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Abstract—Higher radix networks, such as high-dimensional
tori and multi-level directly connected networks, are being used
for supercomputers as they become larger but need lower
diameter. These networks have more resources (e.g. links) in
order to provide good performance for a range of applications.
We observe that a sizeable fraction of the links in the interconnect
are never used or underutilized during execution of common
parallel applications. Thus, in order to save power, we propose
addition of hardware support for on/off control of links in
software and their management using adaptive runtime systems.

We study the effectiveness of our approach using real ap-
plications (NAMD, MILC), and application benchmarks (NAS
Parallel Benchmarks, Jacobi). They are simulated on represen-
tative networks such as 6-D Torus and IBM PERCS (similar
to Dragonfly). For common applications, our approach can save
up to 16% of total machine’s power and energy, without any
performance penalty.

I. INTRODUCTION

Single-thread performance improvement has been very lim-
ited in the past several years. However, the demand for
performance is increasing every day, especially in large-scale
supercomputers. As a result, large-scale parallel computers are
becoming much bigger in terms of the number of processors,
and larger interconnection networks are being designed and
deployed for those machines. Moreover, the many-core era
with on-chip networks is rapidly approaching, which will add
another level to the interconnection network of the system.
The performance and power consumption of the system highly
depends on these immense networks.

Power and energy consumption are major constraints of
HPC systems and facilities [1]. Interconnection network is
one of the major consumers of the system, along with the
processor chips. For example, routers and links are expected
to consume about 40% of some server blades’ power, which
is the same as their processor’s budget [2, 3]. For current HPC
systems, using an accurate measurement framework, Laros
et.al. [4] report more than 25% total energy savings by shutting
off some of the network resources of a Cray XT system. In
the future systems, especially because of their low frequency
many-cores and aggressive network designs, the network is
expected to consume 30% of the system’s total power [5].
From this power, up to 65% is allocated to the links and the
resources associated with them [3]. In addition, up to 40% [3]
of the many-core processor’s power budget is expected to go

to its on-chip network. Thus, saving network power is highly
crucial for HPC machines.

In contrast to processors, the network’s power consumption
does not currently depend on its utilization [3] and it is near the
peak whenever the system is “on”. For this reason, while about
15% of the power and energy [6] is allocated to the network,
it can go as high as 50% [7] when the processors are not
highly utilized in non-HPC data centers. While the processors
are not usually that underutilized in HPC data centers, they are
not fully utilized all the time and energy proportionality of the
network is still a problem. Therefore, it is essential to save the
network’s power and make it energy proportional [7], i.e. the
power and energy consumed should be related to the usage
of the network. As evidenced in this paper, we observe that
most of the network’s links are never used during execution
of common parallel applications on higher radix networks and
thus, they can be turned off for better energy proportionality.

Higher radix networks are emerging, as extremely fast and
scalable networks are required to achieve multi-Petaflop/s
and Exaflop/s performance. Since lower latency and higher
bandwidth than existing popular networks (e.g. 3D Torus)
are necessary for some applications, higher radix network
topologies such as multi-level directly connected ones [8, 9]
and high-dimensional tori [10][11] are being proposed and
used. However, these networks are designed to provide enough
bisection bandwidth for the worst case, such as all-to-all com-
munication, but not all applications need that. Furthermore,
the intention is to provide low latency for all applications,
but communicating node pairs of different applications vary.
Therefore, the network would provide small hop count and
low diameter for any pairs of nodes, which would leave some
part of the network unused in each application. This results in
the fact that many application do not use a large fraction of
higher radix networks. Thus, we propose addition of hardware
support for exposure of on/off links (links that can be turned
on and off) to the runtime system, so that it can save the
wasted power and energy consumption. We also discuss how
the runtime would accomplish that, considering its design and
the applications’ behavior.

The applications we use for our study are NAMD [12],
MILC [13], ISAM [14], Jacobi benchmarks (representing
nearest neighbor communication patterns) and some of NAS
Parallel Benchmarks [15]. For commonly used nearest neigh-



bor applications such as MILC, using our basic approach,
81.5% of the links can be turned off for a two-level directly
connected network (around 16% of total machine power) and
20% for 6D Torus (Sections III and IV). Adaptive runtimes
have also been shown to be effective for load balancing and
power management (using DVFS) [16] and our approach
makes use of the same infrastructure. We discuss why the
hardware and compiler cannot perform this task effectively and
it should be done by the runtime system. We also show that
different mappings can affect network’s power consumption.

