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Abstract—Energy consumption and power draw pose two
major challenges to the HPC community for designing larger
systems. Present day HPC systems consume as much as 10MW
of electricity and this is fast becoming a bottleneck. Although
energy bills will significantly increase with machine size, power
consumption is a hard constraint that must be addressed. Intel’s
Running Average Power Limit (RAPL) toolkit is a recent feature
that enables power capping of CPU and memory subsystems on
modern hardware. In this paper, we use RAPL to evaluate the
possibility of improving execution time efficiency of an application
by capping power while adding more nodes. We profile the strong
scaling of an application using different power caps for both CPU
and memory subsystems. Qur proposed interpolation scheme uses
an application profile to optimize the number of nodes and the
distribution of power between CPU and memory subsystems to
minimize execution time under a strict power budget. We validate
these estimates by running experiments on a 20-node (120 cores)
Sandy Bridge cluster. Our experimental results closely match the
model estimates and show speedups greater than 1.47X for all
applications compared to not capping CPU and memory power.
We demonstrate that the quality of solution that our interpolation
scheme provides matches very closely to results obtained via
exhaustive profiling.

I. INTRODUCTION

In the past, researchers have primarily focused on reducing
energy consumption by using Dynamic Voltage and Frequency
Scaling (DVEFS). Applications do not yield a proportional
improvement in performance as the processor frequency is in-
creased [1]. This is mainly because memory accesses are much
slower compared to processor frequency. Memory accesses
therefore introduce stalls in the processor cycles. The extent
of improvement in application performance resulting from
increased processor frequency depends on the application’s
computational and memory demands. As we approach the
exascale era, the thrust is more on power consumption than
on energy minimization. A strict power constraint poses a
hard research challenge. DOE has currently set a bound of
20MW for an exascale system, therefore available power
must be used efficiently to achieve the exascale goal. Scaling
frequency via DVFS does not guarantee a strict limit on the
power consumption of a processor. However, the recently
released Intel’s Sandy Bridge family of processors provide
an enticing option of limiting the power consumption of a
processor chip and memory (also available in IBM Power6 [2],
Power7 [3] and AMD Bulldozer [4] architectures). The power
consumption for package and memory subsystems can be user-
controlled through the RAPL (Running Average Power Limit)
library [5].
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In this work, we use Intel’s power_gov [6] library that
in turn uses RAPL to cap power of memory and package
subsystems in order to optimize application performance under
a strict power budget for an overprovisioned system. An
overprovisioned system [7] has more nodes than a conventional
system operating under the same power budget. It can not
simultaneously power all nodes at peak power. However,
capping package (CPU) and memory power below peak power
can enable an overprovisioned system to operate all nodes
simultaneously. Under a strict power budget, running the
application on fewer nodes with a higher CPU/memory power
per-node can sometimes be less efficient than running it over
larger number of nodes with relatively lower power per node.
Capping the CPU and memory power to lower values enables
us to utilize more nodes for executing an application. However,
each additional node utilized has a fixed cost of powering
up the motherboard, power supply, fans and disks referred
to as the base power. The base power of a node determines
the ease with which additional nodes can be utilized in an
overprovisioned system. The opportunity cost of base power
for these additional nodes is the performance benefit that can
be achieved by increasing the CPU and memory power for the
existing set of nodes. This opportunity cost can vary between
applications.

To the best of our knowledge, this work proposes the first
extensive experimental study that optimizes number of nodes
and the subsequent distribution of power between CPU &
memory for an application under a strict power budget. The
major contributions of this work are listed below:

e We propose an interpolation scheme that captures the
effects of strong scaling an application under different
CPU and memory power distributions with minimal pro-
file information.

e We present experimental results showing speedups of up
to 2.2X using an overprovisioned system compared to the
case where CPU and memory powers are not capped.

e We show the optimized CPU and memory power distri-
butions for different applications and examine the factors
that influence them.

e We analyze the effect and importance of base power on
achievable speedup for an overprovisioned system.

