PREDICTING COMMUNICATION PERFORMANCE

Nikhil Jain CASC Seminar, LLNL

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 13-ERD-055

SUPERCOMPUTERS

SUPERCOMPUTERS

48 GB/s, 1-2 microsec

40 GB/s, 1-3 microsec

2

150 GB/s, 0.8 microsec

420 GB/s, 1-2 microsec

SUPERCOMPUTERS

48 GB/s, 1-2 microsec

40 GB/s, 1-3 microsec

2

150 GB/s, 0.8 microsec

Larger Bandwidth Lower Latency Fewer hops

420 GB/s, 1-2 microsec

Peak bandwidth and latency are never realized in presence of congestion

- Peak bandwidth and latency are never realized in presence of congestion
- High raw bandwidth does not guarantee proportionate observed performance
 - Blue Gene vs Cray's Gemini

- Peak bandwidth and latency are never realized in presence of congestion
- High raw bandwidth does not guarantee proportionate observed performance
 - Blue Gene vs Cray's Gemini
- Savings are proportionate to core-count

- Peak bandwidth and latency are never realized in presence of congestion
- High raw bandwidth does not guarantee proportionate observed performance
 - Blue Gene vs Cray's Gemini
- Savings are proportionate to core-count
- Most importantly, as a graduate student, I do what I am asked to do!

QUANTIFYING IMPACT

- Mapping via logical operations in Rubik
- What about others mappings?
- How far are we from the best?

A. Bhatele, et al Mapping applications with collectives over sub-communicators on torus networks. In Proceedings of the ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC '12. IEEE Computer Society, Nov. 2012 (to appear). LLNL-CONF-556491.

ALTERNATIVES

*Abhinav Bhatele, Nikhil Jain, William D. Gropp, and Laxmikant V. Kale. 2011b. Avoiding hot-spots on two- level direct networks. In *Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '11)*. ACM, New York, NY, USA, 76:1–76:11.

ALTERNATIVES

- Theoretically: NP hard
- Simulations: too slow
 - 15 days to simulate one use case*

*Abhinav Bhatele, Nikhil Jain, William D. Gropp, and Laxmikant V. Kale. 2011b. Avoiding hot-spots on two-level direct networks. In *Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '11)*. ACM, New York, NY, USA, 76:1–76:11.

ALTERNATIVES

- Theoretically: NP hard
- Simulations: too slow
 - 15 days to simulate one use case*
- Real runs: very expensive
 - Application / allocation specific information

	2012	2013
Intrepid	4.16M	0.73M
Mira	0.17M	7.67M
Total	4.33M	8.40M

13 million core hours!

*Abhinav Bhatele, Nikhil Jain, William D. Gropp, and Laxmikant V. Kale. 2011b. Avoiding hot-spots on two-level direct networks. In *Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '11)*. ACM, New York, NY, USA, 76:1–76:11.

HEURISTICS - KNOWN METRICS

2D-Halo: predicting performance using a linear regression model for known metrics

- Collect/generate data and summarize
- Build models: train performance prediction based on independent metrics

7

Predict

- Collect/generate data and summarize
- Build models: train performance prediction based on independent metrics_

8

Source node

Thursday, June 27, 13

9

A PMPI based BGQ-Counter collection module

- A PMPI based BGQ-Counter collection module
- Packets sent on links in specific directions: A, B, C, D, E
 - deterministic, dynamic

- A PMPI based BGQ-Counter collection module
- Packets sent on links in specific directions: A, B, C, D, E
 - deterministic, dynamic
- Packets received on a link

A B C C

- A PMPI based BGQ-Counter collection module
- Packets sent on links in specific directions: A, B, C, D, E
 - deterministic, dynamic
- Packets received on a link
- Packets in buffers —

Α

ANALYTICAL TOOL

ANALYTICAL TOOL

Simulate the injection mechanism

- Selection of memory injection FIFO
- Mapping of memory FIFO to network injection FIFO

ANALYTICAL TOOL

Simulate the injection mechanism

- Selection of memory injection FIFO
- Mapping of memory FIFO to network injection FIFO

10

Simulate routing to obtain hops/dilation

Collect raw data - various entities, e.g. bytes on a link, and the observed performance.

- Collect raw data various entities, e.g. bytes on a link, and the observed performance.
- Derive metrics from the raw data on entities, e.g. average of bytes on links.
- Collect raw data various entities, e.g. bytes on a link, and the observed performance.
- Derive metrics from the raw data on entities, e.g. average of bytes on links.
- Create a database of derived metrics and performance; we have used 100 mappings.

