling from coarse-grained simulations. The emulation
traces therefore provide a powerful method for capturing
application behavior, especially when performance counter
information is captured during emulations characterizing se-
quential execution blocks of the underlying application.

The traces generated by emulation can then be fed to a
multi-component simulator, where a variable resolution sim-
ulation can be carried out to predict performance and other
attributes. We advocate this methodology and elaborate
on research challenges involved in following it in exascale
design. At exascale, we expect the components, which are
pluggable entities similar to those used in existing frame-
works such as BigSim [4, 5], SST [6], to simulate network,
resilience support, power management, thermal constraints,
operating system and file system. In addition, the adaptive
runtime system, essential for scalable execution at exascale,
needs to be (and can be) simulated in detail, with realistic
code and strategies, in order to attain high fidelity.

1.1 Scalable Backend
In order to simulate at scale, development of customized

scalable parallel discrete event simulators for HPC use will
be needed. Bauer Jr. et al [7] have shown good scalabil-

Efficient low level 
machine layer

Parallel System

Adaptive 
Runtime

Load Balance

Scalable Comm

Emulation
Traces

Parallel
Discrete
Event 

Simulator

Pluggable Modules:
Runtime System

Power Management
Thermal Capping

Network
OS, File System

Figure 1: Software stack for scalable simulation of
performance and non-performance application char-
acteristics.

ity on modern day supercomputers using optimistic PDES.
Further evolution of such software with use of efficient low
level libraries such as PAMI, GNI, VERBS etc will need to
be done. More importantly, co-design of such simulators
and adaptive runtime systems, resulting in software stack
as shown in Figure 1, will be fruitful. The runtime system
will not only provide key backend support such as load bal-
ancing, data management and communication to the PDES,
it will also be useful in making intelligent decisions during
simulation as a pluggable module. For example, using rela-
tively simple modeling, the runtime module can categorize
events based on their importance, and provide feedback to
the PDES on the level of detail a event should be simulated
at.

In the following section, we will discuss ideas for design-
ing modules for simulating various performance and non-
performance aspects of an application execution.

2. MODULES
Network: Simulation of network behavior for communi-

cation patterns exhibited by applications poses a challeng-
ing task as we move towards exascale. In addition to the
increased size of the networks, the problem has been made
more difficult by modern day applications whose communi-
cation patterns are dynamic and complex. As such, syner-
gistic development and use of heuristics will be important.

Firstly, methodologies adopted to predict network behav-
ior will need to be evolved. The prospect of raising gran-
ularity without loss of accuracy is worth considering given
the significnt success achieved by replacing flit-level simu-
lation by packet-level simulation [8, 5]. Further raising the
granularity to k-packets may be useful in reducing the cost
without significant loss of accuracy. A better understanding
of modern networks with focus on identifying components



that are critical to determining network behavior will also
be required. Currently, almost all the network components
from buffers to switches to channels are simulated in de-
tail. It may be feasible to increase the abstraction level for
some components, omit some, and focus on the rest, and yet
perform accurate predictions. Finally, faster simulations for
phases of applications without contention can be performed
by omitting complex network simulation.

Runtime System: System design, operating conditions,
and application behavior will present dynamic variation in
the exascale environment. This dynamic variation drives
the need for dynamic runtime adaptation. Simulators for
this environment must explicitly incorporate models of run-
time system (RTS) behavior for two reasons. First, new ap-
plications are being written in a variety of paradigms beyond
message-passing SPMD, such as work stealing, message-driven
execution and migratable tasks. Therefore, a simulator must
be usable to study performance under any of these models.
Second, system-level responses to failures and power con-
straints will often be mediated through RTS mechanisms.

A key mechanism of runtime adaptation is the reassign-
ment of some work or data from one processor to another.
A prime example of this is load balancing, for which many
strategies exist. When reassignment occurs, the simulator
must adjust subsequent events connected to the remapped
unit accordingly. Current systems only handle this through
offline trace reprocessing, which limits studies. Instead, sim-
ulators can be built to directly model the runtime migra-
tion mechanisms with varying degrees of resolution (through
oracular message redirection, explicit communication, or other
means), possibly even by incorporating the RTS code itself.

A dynamic RTS presents many implementation choices,
and simulations can help determine suitable decisions for
various systems and applications. For instance, the work of
a given processing element may be performed in many pos-
sible orders. The RTS could provide simple FIFO queueing,
prioritization, or even online critical path detection. RTS
simulation modules should be able to provide any such poli-
cies, with the simulator accounting for consequent variations
in execution order (and thus communication timing, task de-
pendencies, etc.). Finally, the RTS module may be useful to
guide the simulator on deciding the resolution at which an
event should be simulated.