A. Related Work

Power consumption of interconnection networks in super-
computers, distributed systems and data centers has received
special attention in recent time. Several techniques have been
proposed for reduction of network power in non-HPC data
centers [7, 6]. Intelligent power aware job allocation and traffic
management form the basis of these approaches. Hoefler [17]
provides an overview of the power problem, and the related
aspects of interconnect power, with focus on supercomputers.
Laros et.al. [4] present results on potential power saving
using CPU and network scaling, by post processing the data
collected from the monitoring system of Cray XT machines.
Their work, using real systems (instead of simulations and
projections) and real applications, shows the importance and
potential of network power management for supercomputers.

Among hardware based approaches, power management of
interconnection networks using on/off links has been stud-
ied [3, 18, 19]. On/off links, which refers to shutting down
communication links that are not being used, has shown to be a
useful method to save power. In addition, PowerHerd [20] uses
routers as controllers to constrain network power consumption.
However, dependence on hardware for power management
may cause considerable delay for some applications. Addi-
tionally, hardware does not have enough global information
about the application to manage network power effectively.

Soteriou et.al. [21] show severe possible performance
penalty of hardware approaches, and propose the use of
parallelizing compilers for power management of the links.
However, parallelizing compilers are not widely used because
of their limited effectiveness, and most parallel applications
are created using explicit parallel programming models. Fur-
thermore, compilers do not have information about input
dependent message flow of an application, and cannot manage
the power effectively for such applications.

As an alternative to hardware and compiler driven power
management, we advocate network power management by
the run-time system. Limited network power management
by the run-time system, such as for collective algorithms,
has been proposed in the past. Dong et.al. [22] present a
metric to estimate network power consumption of various MPI
collective algorithms at run-time, and recommend selection of
the algorithm with least power consumption. Limited power
management using on/off links in the run-time system has
also been studied [23]. However, that approach is limited to
management of network links only during collective operations

in MPI. In this paper, we propose usage of an adaptive run-
time system to manage the power of network links using
on/off control, taking into account all of the communications
performed by an application.

Network Power Management Support on Current Ma-
chines: Unfortunately, network power management support
on current HPC machines is very limited. For example, It
is possible to reduce link and node injection bandwidth on
a Cray XT system (effectively turning off some portion of the
links), but it requires a reboot of the whole machine [4]. Thus,
using this feature is mostly impractical. However, techniques
such as on/off links have been implemented before, and it
seems feasible to include them for HPC machines as well. For
instance, some commercial systems 1 can disable some of the
board-to-board and box-to-box links to save power. Currently
it takes 10,000 cycles to turn the links on/off, but it can be
improved much further [3].

B. Exascale Networks

In this section, we briefly describe n-dimensional tori and
two-tier direct networks, which seem to be the front runners
on the road to Exascale.

n-dimensional tori have been used in many supercomputers
such as IBM Blue Gene series, Cray XT/XE, and the K
computer. An n-dimensional torus strike a good balance in
terms of bisection bandwidth, latency, and the link cost, and
have been shown to be scalable. In recent times, most vendors
have increased the torus dimensionality from three (as it is in
IBM BlueGene/P and Cray XT/XE) to five (IBM BG/Q) and
six (the K computer). This shift is necessary in order to keep
latency low, with possible increase in the bisection bandwidth.
We present analysis and results for link utilization of an n-
dimensional torus, with n varying from 3 to 10.

Two-tier direct networks have been proposed by IBM
(PERCS network [8]), the DARPA sponsored Exascale study
report [1] (Dragonfly topology [24]), and Cray (Aries net-
work [25]). In all of these proposals, similar multi-level
directly connected networks have been described. In these
networks, nodes are logically grouped together at two levels,
in each of which nodes (or the grouped entities from previous
level) are connected in an all-to-all manner. Hence, in the first
level a clique of nodes is formed, and in the second level,
a clique of cliques (from the first level) is constructed. The
resultant network, with its large number of links, boasts of
a large bisection width. At the same time, the latency of
the entire system is low (3 hop connectivity between any
two nodes). The small number of hops make this topology
very appealing, as the expensive conversion between electrical
and optical signals (if different types of links for global and
local connections are used) needs to be done very few times
in comparison to networks with multiple hops. Currently,
this network is used in some large-scale IBM Power 775
machines 2.