The rest of the paper is organized as follows. Section II
describes related work. In Section III, we outline our inter-
polation scheme. Section IV details our experimental setup.
Section V presents a case study that demonstrates the working



details of our scheme. In Section VI we present our experi-
mental results.

II. RELATED WORK

To the best of our knowledge, our work is the first
study, that estimates and analyzes the optimized distribution of
power amongst CPU and memory subsystems, in the context
of an overprovisioned system under a strict power budget.
Rountree et al [5] have studied the variation in application
performance under varying power bounds using RAPL. In
continuation of this work, Patki et al [7] proposed the idea
of overprovisioning the compute nodes in power-constrained
high performance computing. Their work relies on selecting
the best configuration out of a set of profiled configurations.
Because of the sheer number of all possible configurations,
it is not practically feasible to profile an application at all
possible node counts, CPU power caps and memory power
caps. Our work introduces a novel interpolation scheme, that
takes into account the effects of strong scaling an application
under different CPU and memory power caps and estimates the
missing configurations. Our work also differs from [7] since
we take into account the effect of memory capping that can
significantly improve the speedups for most applications. An-
other novel aspect is that our scheme is based on fotal machine
power which includes base power that can significantly alter
the observed speedups across applications.

The idea of overprovisioning has been studied and imple-
mented in the architecture community in a similar context [8]
e.g. Intel’s Nehalem has overprovisioned cores. The CPU can
either run all of these cores at lower clock frequencies or
a few of them at highest clock frequencies due to power
and thermal bounds. Additionally, earlier work has mostly
focussed on reducing energy consumption under a time bound
for HPC applications. Rountree et al [9] have used linear
programming to reduce energy consumption with negligible
execution time penalty. In our earlier work, we have used
DVEFS to trade execution time for lower cooling and machine
energy consumptions [10], [11].

III. APPROACH

Power consumption of different applications varies sig-
nificantly. Moreover, the usefulness of increasing the power
budget of an application also varies between applications [1].
We formulate our problem statement as follows:

Optimize the numbers of nodes (n), the CPU power level
(pe) and memory power level (p,,) that minimizes execution
time (t) of an application under a strict power budget (P), on
a high performance computation cluster with py as the base
power per node.

In this section, we outline our interpolation scheme that
estimates execution time using application profile for different
scales, CPU power levels and memory power levels. The
terminology used in the paper is defined in Table I. We
denote an operating configuration by (n X p¢,pn,) where
n is the number of nodes and p., p,, are the CPU and
memory power caps, respectively. To determine the optimized
configuration for running an application, we need to profile
the application for each configuration (n X pe,p,) Where
n € N, p. € P., p,, € P,,. This adds up to a total of

TABLE 1. TERMINOLOGY

Variable Description

\\4 Watts

Do node base power (W)

Pe CPU/Package power cap (W)

Pm memory power cap (W)

P, set of allowed CPU caps used

P, set of allowed memory caps used

N set of number of nodes used

Pe set of CPU power caps used for profiling in Step 1
Pm set of memory power caps used for profiling in Step 1

set of number of nodes used for profiling in Step 1
maximum allowed power budget (W)
execution time for an application (s)
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|N| X |P.| x |Py,| possible configurations, assuming P, and
P,, have integral values only. Such exhaustive profiling of
an application is practically infeasible because of the sheer
number of possible configurations. For example, in a cluster
with only 20 nodes, 71 CPU power levels and 28 memory
power levels, we would need to profile the application for
39, 760 possible configurations, which is practically infeasible.
Therefore, we break the application performance analysis into
two steps: performance measurement by actual profiling (Step
1) followed by performance estimation using curve fitting/
interpolation (Step 2).