Resilience: Resilience is one of the major challenges the
HPC community will face at exascale [9, 10, 11]. It is ex-
pected that machines at that scale will have a failure every
tens of minutes [9, 12, 13]. In addition, resilience’s inter-
play with factors such as power management and perfor-
mance considerations will also play a major role. There-
fore, simulation of resilience at extreme scale requires to
go beyond a simple model that only considers mean-time-
between-failures (MTBF).

A more accurate simulation for resilience should consider
the following aspects: 1) communication patterns and de-
pendencies of the application, 2) characteristics of the ma-
chine’s hardware, 3) different fault patterns (varying time
between failures and the number of nodes failing), 4) vari-
ous root causes of faults in hardware (e.g. nodes, network),
software, environment etc. and 5) different types of failures:
hard failures and soft failures. Moreover, this simulation
task is particularly challenging, since one may need to sim-
ulate hours of application execution to be able to study the
steady state of a fault tolerance protocol. In addition, mil-
lions of nodes and billions of threads need to be considered
for exascale. Existing simulators can mostly simulate an

HPC application for a few seconds by using a multi resolu-
tion approach. For instance, a simple model or a constant
for execution time of local sequential functions of the appli-
cation is used. This abstraction level needs to be raised even
further using different techniques, to be able to scale from
seconds to hours and days of simulation.

Power: Exascale systems will be power-constrained: one
must ensure that the total power draw does not exceed a
specified data-center maximum. Conservative enforcement
of this constraint will create unacceptable performance loss.
So, the system hardware and the runtime are expected to
support dynamic management. To be able to do prediction
of power and performance together, one needs to build ac-
curate models of power draw of different components. The
impact of power capping these subsystems on the perfor-
mance of an application is difficult to predict [14].

Breaking the computation down into sequential execution
blocks (SEBs) is helpful; e.g. an empirical model can be
developed for predicting CPU and memory power while ex-
ecuting a specific SEB. In addition, the runtime response
to power consumption must also be simulated, making it
a mutually recursive endeavor. This will include a global
power management system, which will specify frequencies
or power-levels for each component, and the simulation can
proceed with execution times predicted by the models. In-
terconnect power, which is usually constant today, can also
be studied/simulated in a similar manner, with the RTS
turning links off, or running them at lower speeds as needed.
The research agenda here includes developing sub-scale sim-
ulations to help build fast models, and to incorporate pre-
diction components of power/performance relationship for
SEBs.

Thermal: Core temperature is a factor that can impact
the performance, reliability and power consumption of a
processor [15]. Processor temperature can depend on mul-
tiple factors like cooling environment, semiconductor pro-
cess variations, and application characteristics. Preliminary
work [16] has shown that it is possible, via adaptive runtime
strategies, to control core temperatures tightly while mit-
igating resultant load imbalances. An exascale simulation
must predict and incorporate the evolution of core temper-
ature in response to application code execution, and run-
time system decisions, vice versa. However, in order to do
that, we need accurate and reliable models that can predict
core temperatures depending on application characteristics
and cooling environment. Past work highlights the difficulty
here as core temperature behave differently for different ap-
plications [16]. However, most earlier experimental work is
carried out on machines that are significantly smaller than
an exascale machine. To study the impact of controlling
core temperatures on larger machines requires significantly
mature models on which simulations can be based. Such
simulators will need to incorporate thermal models that take
into account application characteristics, cooling infrastruc-
ture, and processor thermal design.

3. ESTIMATED EFFORT
We estimate that an effort with 5 FTEs and 5 graduate

research assistants, over a period of three years, and spread
over multiple institutions including DOE labs, academia,
and possibly separately funded industry participation will
be needed to carry out the proposed research program. This
will need to be followed by a consolidation of the prototype
into usable and supported product.



4. REFERENCES
[1] Laxmikant Kale, Anshu Arya, Abhinav Bhatele,

Abhishek Gupta, Nikhil Jain, Pritish Jetley, Jonathan
Lifflander, Phil Miller, Yanhua Sun, Ramprasad
Venkataraman, Lukasz Wesolowski, and Gengbin
Zheng. Charm++ for productivity and performance:
A submission to the 2011 HPC class II challenge.
Technical Report 11-49, Parallel Programming
Laboratory, November 2011.