1Motorola MC92610 WarpLink 2.5 Gb/s Quad SERDES Transceiver,
Motorola Inc., www.motorola.com

2www.top500.org



We observe that the two networks we present results on,
two-tier networks and torus with high dimensionality, have a
large number of links. The presence of these links provides
an opportunity for high performance as well as a challenge
for power and energy proportionality. In the later sections, we
present results which attempt to address this challenge.

C. Application Communication Patterns

Interconnection networks are designed to serve a range of
communication patterns, in terms of bandwidth and latency.
However, each application has its own communication pattern,
so many node pairs of a system may not communicate during
execution of an application, leaving a large fraction of the
network unused.

(a) NAMD PME 256K (b) MILC 4K

(c) CG 64K (d) MG 64K

Fig. 1. Communication pattern of different applications

Figure 1 shows the communication pattern of some of the
applications we use in this paper. Both the vertical and hori-
zontal axes represent the nodes in the system. A point (x, y)
is marked if the node y on the vertical axis sends a message to
the node x on the horizontal axis, during the execution of an
application. Each marked point has been enlarged for better
illustration. It can be seen that many of the node pairs never
communicate during execution of an application. Moreover,
the number of pairs that communicate varies significantly with
the applications. For instance, in NAMD PME and CG, the
number of node pairs that communicate is much larger than
in MILC and MG.

Most of the communicating pairs in NAMD PME are due
to the FFT performed in the PME phase, which is done once

every four iterations. Without the PME option, NAMD has a
near neighbor communication pattern, which can be seen in
the dense region around the diagonal of Figure 1(a). CG, on
the other hand, has a more uniform and dense communication
pattern. Applications like NAMD PME and CG, that have
large number of communicating pairs are more likely to use
most of the network.

On the other hand, the number of communicating pairs
in MILC (Figure 1(b)) and MG (Figure 1(d)) are few, and
concentrated near the diagonal. As such, these applications
are expected to make use of a small fraction of the available
network links. These applications represent a large class of
applications in science and engineering, such as the ones
following the nearest neighbor pattern.

Note that all the illustrated cases have a dense region close
to the diagonal of their communication graph. It suggests that
near neighbor communication constitutes a major part of the
applications’ communication. This can be used as a clue in
understanding a network link’s usage. We use Jacobi, decom-
posed in two, three and four dimensions, to study network’s
link usage for near neighbor communication patterns. From
this discussion, we also conclude that there is an extensive
opportunity to save the power of the network links in higher-
radix topologies in many usual cases, since they are designed
for the worst cases with many communicating pairs.

The cases on the other extreme are embarrassingly parallel
applications that essentially do not rely on the network during
their computation. Thus, they do not use any of the links, and
the link power can be saved easily.

II. ASSUMPTIONS ABOUT THE SYSTEM AND NETWORK

In this paper, we refer to on/off links in discussions but the
same principles can be applied to other power management
schemes as well. For example, when a link is in the power
saving state, it can be completely “off”, or in some other
intermediate idle state, or lower voltage state. Thus, it depends
on the underlying hardware features for power management.
However, software control to those hardware features is nec-
essary, which we assume in our discussions.

For the simulated systems, we assume 32 cores per node,
which is the core count for the upcoming Blue Waters system
and for the initial design of PERCS. This is a reasonable
number for the system sizes of up to 300K cores that we use in
this paper. For future machines, the number of cores per node
is expected to increase, but the results will be similar to the
one presented in this paper. Moreover, we only consider the
network across nodes in our results. The intra-node network,
such as network-on-chip, can be considered as another level
of the network with comparable results.

As mentioned earlier, we use different networks such as
PERCS/Dragonfly and Torus for our study. We assume default
mapping for processes to processors for all the networks. For
our 32 cores per node case, it means that first 32 processes are
mapped to the first node and so on. This is the default setting
of most supercomputer sites. We assume direct routing for
PERCS, which means that the message is sent directly to the



receiver, instead of going through an intermediate supernode
(i.e. indirect routing). Effect of different mappings and indirect
routing are discussed and evaluated in Subsection III-A. For
tori, we assume minimal dimension order routing, which
is used in many of the current supercomputers. Adaptive
routing is also supported in some machines with tori such as
BlueGene/P. Evaluating the gains for a network with adaptive
routing is more complicated and we leave it for future work.
Nevertheless, it makes the usage of the run-time system for
link power management difficult, since it requires low level
information to be exposed to the run-time system.

