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Simulations: too slow
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2012 2013
Intrepid 4.16M 0.73M

Mira 0.17M 7.67M

Total 4.33M 8.40M

13 million core hours!
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Figure 1: Performance variation with prior metrics. A large variation in performance is observed for the same value of the metric in
all three cases.

In Section 2, we describe the common metrics used in literature and
motivate the need for more precise metrics. Sources of contention
on torus networks, methodology for collecting hardware counters
data, and new proposed metrics are discussed in Section 3. The
benchmarks and supervised learning techniques used in the paper
and the measures of prediction success are described in Section 4.
In Sections 5, 6, 7, we present results using prior metrics, new met-
rics and their combinations. We conclude our work in Section 8.

2. BACKGROUND AND MOTIVATION
Several metrics have been proposed in the literature to evaluate task
mappings offline. Let us assume a guest graph, G = (Vg, Eg)

(communication graph between tasks in a parallel application) and
a host graph, H = (Vh, Eh) (network topology of the parallel ma-
chine). M defines a mapping of the guest graph, G on the host
graph, H . The earliest metric that was used to compare the effec-
tiveness of task mappings is dilation [3, 12]. Dilation for a mapping
M can be defined as,

dilation(M) = max

ei2Eg
di(M) (1)

where di is the dilation of the edge ei for a mapping M . Dilation of
an edge ei is the number of hops between the end-points of the edge
when mapped to the host graph. This metric aims at minimizing the
length of the longest wire in a circuit [3]. We will refer to this as
maximum dilation to avoid any confusion. We can also calculate
the average dilation per edge for a mapping as,

average dilation-per-edge(M) =

P
ei2Eg

di(M)

|Eg|
(2)

Hoefler and Snir overload dilation to describe the “expected” dila-
tion for an edge and “average” dilation for a mapping [11]. Their
definition of expected dilation for an edge can be reduced to equa-
tion 1 above by assuming that messages are only routed on shortest
paths, which is true for the IBM Blue Gene and Cray XT/XE fam-
ily (if all nodes are in a healthy state). The average dilation metric,
as coined by Hoefler and Snir, is a weighted dilation and has been
previously referred to as the hop-bytes metric by Sadayappan [9] in
1988 and Agarwal in 2006 [2]. Hop-bytes is the weighted sum of
the edge dilations where the weights are the message sizes. Hop-
bytes can be calculated by the equation,

hop-bytes(M) =

X

ei2Eg

di(M)⇥ wi (3)

where di is the dilation of edge ei and wi is the weight (message

size in bytes) of edge ei.

Hop-bytes gives an indication of the overall communication traffic
being injected on to the network. We can derive two metrics based
on hop-bytes: the average number of hops traveled by each byte on
the network,

average hops-per-byte(M) =

P
ei2Eg

di(M)⇥ wi
P

ei2Eg
wi

(4)

and the average number of bytes that pass through a hardware link,

average bytes-per-link(M) =

P
ei2Eg

di(M)⇥ wi

|Eh|
(5)

The former gives an indication of how far each byte has to travel
on average. The latter gives an indication of the average load or
congestion on a hardware link on the network. They are derived
metrics (from hop-bytes) and all three are practically equivalent
when used for prediction. In the rest of the paper, we use average
bytes-per-link.

Another metric that indicates congestion on network links is the
maximum number of bytes going through any link on the network,

maximum bytes(M) = max

li2Eh

(

X

ej2Eg |ej=)li

wj) (6)

where ej =) li represents that edge ej in the guest graph goes
through edge (link) li in the host graph (network). Hoefler and
Snir use a second metric in their paper [11], worst case congestion,
which is the same as equation 6 above.

We conducted a simple experiment with three of these metrics de-
scribed above – maximum dilation, average bytes-per-link and max-
imum bytes on a link to analyze their correlation with application
performance. Figure 1 shows the communication time for one it-
eration of a two-dimensional halo exchange versus the three met-
rics in different plots. Although the coefficient of determination
values (R2, metric used for prediction success) are high, there is
a significant variation in the y-values for different points with the
same x-value. For example, in the maximum bytes plot (right), for
x = 6e9, there are mappings with performance varying from 20 to
50 ms. These variations make predicting performance using simple
models with a reasonably high accuracy (±5% error) difficult. This
motivated us to find new metrics and ways to improve the correla-
tion between metrics and application performance.