[2] H. Kamal and A. Wagner. FG-MPI: Fine-grain MPI
for multicore and clusters. In IEEE International
Symposium on Parallel Distributed Processing,
Workshops and Phd Forum (IPDPSW), 2010, pages 1
–8, april 2010.

[3] Orion Lawlor, Milind Bhandarkar, and Laxmikant V.
Kalé. Adaptive mpi. Technical Report 02-05, Parallel
Programming Laboratory, Department of Computer
Science, University of Illinois at Urbana-Champaign,
2002.

[4] Gengbin Zheng, Gunavardhan Kakulapati, and
Laxmikant V. Kalé. Bigsim: A parallel simulator for
performance prediction of extremely large parallel
machines. In 18th International Parallel and
Distributed Processing Symposium (IPDPS), page 78,
Santa Fe, New Mexico, April 2004.

[5] Ehsan Totoni, Abhinav Bhatele, Eric Bohm, Nikhil
Jain, Celso Mendes, Ryan Mokos, Gengbin Zheng, and
Laxmikant Kale. Simulation-based performance
analysis and tuning for a two-level directly connected
system. In Proceedings of the 17th IEEE International
Conference on Parallel and Distributed Systems,
December 2011.

[6] K.D. Underwood, M. Levenhagen, and A. Rodrigues.
Simulating red storm: Challenges and successes in
building a system simulation. In Parallel and
Distributed Processing Symposium, 2007. IPDPS
2007. IEEE International, pages 1 –10, 2007.

[7] David W. Bauer Jr., Christopher D. Carothers, and
Akintayo Holder. Scalable time warp on blue gene
supercomputers. In Proceedings of the 2009
ACM/IEEE/SCS 23rd Workshop on Principles of
Advanced and Distributed Simulation, PADS ’09,
pages 35–44, Washington, DC, USA, 2009. IEEE
Computer Society.

[8] Abhinav Bhatele, Nikhil Jain, William D. Gropp, and
Laxmikant V. Kale. Avoiding hot-spots on two-level
direct networks. In Proceedings of 2011 International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’11, pages
76:1–76:11, New York, NY, USA, 2011. ACM.

[9] Peter Kogge, Keren Bergman, Shekhar Borkar, Dan
Campbell, William Carlson, William Dally, Monty
Denneau, Paul Franzon, William Harrod, Jon Hiller,
Sherman Karp, Stephen Keckler, Dean Klein, Robert
Lucas, Mark Richards, Al Scarpelli, Steven Scott,
Allan Snavely, Thomas Sterling, R. Stanley Williams,
and Katherine Yelick. Exascale computing study:
Technology challenges in achieving exascale systems,
2008.

[10] Marc Snir, William Gropp, and Peter Kogge. Exascale
Research: Preparing for the Post Moore Era.
https://www.ideals.illinois.edu/bitstream/
handle/2142/25468/Exascale%20Research.pdf, 2011.

[11] Franck Cappello. Fault tolerance in petascale/
exascale systems: Current knowledge, challenges and

research opportunities. IJHPCA, 23(3):212–226, 2009.
[12] Franck Cappello, Al Geist, Bill Gropp, Laxmikant

Kale, Bill Kramer, and Marc Snir. Toward exascale
resilience. Int. J. High Perform. Comput. Appl.,
23(4):374–388, November 2009.

[13] Kurt Ferreira, Jon Stearley, James H. Laros, III, Ron
Oldfield, Kevin Pedretti, Ron Brightwell, Rolf Riesen,
Patrick G. Bridges, and Dorian Arnold. Evaluating
the viability of process replication reliability for
exascale systems. In Supercomputing, pages
44:1–44:12, New York, NY, USA, 2011. ACM.

[14] Tapasya Patki, David K. Lowenthal, Barry Rountree,
Martin Schulz, and Bronis R. de Supinski. Exploring
hardware overprovisioning in power-constrained, high
performance computing. In Proceedings of the 27th
international ACM conference on International
conference on supercomputing, ICS ’13, pages 173–182,
New York, NY, USA, 2013. ACM.

[15] Franciscoj. Mesa martÃ nez Ehsan, K. Ardestani, and
Jose Renau. Characterizing processor thermal
behavior.

[16] Osman Sarood Phil Miller Ehsan Totoni and
Laxmikant Kale. ‘cool’ load balancing for hpc data
centers. IEEE transactions on computers special issue
on energy efficient computing, 2012.