Throughout the paper, unless otherwise mentioned, we
assume the same power cost for different links of the network
for simplicity. This may not hold true in some cases; for
example, the power cost of local links inside a supernode
of PERCS, may be different from the global links across
supernodes. Many times, the underlying technology is also
different for various links (e.g. electrical for local and optical
for global). Nevertheless, our estimate is a good conservative
approximation, and we observe that it is pessimistic, since
more costly links are used infrequently. We also assume that
links consume their full power during their on/off transition
and zero power in their off state (same as our related work [3]).

In this paper, we only consider the application’s messages,
and ignore the control messages of the run-time system for
several reasons. The run-time system messages are usually
not performance critical, and can be re-routed through other
nodes if a link was turned off. Alternatively, if the transition
delay is high, the runtime system can maintain a connected
tree to ensure connectivity. Such a control tree, if used, has
low power overhead as it only takes n − 1 (n is the number
of nodes) links in total. Moreover, many of these links can be
among the links used by the application. We also performed
experiments taking into account these control messages, and
found that addition of control message adds a small percentage
to the link usage of applications.

Finally, we consider a link as used if it transfers a message
even once during the execution of the application. In our
basic approach, we do not turn these used links off, even
when they are used only for a small time period. We make
this pessimistic assumption because the switching delay is
technology dependent and not easy to determine.

III. POTENTIALS OF BASIC NETWORK POWER
MANAGEMENT

Interconnection networks, consume a large fraction of the
machine’s power budget, and the major consumers of that
power are the connection links. The power consumption of
a link does not usually depend much on its usage and it
consumes the same power when it is “on” (with the same
voltage). Thus, unused links represent a huge waste of power
and energy in parallel computers. Knowledge of the applica-
tion’s communication can help in reducing this cost by turning
off the unused links. In Subsection I-C, we showed that the
number of communicating pairs for an application is not large,
which indicates that a sizeable fraction of link may be unused.

In this section, we discuss and evaluate our basic approach of
link power management inside the adaptive runtime system.

Figure 2 and Figure 3 show link usage of different appli-
cations and benchmarks, assuming a fully connected network
(a link between every pair of nodes), 3D Torus, 6D Torus and
PERCS (two-level fully-connected). Note that the full network
is an asymptotic case that is not usually reached by the large-
scale networks. However, for example, small jobs (less than
1k cores for PERCS) running on a two-tier system will have a
fully connected network. In this case, most of the links can be
shut down according to our results, which saves a significant
fraction of the system’s power.

As can be seen, link usage of each application is different,
and also depends on the topology of the system. For example,
MILC only uses 3.93% of the links of a fully connected
network, while it uses 80% of the 6D Torus links. For most
applications, a larger fraction of 6D Torus links will be used
than PERCS network, except CG that uses more fraction of
PERCS. This shows that analysis of the link utilization of
different networks is not trivial and depends on various aspects
of the topology and the application.

For the applications of Figure 2, from 4.4% to 82.94% of
the links are never used during the program’s execution on
PERCS. In the Jacobi benchmarks of Figure 3, Jacobi2D only
uses 11.91% of the PERCS links, with similar numbers for
other Jacobi dimensions. This demonstrates a great opportunity
for the runtime system to save link power of two-level directly
connected networks.

There are good saving potentials for 6D Torus as well.
Even though NAMD uses all of the links, MG leaves 47.92%
of the links unused. However, many applications can use
most of the links of a 3D torus, which has been one of the
dominant topologies in the past and in the current supercom-
puters. There are saving potentials for some cases (30.67%
for Jacobi2D) but not as high as other networks. This happens
even with deterministic routing, which uses fewer links than
adaptive routing. This shows that implementing on/off links
for those networks is not significantly useful, and probably
is the reason that they have not been implemented before.
However, for high dimensional tori and multi-level directly
connected networks, the benefits justify the implementation
cost of software controlled on/off links. If we take MILC to
represent common HPC applications (which usually have near
neighbor communication), 81.51% of PERCS links and 20%
of 6D Torus links can be saved for power easily. Assuming
that 65% of network power goes to links and the network
consumes 30% of the total machines power, around 16% of
total machines power is saved for PERCS systems and around
4% is saved for 6D Torus systems.

In NAMD PME, the communication intensive PME calcu-
lation is usually performed every four iterations, which may
take around 80ms assuming 20ms per iteration. In this case,
many links can be turned off after PME, and turned back
on right before that. Thus, for link power management to
be effective without performance penalty, the switching delay
should be much less than that. This low delay seems hard



to achieve for global links (which are typically optical), but
easier for local links (which are typically electrical). Thus,
even for communication-intensive applications, there can be
savings with good hardware.