2D-Halo: predicting performance using a 
linear regression model for known metrics
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Figure 3: Example decision tree and random forests generated using scikit.

by the input features. Each color in the figure is a leaf region of one
of the decision trees in the random forest generated by fitting the
training set. The white circles are the test set being predicted. To
predict the target for these unseen samples, every decision tree is
traversed to find the right leaf node that provides a possible tar-
get value. Having obtained a set of possible target values from the
decision trees, they are combined to provide the predicted value.

4.4 Metrics for prediction success
The goodness or success of the prediction function (also referred
to as the score) can be evaluated using different metrics depend-
ing on the definition of success. Our main goal is to compare the
performance of two mappings and determine the correct ordering
between the mappings in terms of performance. Hence, we focus
on a rank correlation metric for determining success but we also
present results for a metric that compares absolute values.
Rank Correlation Coefficient (RCC): Ranks are assigned to map-
pings based on their position in two sorted sets (by execution times
for observed and predicted performance). RCC is defined as the
ratio of the number of pairs of task mappings whose ranks were
in the same partial order in both the sets to the total number of
pairs. In statistical parlance, RCC equals the ratio of the number
of concordant pairs to that of all pairs (Kendall’s Tau [1]). For-
mally speaking, if observed ranks of tasks mappings are given by
{x1, x2, · · · , xn}, and the predicted ranks by {y1, y2, · · · , yn},
we define RCC as:

concord ij =

8
><

>:

1, if xi >= xj & yi >= yj

1, if xi < xj & yi < yj

0, otherwise

RCC =

⇣ X

0<=i<n

X

0<=j<i

concordij
⌘
/(

n(n� 1)

2

)

Absolute Correlation (R2): To predict the success for absolute
predicted values, we use the coefficient of determination from statis-
tics, R-squared,

R2
(y, ŷ) = 1�

P
i(yi � ŷi)

2

P
i(yi � ȳ)2

where ŷi is the predicted value of the ith sample, yi is the corre-
sponding true value, and

ȳ =

1

nsamples

X

i

yi

5. PERFORMANCE PREDICTION OF COM-
MUNICATION KERNELS

In this section, we present predictions for the execution times of
communication kernels (Section 4.2) for different task mappings.

5.1 Performance variation with mapping
Figure 4 presents the execution times for the three benchmarks for
four message sizes – 8 bytes, 512 bytes, 16 KB and 4 MB. These
sizes represent the amount of data exchanged between a pair of
MPI processes. For example, for 2D Halo, this number is the size
of a message sent by an MPI process to each of its four neighbors
in 2D. For a particular message size, a point on the plot represents
the execution time (on the y-axis) for a mapping (on the x-axis).

For 2D Halo, Figure 4(a) shows that for small messages such as 8
and 512 bytes, mapping has an insignificant impact. As the mes-
sage size increases to 16 KB, in addition to an increase in the run-
time, we observe up to a 7⇥ difference in performance for the best
mapping in comparison to the worst mapping (note the log scale
on the y-axis). Similar variation is seen as we further increase the
message size to 4 MB. For a more communication intensive bench-
mark, 3D Halo, we find that mapping impacts performance even for
messages of size 512 bytes (Figure 4(b)). As we further increase
the communication in Sub A2A, the effect of task mapping is seen
even for the 8-byte messages as shown in Figure 4(c).

In the sections below, we do not present predictions for the cases
where the performance variation due to mapping is statistically in-
significant: 8- and 512-byte results in case of 2D Halo and 8-byte
results in case of 3D Halo.

5.2 Prior features
We begin with showing prediction results using prior metrics/ fea-
tures (described in Section 2) and quantify the goodness of the fit
or prediction using RCC and R2 (Section 4.4).
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Figure 1: Performance variation with prior metrics. A large variation in performance is observed for the same value of the metric in
all three cases.