- Collect raw data various entities, e.g. bytes on a link, and the observed performance.
- Derive metrics from the raw data on entities, e.g. average of bytes on links.
- Create a database of derived metrics and performance; we have used 100 mappings.
- Select two-third entries as training set; includes derived metrics and performance.

12

The training set is used to create a model for prediction

- The training set is used to create a model for prediction
- Remaining entries from the database are used as the test set only derived metrics.

- The training set is used to create a model for prediction
- Remaining entries from the database are used as the test set only derived metrics.

12

Prediction is compared with observed values.

- The training set is used to create a model for prediction
- Remaining entries from the database are used as the test set only derived metrics.
- Prediction is compared with observed values.
- Experimented with a large number of algorithms linear, bayesian, SVM, near-neighbors etc.

- The training set is used to create a model for prediction
- Remaining entries from the database are used as the test set only derived metrics.
- Prediction is compared with observed values.
- Experimented with a large number of algorithms linear, bayesian, SVM, near-neighbors etc.

- The training set is used to create a model for prediction
- Remaining entries from the database are used as the test set - only derived metrics.
- Prediction is compared with observed values.
- Experimented with a large number of algorithms linear, bayesian, SVM, near-neighbors etc.

<u>http://scikit-learn.org</u>

13

Decision trees

13

Decision trees

Randomized forest of trees

HOW TO JUDGE A PREDICTION

Rank Correlation Coefficient (RCC): fraction of the number of pairs of task mappings whose ranks are in the same partial order in predicted and observed performance list $concord_{ij} = \begin{cases} 1, & \text{if } x_i >= x_j \& y_i >= y_j \\ 1, & \text{if } x_i < x_j \& y_i < y_j \\ 0, & \text{otherwise} \end{cases}$

$$RCC = \left(\sum_{0 < i < n} \sum_{0 < i < n < i} concord_{ij}\right) / \left(\frac{n(n-1)}{2}\right)$$

Absolute Correlation

$$R^{2}(y,\hat{y}) = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

14

Higher the better!

- Three communication kernel
 - Five-point 2D stencil
 - 14-point 3D stencil
 - Sub-communicator all-to-all
- Four message sizes to span MPI and routing protocols

KNOWN METRICS

- Entities
 - Bytes on a link
 - Dilation
- Derivation Methods
 - Maximum
 - Average
 - Sum

Maximum bytes on a link

RESULTS KNOWN METRICS

17

Thursday, June 27, 13

RESULTS KNOWN METRICS

NEW METRICS

NEW METRICS

Entities

- Buffer length (on intermediate nodes)
- FIFO length (packets in injection FIFO)
- Delay per link (packets in buffer/packets received)

NEW METRICS

Entities

- Buffer length (on intermediate nodes)
- FIFO length (packets in injection FIFO)
- Delay per link (packets in buffer/packets received)

- Derivation methods
 - Average Outliers (AO)
 - Top Outliers (TO)

RESULTS NEW METRICS

Rank correlation coefficient 1.0 0.9 0.8 0.7 0.6 0.6 0.7 0.70.7

19

 \mathbb{R}^2

HYBRID METRICS

HYBRID METRICS

Combine multiple metrics to complement each other

HYBRID METRICS

- Combine multiple metrics to complement each other
- Some combinations
 - avg bytes + max bytes + max FIFO
 - avg bytes + max bytes + avg buffer + max FIFO
 - avg bytes + avg buffer + avg delay AO + sum hops
 - avg bytes TO + avg buffer TO + avg delay TO + sum hops

RESULTS HYBRID METRICS

RESULTS HYBRID METRICS

RESULTS - TREND

22

2D Halo

3D Halo

Sub A2A

24

Combining all benchmarks

RESULTS - PF3D

RESULTS - PF3D

25

Absolute performance correlation

RESULTS - PF3D

SUMMARY

- Communication is not just about peak latency / bandwidth
- Simultaneous analysis of various aspects of network is important
- Complex models are required for accurate prediction

26

There are patterns waiting to be identified!

FUTURE WORK

- More applications!
- More metrics
- Weighted analysis
- Offline prediction of entities
FUTURE WORK

- More applications!
- More metrics
- Weighted analysis
- Offline prediction of entities

Questions?

27