Note that even though Jacobi3D has a 3D communication
pattern, when it is mapped to a system with 32 cores per node,
the communication between nodes is not an exact 3D pattern
anymore. Thus, some fraction of the links (12%) are not used.
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Figure 4 and Figure 5 show the usage of different types
of PERCS links. As can be seen, D-links, which are power
hungry global links, are usually less utilized than the lo-
cal LL and LR links. This happens because most of the
communication of the applications is local or near neighbor
exchanges. Even though NAMD PME has less savings in
general, it can save 23.09% of D-links because of that. MILC
shows high usage of D-links, because the results are for 4K
processors (4 supernodes) and there are just 12 D-links. For
larger configurations, it should be similar to Jacobi4D and have
a very low D-link utilization. CG is again an exception and it
uses more of the D-links. This is because its communication
is not local but distributed as mentioned earlier. The Jacobi

benchmarks only use around 1% of D-links and most of those
links can thus be turned off safely. Thus, our simple model
of same power cost for all links is pessimistic and the actual
savings are much higher in many cases, as the power hungry
D-links have less utilization.
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Figure 6 and Figure 7 show the link usage of the appli-
cations on tori with different dimensions, from 3 to 10. As
the dimension goes higher, less fraction of the links are used,
which is intuitively expected. For example, Jacobi4D uses only
53% of the links of a 10D torus network. Even NAMD that
does not have any savings on low dimensional torus, shows
potential on a torus with sufficiently high dimensions, starting
from 7D. It uses 65% of the links of a 10D torus, which shows
that even such applications have potential of link power saving
on high dimensional tori.

Other than these applications, there are cases where the
network is virtually unused. Data parallel applications do not
have much communications (except some startup and I/O in
the beginning and at the end) and do not use the network
during execution. For example, ISAM [14], which is a climate
modeling application, only uses stored climate data to do the
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computation (in its standalone mode). Thus, almost 100% of
the network power can be saved for these applications.

To summarize, in the common near neighbor applications
like MILC, up to 16% of total machines power can be saved
(assuming 30% network power budget and 65% of network
power associated with links) using a basic power management
approach. Since our assumptions are very conservative and
only links that are never used (and are not likely to be used)
are turned off, the application will not experience a significant
performance penalty. For data parallel applications, almost all
the 30% network power budget can be saved.

A. Different Mappings

In the results so far, we assumed direct routing for PERCS
network, which means sending each message directly to the
destination supernode. Indirect routing, which uses a random
intermediary supernode, is also proposed with the purpose of
more bandwidth and at the cost of latency and implementation
overheads. A previous study on PERCS network [9] suggests
using random mapping or indirect routing for the PERCS
network for better link utilization and bandwidth.

Figure 8 shows the link usage of these schemes compared
with the default. Random mapping has higher link usage than
default mapping, which is intuitive. It can use 33.18% of the
links, which is higher than 16.51% of the default. However,
the overall usage is still low and the possible savings are
as high as around 67%. Note that this scheme uses many
more D-links, which may increase the power consumption
significantly. Thus, when choosing among different mappings
for future machines, power consumption should also be taken
into account and some (possibly small) performance gains
might be power costly.

Indirect routing uses all of the links of the network, since
every small packet is routed through a random supernode.
Therefore, it is very expensive in terms of power and no
saving is possible. However, random mapping is shown to
have similar performance as indirect routing on PERCS net-
works [9]. Therefore, indirect routing should be avoided and
random mapping should be used to have much less power
consumption but the same performance. Thus, different aspects
of hardware and software design can affect power consumption
of the network significantly and power should be considered
at every stage of the design.
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IV. IMPLEMENTATION IN RUNTIME SYSTEM AND
HARDWARE

This mass of unused links presents opportunities for power
optimization and savings. Although past studies suggest hard-
ware and compiler techniques, we believe that this should
be done by the runtime system. Hardware and compiler do
not have enough information about the future of the applica-
tion, so they would make conservative assumptions or cause
unnecessary delays. For example, NAMD’s communication
depends on the input and previous iterations, and hence the
compiler cannot assume any unused links. It is also difficult
at the application level since it would hurt portability and
programmer productivity.

On the other hand, a powerful runtime system, such as
that of CHARM++, has enough information about both the



application and the hardware to make wise decisions. The
runtime system obtains this information about the application
by monitoring the communication performed as the application
executes. For our discussions, we focus on CHARM++ runtime
system, which performs continuous introspection by instru-
menting all the computation and communication. Addition
of monitoring components to any runtime system including
MPI is possible, and causes very small overheads. We expect
other runtime systems to become more sophisticated like
CHARM++, as we move towards Exascale.