Step 1: Performance measurement by actual profiling

We start application profiling by running it for a selected
set of configurations that span the entire range of available
configurations. In other words, we only profile the application
for a subset of total possible configurations i.e. (n X p¢, D)
where n € N, p. € Pe, P € P

Step 2: Performance prediction by curve fitting or interpolation

In this step, we use curve fitting on the profiled data
obtained in Step [ to estimate the execution time for any
possible configuration (n X p.,p,,) where n € N, p. € P,
and p,, € P,,. Behavior of execution time (t) with n, p., and
Pm, can be represented in a 4D plot. However, visualizing a
4D plot can be tedious. Hence, we present application profile
by plotting ¢ against the total power p in 2D, where p takes
Pe> Pms and n into account, using the following equation:

p=nx* (Pb + Pe +pm,) (D

Presenting the profile in a 2D plot facilitates its visualization
and makes it easier to determine the optimized configuration.
To estimate execution time for any configuration we need to
find the relationship of execution time to power consumption
across the three dimensions i.e. n, p., and p,,. Beginning with
|N| X |Pe| X |Pp| actually profiled configurations in Szep 1,
interpolation is accomplished in the following three steps:

1) Interpolation across memory power: For each pair of
(n,p.) where n € N,p. € P, we fit a curve ¢, ,_ (z)
across the profiled values of memory caps i.e. p,, € P,
where x € P,,. This process yields |N| x |P,| such curves.
A given curve, ¢, ,_, can be used to obtain an estimate of
t corresponding to any p,, € P,, using n nodes capped
at CPU power level of p.. Using all the ¢, , curves,



we can estimate the execution times for all configurations
(n X pe, pm) where n € N, p. € P., and p,, € Pry.

2) Interpolation across node counts: To capture the behavior
of strong scaling, we fit a curve ¢, , . () across the
profiled values of n i.e. n € N, where x € N, for each
pair of (p., pm) wWhere p. € P, and p,,, € P,,. This process
results in |P;| x | P,,| strong scaling curves. A given strong
scaling curve, v, , , can estimate ¢ for any n € N where
each node is operating under CPU and memory power caps
of p. and p,, respectively. These strong scaling curves
can be used to obtain values of ¢ for all configurations
(n X pe, pm) Where n € N, p. € Pe, and py, € Pry.

3) Interpolation across CPU power: Finally, we interpolate
t across CPU power. We fit a curve 6, , (x) across the
profiled values of p. (p. € P.) where xe P., for every
pair of (n,p,,) such that n € N and p,, € P,. We
retrieve |N| X |P,,,| curves for interpolating across p.. A
given curve, 6, , , estimates ¢ for any p. € P, using n
nodes operating under a memory power cap of p,,. These
0., p,, curves can be used to estimate execution times for
all possible configurations i.e. (n X pc, pm ), Where n € N,
pe € P. and p,, € Py,.

IV. EXPERIMENTAL SETUP

Our testbed is a 20-node Dell PowerEdge R620 cluster
installed at the Department of Computer Science, University
of Illinois at Urbana-Champaign. Each node is an Intel®
Xeon® E5-2620 Sandy-bridge server with 6 physical cores @
2GHz, 2-way SMT with 16GB of DRAM. The package/CPU
corresponds to the processor die that also includes the cores,
L1,L2 and L3 caches amongst other components. The Intel
Sandy Bridge processor family supports on board power mea-
surement and capping through the Running Average Power
Limit (RAPL) interface [12]. The Sandy Bridge architecture
has four power planes: Package (PKG), Power Plane 0 (PPO),
Power Plane 1 (PP1) and DRAM. RAPL is implemented using
a series of Machine Specifics Registers (MSRs) which can be
accessed to get power readings for each power plane. RAPL
supports power capping PKG, PPO and DRAM power planes
by writing into the relevant MSRs. The package power for
our testbed can be capped in the range 25W to 95W (71
integer power levels) while the memory power can be capped
between 8W to 35W (28 integer power levels). The average
base power per node (p;) for our cluster was 38 watts. The
base power was measured using the in-built power meters on
the Power Distribution Unit (PDU) that powers our cluster.
Three applications used for demonstrating our scheme are:

1) Lulesh - It is a shock hydrodynamics application which
was defined and implemented by LLNL as one of five
challenge problems in the DARPA UHPC program [13].
This application is both computation and memory inten-
sive.