In Section 2, we describe the common metrics used in literature and
motivate the need for more precise metrics. Sources of contention
on torus networks, methodology for collecting hardware counters
data, and new proposed metrics are discussed in Section 3. The
benchmarks and supervised learning techniques used in the paper
and the measures of prediction success are described in Section 4.
In Sections 5, 6, 7, we present results using prior metrics, new met-
rics and their combinations. We conclude our work in Section 8.

2. BACKGROUND AND MOTIVATION
Several metrics have been proposed in the literature to evaluate task
mappings offline. Let us assume a guest graph, G = (Vg, Eg)

(communication graph between tasks in a parallel application) and
a host graph, H = (Vh, Eh) (network topology of the parallel ma-
chine). M defines a mapping of the guest graph, G on the host
graph, H . The earliest metric that was used to compare the effec-
tiveness of task mappings is dilation [3, 12]. Dilation for a mapping
M can be defined as,

dilation(M) = max

ei2Eg
di(M) (1)

where di is the dilation of the edge ei for a mapping M . Dilation of
an edge ei is the number of hops between the end-points of the edge
when mapped to the host graph. This metric aims at minimizing the
length of the longest wire in a circuit [3]. We will refer to this as
maximum dilation to avoid any confusion. We can also calculate
the average dilation per edge for a mapping as,

average dilation-per-edge(M) =

P
ei2Eg

di(M)

|Eg|
(2)

Hoefler and Snir overload dilation to describe the “expected” dila-
tion for an edge and “average” dilation for a mapping [11]. Their
definition of expected dilation for an edge can be reduced to equa-
tion 1 above by assuming that messages are only routed on shortest
paths, which is true for the IBM Blue Gene and Cray XT/XE fam-
ily (if all nodes are in a healthy state). The average dilation metric,
as coined by Hoefler and Snir, is a weighted dilation and has been
previously referred to as the hop-bytes metric by Sadayappan [9] in
1988 and Agarwal in 2006 [2]. Hop-bytes is the weighted sum of
the edge dilations where the weights are the message sizes. Hop-
bytes can be calculated by the equation,

hop-bytes(M) =

X

ei2Eg

di(M)⇥ wi (3)

where di is the dilation of edge ei and wi is the weight (message

size in bytes) of edge ei.

Hop-bytes gives an indication of the overall communication traffic
being injected on to the network. We can derive two metrics based
on hop-bytes: the average number of hops traveled by each byte on
the network,

average hops-per-byte(M) =

P
ei2Eg

di(M)⇥ wi
P

ei2Eg
wi

(4)

and the average number of bytes that pass through a hardware link,

average bytes-per-link(M) =

P
ei2Eg

di(M)⇥ wi

|Eh|
(5)

The former gives an indication of how far each byte has to travel
on average. The latter gives an indication of the average load or
congestion on a hardware link on the network. They are derived
metrics (from hop-bytes) and all three are practically equivalent
when used for prediction. In the rest of the paper, we use average
bytes-per-link.

Another metric that indicates congestion on network links is the
maximum number of bytes going through any link on the network,

maximum bytes(M) = max

li2Eh

(

X

ej2Eg |ej=)li

wj) (6)

where ej =) li represents that edge ej in the guest graph goes
through edge (link) li in the host graph (network). Hoefler and
Snir use a second metric in their paper [11], worst case congestion,
which is the same as equation 6 above.

We conducted a simple experiment with three of these metrics de-
scribed above – maximum dilation, average bytes-per-link and max-
imum bytes on a link to analyze their correlation with application
performance. Figure 1 shows the communication time for one it-
eration of a two-dimensional halo exchange versus the three met-
rics in different plots. Although the coefficient of determination
values (R2, metric used for prediction success) are high, there is
a significant variation in the y-values for different points with the
same x-value. For example, in the maximum bytes plot (right), for
x = 6e9, there are mappings with performance varying from 20 to
50 ms. These variations make predicting performance using simple
models with a reasonably high accuracy (±5% error) difficult. This
motivated us to find new metrics and ways to improve the correla-
tion between metrics and application performance.
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NEW METRICS