A. Runtime System Support

CHARM++ runtime system mediates all the communications
and computation, so it can instrument the application easily.
It uses these informations for many purposes such as load
balancing [26] and power management [16]. It also obtains
the network’s characteristics such as its topology [27]. Here,
we only need a small subset of these data to save network
power, which is the communication graph of the application
and the topology of the network.

Using this information, our approach can turn off unneces-
sary links as follows. We assume that each node keeps track
of the destinations of its messages. At the network power
management stage, each node calculates the route for each of
its destinations. It sends a message to each of the intermediate
nodes to have them mark their used links. At the end, when
it has received all its messages and marked its own links, it
turns off all of its unused links. This sequence is summarized
in Algorithm 1.

Algorithm: Network power management
// Each node runs this
Input: list of destinations of local messages
Result: Unused links are turned off
for each destination D do

calculate route R for reaching D
mark used local links
for each intermediate node N do

ask N to mark the required links
end

end
wait for all messages to be received
turn unused local links off

Algorithm 1: Network power management by on/off links

This algorithm needs to be invoked at appropriate times,
which is feasible in most case since scientific and many
other parallel applications are usually iterative in nature. For
the common case of static communication pattern, which
encompasses all of our benchmarks except NAMD, even one
iteration represents the application’s communication pattern
afterwards. Thus, one invocation (e.g. after the first iteration)
is enough. Note that even in this simple case, the hardware
cannot make wise decisions on its own, because it is not aware
of the iteration time of the application and its window might

be too small. In addition, hardware does not see the global
picture of the application’s message flow and it even usually
works at the packet and flit levels.

For NAMD, the communication pattern between objects
is static, even though the objects may migrate between pro-
cessors and the actual communication pattern varies. In this
case, the new communication pattern can be determined by
the runtime system at (or after) load balancing steps. Thus,
the network power management algorithm needs to be called
at every load balancing step. Even in this case, the switching
delay of links does not matter much, since the runtime will not
make any mistake in switching the links’ states. In addition,
since load balancing is not performed very frequently (usually
once in thousands of iterations), our method will not add
significant overhead. In the same way may other dynamic (and
phase based) applications, such as Adaptive Mesh Refinement
(AMR) [28], can be handled as well.

B. Hardware support

For our approach, we only demand the network hardware
to implement links that can be turned off and on (or any other
power saving means such as DVS), along with a software
interface to control them. We do not strictly require any
change in routing and switching tables, because we can handle
different possible (but rare) issues in software. One issue is
the case of an exception message, which is a message that
needs an off link in its route. This can happen when the
application needs to send a message for a special condition
in the physical simulation, for instance. The runtime needs to
inspect every message that is being sent out of a node. If the
destination was not in the list of “allowed” ones, it should
handle the exception. It can either turn the link on or reroute
the message manually. If the hardware provides DVS of links
instead of turning them off completely, no action is required
by the runtime systems at some performance cost. Choosing
between these options depends on their overheads and presents
a tradeoff.

As mentioned, the runtime keeps a tree for connectivity
so it can be used for rerouting exception messages as well. If
exception messages appear too frequently, they can degrade the
performance significantly. This might be a result of frequent
change in the communication pattern (as for the contagion ap-
plication mentioned above) or not having enough information
at the runtime system. We believe that these cases are rare,
and we leave their evaluation for future work. Thus, software
can solve connectivity and routing issues, which are the main
barriers for the hardware implementation of on/off links.

V. CONCLUSIONS AND FUTURE WORK

With ever increasing communication demands of large-
scale parallel systems toward Exascale, multilevel directly
connected networks and high dimensional tori are becoming
more appealing. Optimizing the power and performance of
these innovative networks presents a new challenge for par-
allel systems. We showed that many parallel applications do
not fully exploit a significant fraction of the network links,



which present opportunities for power optimization. Thus, the
runtime system can optimize the power consumption of the
links by turning off the unused ones, with minimal hardware
support. This approach results in up to 16% saving of total
system’s power for common place applications with near
neighbor communication.

For future work, less conservative approaches that turn off
more links can be used, which may have some performance
penalties. Furthermore, dynamic voltage scaling (or reducing
the bandwidth) of the network links can be exploited for the
links that do not transfer messages on the critical path. Overall,
more adaptive power management techniques by the runtime
system should be explored further.
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