2) Wave2D - uses a finite difference scheme over a 2D
discretized grid to calculate the pressure resulting from
an initial set of perturbations. This application is both
computation and memory intensive.

3) LeanMD - is a molecular dynamics simulation written in
Charm++ [14]. This benchmark simulates atomic interac-
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Fig. 1. Average time per step of Lulesh for configurations selected in Step 1

tion based on Lennard-Jones potential. This application
is only computationally intensive [15].

V. CASE STUDY: LULESH

In this section, we demonstrate the application of our
scheme in estimating the optimized configuration for an itera-
tive application under a strict power budget by considering the
Lulesh application. . The profiling experiments were conducted
on the 20-node cluster outlined in Section IV. The following
CPU and memory power caps were selected for profiling (Step
I):

P.= {28,32,36,44,50,55}
P = {8,10,14, 18}
Since determining the optimized number of nodes (n) is part
of our scheme, we profile the application for strong scaling as
well:

N ={5,8,12,16,20}

Figure 1 shows Lulesh’s execution profile for some of these
configurations. Y-axis corresponds to the average execution
time per step, and X-axis shows the fotal power of the system
(calculated using Equation 1). Based on the profile data, we
can pick an efficient configuration for a given power budget
as follows: We draw a vertical line at the given power budget
P and choose the lowest point on or to the left of that vertical
line. Following are three examples of finding the optimized
configurations for a given power budget (P).

e P = 1200W: the best profiled configuration is (12 x
44,18).

e P = 1600W: the best profiled configuration is (20 x
32,10). In this case, it is better to use more nodes each
capped at relatively lower CPU and memory power levels
as compared to the P = 1200W case, in which fewer
nodes are run at a higher CPU and memory power levels.

e P = 800W: Since there is no profile data close to the
power budget of 800W, we have to proceed leftwards to the
(5 x 55,18) configuration. This configuration corresponds
to a total power consumption of 555W. Hence, the available
power is not completely used which makes it an inferior
solution.
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Fig. 2. Average time per step of Lulesh after interpolation (Step 2)

We will now see how our interpolation scheme can improve
the solution. We need to identify the three sets of functions
Dnpms Vpopm» and O, that interpolate across all three
dimensions. Figure 1 shows that the behavior of ¢ across all
three dimensions is the same. ¢ is more sensitive to each of n,
Pe, and p,,, at lower values of p as compared to larger values of
p. For example, for n = 12 and p,,, = 18, t reduces faster for
pe in range [28, 36]W compared to the case when p. is in the
range [44, 55]W. Similarly, for n = 12 and p. = 55, ¢ reduces
faster when p,, is in the range [8, 10]W compared to when p,,
is in the range [10, 18]W. This pattern can be modeled by the
use of two exponential terms. We therefore express execution
time (?) for each of these curves, ¢, p_, Vp, p., and 0, ,  by:

a c
tp) = 3o + 2

where a, b, ¢, and d are constants and p is total power budget.
As mentioned in Section III, while interpolating across each
of the n,p. and p,, dimensions, the other two dimensions
remain constant. Hence, p (Equation 1) only captures the
change in the dimension being interpolated since the other
terms in Equation 1 are constant. We use Matlab’ s curve
fitting toolbox that uses linear and non linear regression to
determine these constants for each of the curves. Based on the
characteristic mentioned above, Equation 2 can be thought of
as having two parts: fi(p) and f5,(p).

t(p) = filp) + fu(p) 3)

For lower values of p, f;(p) dominates f5(p), whereas fj,(p)
becomes dominating at higher values of p. This is achieved by
selecting appropriate constants. At lower values of p, values of
t are large and decrease at a faster rate. Hence, the constants
a and b in f;(p) are large. When p is large, ¢ is smaller and
decreases slowly with p. This implies smaller values for the
constants ¢ and d in f(p). For large values of p, a higher
value of b also makes f;(p) negligible.