Entities
Buffer length (on intermediate nodes)
FIFO length (packets in injection FIFO)
Delay per link (packets in buffer/packets received)
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Buffer length (on intermediate nodes)
FIFO length (packets in injection FIFO)
Delay per link (packets in buffer/packets received)

Derivation methods
Average Outliers (AO)
Top Outliers (TO)

18

18Thursday, June 27, 13



���

���

���

���

���

�	
��� �	
��� ���
���

�
�

������������������������������

�� �!������
�"#��$���
�� ��$���

�"#�������
�"#��������%&

����!��������&

�"#��$�����&
�"#��$����%&

RESULTS
NEW METRICS

19

���

���

���

���

���
�
	
	

�
��������
��������������

19Thursday, June 27, 13



HYBRID METRICS

20

20Thursday, June 27, 13



HYBRID METRICS
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HYBRID METRICS

Combine multiple metrics to complement each other

Some combinations
avg bytes + max bytes + max FIFO
avg bytes + max bytes + avg buffer + max FIFO
avg bytes + avg buffer + avg delay AO + sum hops
avg bytes TO + avg buffer TO + avg delay TO + 
sum hops 

20

20Thursday, June 27, 13



RESULTS
HYBRID METRICS

21

���

���

���

���

���

�
	
	

�
��������
��������������

���

���

���

���

���

�	
��� �	
��� ���
���

�
�

������������������������������

�� �!������
�"#��$���
�� ��$���
�"#�������

�"#��������%&

����!��������&
�"#��$�����&
�"#��$����%&

��
��

��
�'
�(
��

21Thursday, June 27, 13



RESULTS
HYBRID METRICS

21

���

���

���

���

���

�
	
	

�
��������
��������������

���

���

���

���

���

�	
��� �	
��� ���
���

�
�

������������������������������

�� �!������
�"#��$���
�� ��$���
�"#�������

�"#��������%&

����!��������&
�"#��$�����&
�"#��$����%&

��
��

��
�'
�(
��

hybrid 
metrics  
provide 

high 
accuracy

21Thursday, June 27, 13



RESULTS - TREND

22

Figure 7: Prediction success based on hybrid features from Table 3. We obtain RCC and R2 values exceeding 0.99 for 3D Halo and
Sub A2A. Prediction success improves significantly for 2D Halo also.

0.93 to 0.975 and 0.955 for the 16 KB and 4 MB message sizes
respectively. For the more communication intensive benchmarks,
we obtained R2 values as high as 0.99 in general. Hence, the use
of hybrid features not only predicts the correct pairwise ordering
of mapping pairs but also does so with high accuracy in predicting
their absolute performance.

5.5 Summary
Figure 8 presents the scatter-plot of predicted performance for the
three benchmarks for the 4 MB message size. On the x-axis are the
task mappings sorted by observed performance, while the y-axis
is the predicted performance. The feature set H3: avg bytes, max
bytes, avg buffer, max FIFO was used for these predictions. It is
evident from the figure that an almost perfect ordering is achieved
for all three benchmarks.

Figure 9 shows the prediction success for the three benchmarks on
65,536 cores of BG/Q. From all the previously presented features
(prior, new and hybrid), we selected the ones with the highest RCC
scores for 16,384 cores, and present only those in this figure. We
obtain significant improvements in the prediction scores using hy-

brid features for prediction in comparison to single features such as
max bytes and avg bytes TO. For Sub A2A, RCC improved by 14%
from 0.86 to 0.98 , with a RCC value of 1.00 for both 512 bytes
and 4 MB message sizes. For 2D Halo and 3D Halo, an improve-
ment of up to 8% was observed in the prediction success. Similar
trends were observed for R2 values.

6. COMBINING ALL TRAINING SETS
In the previous section, we presented high correlation for predict-
ing performance of the three benchmarks. For the prediction of
individual benchmarks, the training and testing sets were generated
from the 84 different mappings of the same benchmark for a par-
ticular message size on a fixed core count. In this section, we relax
these requirements, and explore the space where the training and
testing sets are a mix of different benchmarks, message sizes and
core counts.