Figure 2 plots a few of ¢, ., ¥p, p,, and 0, , = curves for
interpolating across the three dimensions i.e. n,p., and p,,.
To simplify the discussion we omit few profile points from
Figure 2. We remove p. = 28W from P, so that it now is
P. = {32,36,44,50,55}. We now delineate how these curves
were obtained by applying Step 2 described in Section III.

e We demonstrate interpolation across memory using the fol-
lowing example. ¢12 55 from Figure 2 is obtained by fitting
the curve from Equation 2 to configurations (12 x 55, p,,)
for p,, € {8,10,14,18} and evaluating the constants. We
can now estimate ¢ for configuration (12 x 55,9) using
¢12,55 and Equation 1. This configuration is represented by
the rightmost **’ (in blue) in Figure 2. Similarly, we can fit
curves to profile data to obtain the curves ¢z, for p, €
{32,36,44,50}. Using these curves, we can estimate ¢ for
configurations (12 X p¢,9) for p. € {32,36,44,50,55}.
These configurations are shown by ’*’ in Figure 2.

e To estimate the strong scaling performance for different
values of n, we do curve fitting for fixed values of p.
and p,,. For example, 132 13 is obtained by fitting a curve
to configurations (n x 32,18), for n € {5,8,12,16,20}.
We later use this curve to estimate ¢ for n = 10. This
configuration is represented by the topmost solid black
circle in Figure 2. We obtain the curves 1,_1g for p. €
{32,36,44,50} in similar manner and evaluate them at
n = 10 to estimate ¢ for combinations (10 X p., 18) for
pe € {32,36,44,50} (Figure 2).

e In the final step, we interpolate data from previous step
to get the execution times for all CPU power caps. All
the solid lines in Figure 2 correspond to the interpola-
tion across CPU power. For example, 05 15 is obtained
by fitting Equation 2 to configurations (5 X p, 18) for
pe € {32,36,44,50,55}. Finally, we have |N| x |P,,|
curves for 6.

As a result of interpolating across these three dimensions,
we now have a set of curves, 0, ,, , that represent all possible
configurations that could be obtained using exhaustive profil-
ing. To get the optimized configuration for a power budget
P, we evaluate all the 0 curves for that P and chose the
configuration that results in minimum ¢. If the curve 6,0 0 (P)
results in the minimum ¢ = ¢° , the optimized configuration is
given by (n® x L5 —p, —p%  p?)) after using Equation 1 and
solving for p..

VI. RESULTS

In this section, we use our interpolation model to estimate
optimized configurations for different power budgets for the
three parallel applications mentioned in Section IV. Machine
vendors specify the thermal design power (TDP) for CPU and
Memory subsystems. These numbers represent the maximum
power each of these subsystems can draw while operating
within the thermal limits. Data centers do not take application
characteristics into account and therefore calculate the total
power assuming that each node can draw the TDP wattage
specified by the manufacturer. We refer to this configuration
as the baseline configuration . The baseline configuration for
a power budget of P is given by:

(ny x TDP,, TDP,,)

P
py+ TDP, + TDPmJ ’

where T'DP, and T'DP,, represent the CPU and memory
TDP values respectively. For our testbed cluster, 7D P, = 95W
whereas T DP,, = 35W. TDP of a node for our cluster totals
to 168W after adding the base power of 38W. Hence, for

where n;, = {
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Fig. 3. Speedups obtained using CPU and memory power capping in an over-provisioned system

the baseline case we employ the maximum number of nodes,
without power capping, accounting for a maximum possible
power draw of up to 168W per node i.e. n, = Fpg. We compare
the benefits resulting from power capping CPU and memory
subsystems using our scheme against the baseline case for
different power budgets. We use speedup over the baseline case
as the metric for comparison. Speedup is defined as the ratio
of the execution time for the baseline case and the execution
time resulting from the optimized configuration estimated by
our scheme. We perform real experiments to corroborate the
estimates made using our scheme. In particular, we present
results to gauge the effectiveness of our approach to meet the
following criterion:

e Speedup achieved: Comparing the best configurations
from profiled data (Step 1) to the best configurations
estimated using our scheme (Step 2).

e Quality of solution: Comparing model estimates to actual
experimental results

e Cost of estimating the optimized configuration: Amount
of profiling required to make accurate predictions.

A. Benefits of using our interpolation scheme

In Figure 3, we present the speedups achieved using power
capping in an over-provisioned system for different power
budgets. The ‘Profiling’ curve plots the actual speedups that
are obtained by selecting the optimized configuration from
the profiled data from Step 1 (without interpolation). The
“Interp. Estimate’ plots the estimated speedups obtained from
the interpolated curves from Step 2. We do actual experiments
for the optimal configurations predicted in Step 2 and plot the
observed speedups in the ‘Interp. Observed’ curve. We can see
from Figure 3 that the observed speedups (’Interp. Observed’)
match closely to the estimated speedups (’Interp. Estimate’).
The difference in the estimated and observed speedups can be
mainly attributed to system/cluster noise and to the estimation
accuracy of our interpolation scheme. Speedups of Lulesh,
Wave2D, LeanMD fall in the range [1.55,1.80], [1.45,1.9],
[1.57,2.2] respectively. Although each application ends up in
a different speedup range, we get a minimum speedup of at
least 1.45X for any power budget. Speedup that an application
can achieve is attributed to two factors:

e The difference between the CPU/memory TDP and the
actual (measured) power consumed by the CPU/memory.

e The sensitivity of execution time to the CPU/memory
subsystems power consumption.

Performance can be improved by exploiting the first attribute
through a single profiling run. We can profile the applica-
tion and determine the maximum CPU and memory power
consumed by the machine during the execution. However,
speeding up the application by exploiting the second factor
is only possible if that relationship is known. Figure 3 also
compares the speedups for optimized configurations estimated
by our model and profiling data. Although using only profiling
data can speedup an application, the configurations estimated
by our scheme are much superior in terms of speedup. The
Observed speedups resulting from our scheme for LeanMD
are generally 0.40X greater than the configurations estimated
by simple profiling (Step 1).

Speedups from just profiling (Step 1) can improve by doing
more exhaustive profiling which requires considerable machine
time. We mentioned in Section III that |N| X | P|. X | P, | runs
are required to profile an application exhaustively. Considering
the permissible ranges of p., p,,, and n for our testbed, we
need to run each application for 39760 configurations, which
can be practically infeasible. However, for leanMD we did
exhaustive profiling since memory power is always less than
8W. It implies that we only need to profile it for different
values of n and p.. The speedups from this exhaustive profiling
for LeanMD are shown in Figure 3 in the curve labeled
’Exhaustive Profiling’. These speedups are very close to the
speedups estimated by our interpolation scheme. This indicates
the high accuracy of our scheme in predicting the optimized
configurations.

B. Profiling requirements for interpolation

To analyze the robustness of our scheme in estimating
optimized configurations, we used different amounts of profile
data as an input to our interpolation scheme. Since there are
four unknowns (a, b, c,and d) in Equation 2, it requires at
least 4 data points to fit across each dimension i.e. n, p. and
Pm. Hence, we need at least 64 configurations (data points)
for interpolation. We used our scheme to estimate optimized
configurations for three different sets of profile data for Lulesh.
Each profile data set had different number of profiled configu-
rations i.e. 112, 180 and 320 configurations. We used each of
these profile data sets as input to our interpolation scheme
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and evaluated the resulting speedups. Figure 4 shows the
speedups achieved for various power budgets. These speedups
are calculated by performing actual experiments corresponding
to the optimized configuration for each case. Although the
speedups resulting from optimized configurations generally
improve as we increase the profile data points, we are able
to achieve reasonable speedups with even 112 configurations.