6.1 Combining samples from different kernels
We first explore the use of training and testing sets that are a combi-
nation of all three benchmarks and both 16 KB and 4 MB message
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Figure 9: Prediction success: summary for all benchmarks on 65,536 cores of BG/Q. H3: avg bytes & max bytes & avg buffer & max
FIFO; H5: avg bytes TO & avg buffer TO & avg delay AO & sum hops A0 & max FIFO

sizes. It is to be noted that the training and testing sets are now six
times the size of individual sets (336 vs. 56 for the training set and
168 vs. 28 for the testing set). Figure 10 presents the prediction
success and the absolute number of mispredictions for this exper-
iment. We present selected prior, new and hybrid features in this
experiment.

High RCC values, such as 0.97 for avg bytes, suggests that the
combination of training sets results in a better prediction than the
individual cases. A comparison of the total number of mispredic-
tions, presented in Figure 10, with the sum of mispredictions for
individual cases results in similar values. This suggests that scikit
was successful in classifying the sample data from different kinds
of communication patterns and message sizes and in making good
predictions using them. This suggests that if a large database con-
sisting of different communication patterns and message sizes is
created, predicting performance of different classes of applications
(possibly with unknown communication structure) may be feasible.
We leave an in-depth study of this aspect for future work.

6.2 Predicting performance on 65,536 cores us-
ing 16,384-core samples

We also experimented with predicting the performance on 65,536
cores using the same combined training set for 16,384 cores from
the section above. We obtained a maximum RCC value of 0.975
using the feature set H3: avg bytes, max bytes, avg buffer, max
FIFO. In terms of absolute number of pairs with the wrong order-
ing, ⇠ 3200 pairs was mispredicted among a full set of 126756.

We find these results to be very encouraging since a strong corre-
lation for predicting performance on large node counts using data
from smaller jobs may provide a scalable method for performance
prediction. Using smaller systems to predict performance at scale
has several advantages. First, generating data sets is more feasible
in this regime because it consumes less resources. Second, man-
ually generating various mappings for large systems is impracti-
cal, but using prediction on smaller node counts, a large number of
mappings can be explored with low overhead.
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Figure 10: Prediction success using combination of bench-
marks as training and testing sets.

7. RESULTS WITH PF3D
pF3D [17] is a multi-physics code used for studying laser plasma-
interactions in the National Ignition Facility (NIF) experiments at
LLNL. pF3D is a communication-heavy application and has been
shown to benefit significantly from task mapping on Blue Gene/P [6].
This is the first attempt at mapping pF3D on Blue Gene/Q.

pF3D simulations consist of three distinct phases: wave propaga-
tion and coupling, advecting light, and solving the hydrodynamic
equations. The MPI processes are arranged in a 3D Cartesian grid

Combining 
all benchmarks
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FIFO; H5: avg bytes TO & avg buffer TO & avg delay AO & sum hops A0 & max FIFO

sizes. It is to be noted that the training and testing sets are now six
times the size of individual sets (336 vs. 56 for the training set and
168 vs. 28 for the testing set). Figure 10 presents the prediction
success and the absolute number of mispredictions for this exper-
iment. We present selected prior, new and hybrid features in this
experiment.

High RCC values, such as 0.97 for avg bytes, suggests that the
combination of training sets results in a better prediction than the
individual cases. A comparison of the total number of mispredic-
tions, presented in Figure 10, with the sum of mispredictions for
individual cases results in similar values. This suggests that scikit
was successful in classifying the sample data from different kinds
of communication patterns and message sizes and in making good
predictions using them. This suggests that if a large database con-
sisting of different communication patterns and message sizes is
created, predicting performance of different classes of applications
(possibly with unknown communication structure) may be feasible.
We leave an in-depth study of this aspect for future work.

6.2 Predicting performance on 65,536 cores us-
ing 16,384-core samples

We also experimented with predicting the performance on 65,536
cores using the same combined training set for 16,384 cores from
the section above. We obtained a maximum RCC value of 0.975
using the feature set H3: avg bytes, max bytes, avg buffer, max
FIFO. In terms of absolute number of pairs with the wrong order-
ing, ⇠ 3200 pairs was mispredicted among a full set of 126756.

We find these results to be very encouraging since a strong corre-
lation for predicting performance on large node counts using data
from smaller jobs may provide a scalable method for performance
prediction. Using smaller systems to predict performance at scale
has several advantages. First, generating data sets is more feasible
in this regime because it consumes less resources. Second, man-
ually generating various mappings for large systems is impracti-
cal, but using prediction on smaller node counts, a large number of
mappings can be explored with low overhead.
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7. RESULTS WITH PF3D
pF3D [17] is a multi-physics code used for studying laser plasma-
interactions in the National Ignition Facility (NIF) experiments at
LLNL. pF3D is a communication-heavy application and has been
shown to benefit significantly from task mapping on Blue Gene/P [6].
This is the first attempt at mapping pF3D on Blue Gene/Q.

pF3D simulations consist of three distinct phases: wave propaga-
tion and coupling, advecting light, and solving the hydrodynamic
equations. The MPI processes are arranged in a 3D Cartesian grid
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Figure 11: Predicting performance on 65,536 cores using
16,384 cores. RCC of up to 0.975 was achieved - 3,200 mis-
predictions in 1,26,756 pairs (2.5%).

and all of the MPI communication is performed along different di-
rections (X,Y, Z) of this grid. Wave propagation and coupling
consists of two-dimensional (2D) Fast Fourier Transforms (FFTs)
in XY -planes; the 2D FFTs are performed via two non-overlapping
1D FFTs along the X and Y directions using MPI_Alltoall.
The advection phase involves planar exchange of data with neigh-
bors in the Z-direction performed using MPI_Send and MPI_Recv.
Finally, the hydrodynamic phase consists of near-neighbor data ex-
change in the positive and negative X , Y and Z directions. The
FFT phase and the planar exchange in Z account for most of the
time spent in communication in pF3D. The logical 3D grid of pro-
cesses used for pF3D in this paper was 16⇥ 8⇥ 128.

In Figure 12, we present RCC scores for predicting the performance
of pF3D on 16,384 cores of BG/Q. While avg bytes has a low RCC,
max bytes correctly predicts the partial ordering for 91% of the task
mapping pairs. Interestingly, sum of dilations for messages that be-
long to the average outlier set exhibits a high RCC of 0.94. Similar
to the benchmarks, the hybrid features show strong correlation with
performance, and have RCCs exceeding 0.96 for this production
application. The highest correlation achieved is for the set H6: avg
bytes TO, avg buffer AO, avg delay TO, avg delay AO, sum hops
A0, max FIFO that has an RCC of 0.995. The R2 values are sig-
nificantly lower, in contrast with the benchmarks. For max bytes,
the R2 value is only 0.76 which increases dramatically to 0.931 for
the hybrid set H6. The prediction results for pF3D on 65, 536 cores
were not as expected and we hope to add those numbers in the final
version of the paper.

8. CONCLUSION
Significant time and effort wasted in real runs to evaluate the per-
formance of different task mappings suggests the use of simulation
or metrics to predict application performance offline. Metrics used
previously in literature fall short in providing strong correlations
with execution time. In this paper, we demonstrate the use of new
metrics and machine learning techniques to predict performance of
parallel applications for different task mappings.

In addition to prior metrics, such as maximum bytes, we have de-
veloped new metrics, such as buffer length and messages in in-
jection FIFOs, to include the effects of contention for network re-
sources other than links. Using a combination of these metrics,
which includes average and maximum bytes on links, maximum

Figure 12: Prediction success for pF3D using a variety of prior,
new, and hybrid metrics. RCC values are very high for the hy-
brid metrics, as in previous examples, but are somewhat lower
for prior and new single metrics. R2 values are lower on aver-
age overall.

messages contending for an injection FIFO, and the average num-
ber of packets in buffers, we show rank correlation coefficients of
up to 0.99, i.e. for only 1% of pairs the pairwise ordering is pre-
dicted incorrectly. This signifies an improvement of 14% in the
prediction success for an all-to-all over sub-communicators bench-
mark and 8% for 2D and 3D halo exchange. In addition, prediction
using such hybrid metrics also shows high R2 scores which indi-
cates good prediction in terms of absolute values.