C. Optimized number of nodes, CPU and memory power
distribution

We present the optimized p. and p,, values resulting from
our scheme for different power budgets in Figure 5. We also
plot the actual (measured) maximum values for CPU and
memory power consumptions in the baseline experiments for
the same power budgets. Figure 5 shows that our scheme
allocates higher CPU power (p.) for Lulesh and LeanMD as
compared to Wave2D. These optimized values of p,. resulting
from our model lie in the range of [29,35] for Wave2D.
Whereas, the optimized values for p. range from [41,46]
and [40,47] for Lulesh and LeanMD, respectively. Extra watts
allocated to any of the applications outside the upper limit
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of its range can instead be used to power another node and
strong scale the application in an overprovisioned system.
Figure 6 shows the optimized number of nodes for each
application along for different power budgets and compare
it against the baseline configuration. Note that number of
nodes in the baseline configuration are independent of the
application. Our scheme caps the CPU and memory power to
lower values which enables it to use up to twice as many nodes
as the baseline case. Wave2D generally requires the lowest
combined CPU + memory power followed by LeanMD and
Lulesh (Figure 5). This is why Wave2D generally uses the
maximum number of nodes followed by LeanMD and Lulesh.

D. Analyzing the Optimized configurations

The difference in the maximum measured values of CPU
power for the baseline case and the optimized value of p. from
our scheme is about 12W for LeanMD and Lulesh (Figure 5).
This difference is as much as 20W in the case of Wave2D. To
understand why the two cases are different, we plot speedups
for different values of p. and n. Speedups in Figure 7 are
calculated against the execution time at p. = 25W. This is done
to measure the benefits of increasing the CPU power beyond



the minimum CPU power cap allowed. Lulesh and LeanMD are
more sensitive to p. as compared to Wave2D. In fact, execution
time for Wave2D ceases to improve beyond p.=35W for any
value of n. Our interpolation scheme detects this and keeps
the optimized value of p. in the range [29,35]W. Similarly,
the curves for LeanMD and Lulesh in Figure 7 flatten at about
46W and 48W, respectively. This is why the optimized values
of p, are in the range of [41, 46]W and [40, 47]W for LeanMD
and Lulesh, respectively. For most of the power budgets, the
optimized CPU power cap (p.) for Lulesh lies in the range of
[46,47]W (barring the two which are close to 41W). This is
because of the high sensitivity of Lulesh on p.. Due to this high
sensitivity of execution time(t) on p., our scheme allocates
the highest p. value for Lulesh as compared to the other two
applications. In the other two applications, the scheme decides
to allocate relatively more nodes rather than increasing p.,
even though every additional node comes with an overhead -
its base power.

The optimized memory power from our scheme and the
maximum measured memory power in the baseline experi-
ments are almost the same in LeanMD and Lulesh (Figure 5).
For LeanMD, our model caps memory power at 8W which
is the lowest memory power cap supported by the machine
vendor. Since execution time is highly sensitive to p,, for
Lulesh, reducing it results in a significant penalty in execution
time. Our model captures this sensitivity and suggests p,, that
is close to the maximum memory power drawn in case of
baseline experiments (14W from Figure 5). However, in case
of Wave2D, capping memory power at values less than the
maximum power drawn in the baseline scenario, can gives
us higher speedups. Figure 5 shows a difference of 2W (on
average) between the optimized values of p,,, from our scheme
and the max memory power drawn in the baseline experiments.

To further explore the reasons for the 20W/2W difference
in Wave2D CPU/memory power values between our model
and the baseline experiments observed in Figure 5, we study
the behavior of CPU and memory power over the course
of execution of an application. Figure 8 plots the measured
CPU and memory power for the two configurations: ¢; =
(5 x 55,18) and ¢z = (5 x 34,14). The execution time for
these configurations is almost the same (within 1% of each
other), despite the significant difference in allocated power.
Even though the max CPU power drawn reaches 53W for ¢y,
its average CPU power is just 2W higher than the average CPU
power for co. Similarly, the max memory power drawn for c;
is 16W. Capping memory power to 14W in co does not affect
the execution time (Figure 8). Data centers operators have to
account for the peak power drawn while deciding how many
nodes to use. Due to the fluctuations in both CPU and memory
powers for c¢;, max power consumed by a node can reach up
to 107W (53 + 16 + 38). However, by using configuration cs,
the max power per node can be limited to 86W without any
degradation in performance.

E. Benefits of capping memory power

To evaluate the impact of memory power capping, we com-
pared the observed speedups from power capping both CPU
and memory (C&M) with the observed speedups from just
capping the CPU power (C). In the latter case, it determines
the optimized configurations accounting for the maximum TDP

‘ —— Measured CPU power - (5x55,18)
60 —<— Measured CPU power — (5x34,14) g
— — —Measured memory power — (5x55,18)
—&— Measured memory power — (5x34,14)

0 5 10 15 20 25 30 35 40
Time (s)

Fig. 8. Measured CPU and memory power for two different configurations
with significantly different power allocations but similar execution time
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Fig. 9. Speedups for power capping both CPU and memory (C&M) compared
to CPU (C) only

wattage of memory i.e. 35W per node. Figure 9 presents the
speedup results for these two cases under three different power
budgets. There is a significant difference between the speedups
in the two cases. In case of LeanMD, capping memory power
increases the speedup from 1.43X to 1.94X for a power budget
of 1400W. The ability to cap memory power in addition to
CPU power can therefore significantly increase the speedups.

FE. Impact of base power on speedups

Base power of nodes play an important role in deter-
mining the optimized configuration. It forms an important
and essential part of our scheme. Figure 10 shows estimated
speedups from our scheme for three different base powers (pp).
These base powers of 10W, 38W, and 60W were measured
on the Dell Optiplex 990, Dell PowerEdge R620, and Dell
Precision T5500 machines, respectively, using a power meter.
As mentioned in Section IV, the base power of a node in our
testbed is 38W. Instead, if the base power was 10W, we can
expect the speedups to increase by at least 0.25X. Moreover,
the speedups for Wave2D and LeanMD nearly double if base
power is reduced from 60W to 10W. Base power acts as the
fixed cost for adding additional nodes in an over-provisioned
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Fig. 10. Estimated speedups for different base powers in case of P=800W

system. For example, for P = 800W, (15x 35, 8) and (7x 46, 8)
are the optimized configurations for LeanMD using base
powers of 10W and 60W respectively. For p, = 10W, our
model allocates less power to CPU i.e. p.=35, and uses 15
nodes. However, increasing p, to 60W makes it expensive
to add more nodes. Hence, for p,=60W, our model allocates
more power to CPU i.e. p.=46, while using only 7 nodes. This
indicates that the optimized configurations shown in Figure 5
would change for different base powers. As the base power
increases (decreases), we expect the p. and p,, from Figure 5
to increase (decrease). We have seen earlier that the optimized
configurations depend on the relationship of execution time
with p,, and p.. After looking at Figure 10 we can now
associate a correlation between optimum configuration and py,
as well. In general, we can conclude that decreasing the base
power increases the speedup.

VII. CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, this paper provides the first
experimental study that estimates the optimized distribution
of CPU and memory power in the context of overprovisioned
systems. We first outline our interpolation scheme and describe
its working and later use it to estimate optimized configurations
for number of nodes and CPU/memory powers. We validate
our scheme by comparing its estimated results with actual
experimental results. We also establish the quality of solution
estimated by our scheme by comparing it to results obtained by
exhaustively profiling an application. Our interpolation scheme
can speedup an application by up to 2.2X in an overprovisioned
system in which the CPU and memory subsystems of individ-
ual nodes are power capped as compared to the baseline case
in which they are allowed to run at maximum speed (power),
under the same global power budget. In this study, we also
analyze the effect of base power of a node on the achievable
speedups. Our results show that lower base powers can enable
overprovisioned systems to achieve higher speedups.

Two compute nodes operating under the same power cap
might end up working at different speeds due to different
thermal conditions. In future, we plan to address this het-
erogeneity by using dynamic load balancing capabilities of
of a system that supports dynamic object migration [16]. We

also plan to investigate the possibility of incorporating thermal
constraints along with a strict power constraint. In this paper,
we treat an application as an atomic unit. Earlier work shows
that different sections of an application can have different
sensitivities to CPU power [1]. We plan to exploit this behavior
of an application by allowing more CPU power to sections of
an application that are most sensitive to it, while staying under
the total power budget.
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