We also successfully attempted combining of training and testing
sets from different benchmarks and and still retaining high pre-
diction accuracy. This suggests that if a large database consist-
ing of different communication patterns and message sizes is cre-
ated, predicting performance of different classes of applications
(possibly with unknown communication structure) may be feasi-
ble. More importantly, we show that using training sets from small
core counts, we can predict performance at a larger count with an
RCC value of 0.975. This may provide a scalable method for per-
formance prediction at large scales and for future machines without
having to perform detailed network simulations. Finally, we have
demonstrated that supervised learning and ensemble methods can
be used to predict performance not only for simple communication
kernels but also for complex production applications with several
diverse communication phases.
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Figure 11: Predicting performance on 65,536 cores using
16,384 cores. RCC of up to 0.975 was achieved - 3,200 mis-
predictions in 1,26,756 pairs (2.5%).

and all of the MPI communication is performed along different di-
rections (X,Y, Z) of this grid. Wave propagation and coupling
consists of two-dimensional (2D) Fast Fourier Transforms (FFTs)
in XY -planes; the 2D FFTs are performed via two non-overlapping
1D FFTs along the X and Y directions using MPI_Alltoall.
The advection phase involves planar exchange of data with neigh-
bors in the Z-direction performed using MPI_Send and MPI_Recv.
Finally, the hydrodynamic phase consists of near-neighbor data ex-
change in the positive and negative X , Y and Z directions. The
FFT phase and the planar exchange in Z account for most of the
time spent in communication in pF3D. The logical 3D grid of pro-
cesses used for pF3D in this paper was 16⇥ 8⇥ 128.

In Figure 12, we present RCC scores for predicting the performance
of pF3D on 16,384 cores of BG/Q. While avg bytes has a low RCC,
max bytes correctly predicts the pairwise ordering for 91% of the
task mapping pairs. Interestingly, sum of dilations for messages
that belong to the average outlier set exhibits a high RCC of 0.94.
Similar to the benchmarks, the hybrid features show strong corre-
lation with performance, and have RCCs exceeding 0.96 for this
production application. The highest correlation achieved is for the
set H6: avg bytes TO, avg buffer AO, avg delay TO, avg delay AO,
sum hops A0, max FIFO that has an RCC of 0.995. The R2 val-
ues are significantly lower, in contrast with the benchmarks. For
max bytes, the R2 value is only 0.76 which increases dramatically
to 0.931 for the hybrid set H6. The prediction results for pF3D
on 65, 536 cores were not as expected and we hope to add those
numbers in the final version of the paper.

8. CONCLUSION
Significant time and effort wasted in real runs to evaluate the per-
formance of different task mappings suggests the use of simulation
or metrics to predict application performance offline. Metrics used
previously in literature fall short in providing strong correlations
with execution time. In this paper, we demonstrate the use of new
metrics and machine learning techniques to predict performance of
parallel applications for different task mappings.

In addition to prior metrics, such as maximum bytes, we have de-
veloped new metrics, such as buffer length and messages in in-
jection FIFOs, to include the effects of contention for network re-
sources other than links. Using a combination of these metrics,
which includes average and maximum bytes on links, maximum
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Figure 12: Prediction success for pF3D using a variety of prior,
new, and hybrid metrics. RCC values are very high for the hy-
brid metrics, as in previous examples, but are somewhat lower
for prior and new single metrics. R2 values are lower on aver-
age overall.

messages contending for an injection FIFO, and the average num-
ber of packets in buffers, we show rank correlation coefficients of
up to 0.99, i.e. for only 1% of pairs the pairwise ordering is pre-
dicted incorrectly. This signifies an improvement of 14% in the
prediction success for an all-to-all over sub-communicators bench-
mark and 8% for 2D and 3D halo exchange. In addition, prediction
using such hybrid metrics also shows high R2 scores which indi-
cates good prediction in terms of absolute values.

We also successfully attempted combining of training and testing
sets from different benchmarks and and still retaining high pre-
diction accuracy. This suggests that if a large database consist-
ing of different communication patterns and message sizes is cre-
ated, predicting performance of different classes of applications
(possibly with unknown communication structure) may be feasi-
ble. More importantly, we show that using training sets from small
core counts, we can predict performance at a larger count with an
RCC value of 0.975. This may provide a scalable method for per-
formance prediction at large scales and for future machines without
having to perform detailed network simulations. Finally, we have
demonstrated that supervised learning and ensemble methods can
be used to predict performance not only for simple communication
kernels but also for complex production applications with several
diverse communication phases.
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and all of the MPI communication is performed along different di-
rections (X,Y, Z) of this grid. Wave propagation and coupling
consists of two-dimensional (2D) Fast Fourier Transforms (FFTs)
in XY -planes; the 2D FFTs are performed via two non-overlapping
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bors in the Z-direction performed using MPI_Send and MPI_Recv.
Finally, the hydrodynamic phase consists of near-neighbor data ex-
change in the positive and negative X , Y and Z directions. The
FFT phase and the planar exchange in Z account for most of the
time spent in communication in pF3D. The logical 3D grid of pro-
cesses used for pF3D in this paper was 16⇥ 8⇥ 128.

In Figure 12, we present RCC scores for predicting the performance
of pF3D on 16,384 cores of BG/Q. While avg bytes has a low RCC,
max bytes correctly predicts the pairwise ordering for 91% of the
task mapping pairs. Interestingly, sum of dilations for messages
that belong to the average outlier set exhibits a high RCC of 0.94.
Similar to the benchmarks, the hybrid features show strong corre-
lation with performance, and have RCCs exceeding 0.96 for this
production application. The highest correlation achieved is for the
set H6: avg bytes TO, avg buffer AO, avg delay TO, avg delay AO,
sum hops A0, max FIFO that has an RCC of 0.995. The R2 val-
ues are significantly lower, in contrast with the benchmarks. For
max bytes, the R2 value is only 0.76 which increases dramatically
to 0.931 for the hybrid set H6. The prediction results for pF3D
on 65, 536 cores were not as expected and we hope to add those
numbers in the final version of the paper.

8. CONCLUSION
Significant time and effort wasted in real runs to evaluate the per-
formance of different task mappings suggests the use of simulation
or metrics to predict application performance offline. Metrics used
previously in literature fall short in providing strong correlations
with execution time. In this paper, we demonstrate the use of new
metrics and machine learning techniques to predict performance of
parallel applications for different task mappings.

In addition to prior metrics, such as maximum bytes, we have de-
veloped new metrics, such as buffer length and messages in in-
jection FIFOs, to include the effects of contention for network re-
sources other than links. Using a combination of these metrics,
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messages contending for an injection FIFO, and the average num-
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up to 0.99, i.e. for only 1% of pairs the pairwise ordering is pre-
dicted incorrectly. This signifies an improvement of 14% in the
prediction success for an all-to-all over sub-communicators bench-
mark and 8% for 2D and 3D halo exchange. In addition, prediction
using such hybrid metrics also shows high R2 scores which indi-
cates good prediction in terms of absolute values.

We also successfully attempted combining of training and testing
sets from different benchmarks and and still retaining high pre-
diction accuracy. This suggests that if a large database consist-
ing of different communication patterns and message sizes is cre-
ated, predicting performance of different classes of applications
(possibly with unknown communication structure) may be feasi-
ble. More importantly, we show that using training sets from small
core counts, we can predict performance at a larger count with an
RCC value of 0.975. This may provide a scalable method for per-
formance prediction at large scales and for future machines without
having to perform detailed network simulations. Finally, we have
demonstrated that supervised learning and ensemble methods can
be used to predict performance not only for simple communication
kernels but also for complex production applications with several
diverse communication phases.
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SUMMARY

Communication is not just about peak latency/
bandwidth

Simultaneous analysis of various aspects of network 
is important

Complex models are required for accurate prediction

There are patterns waiting to be identified!
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FUTURE WORK

More applications!

More metrics

Weighted analysis

Offline prediction of entities
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