
Improving HPC Application Performance in Cloud
through Dynamic Load Balancing

Abhishek Gupta, Osman Sarood, Laxmikant V Kale
University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA
(gupta59, sarood1, kale)@illinois.edu

Dejan Milojicic
HP Labs

Palo Alto, CA, USA
dejan.milojicic@hp.com

Abstract—Driven by the benefits of elasticity and pay-as-you-go
model, cloud computing is emerging as an attractive alternative
and addition to in-house clusters and supercomputers for some
High Performance Computing (HPC) applications. However, poor
interconnect performance, heterogeneous and dynamic environ-
ment, and interference by other virtual machines (VMs) are
some bottlenecks for efficient HPC in cloud. For tightly-coupled
iterative applications, one slow processor slows down the entire
application, resulting in poor CPU utilization.

In this paper, we present a dynamic load balancer for tightly-
coupled iterative HPC applications in cloud. It infers the static
hardware heterogeneity in virtualized environments, and also
adapts to the dynamic heterogeneity caused by the interference
arising due to multi-tenancy. Through continuous live monitor-
ing, instrumentation, and periodic refinement of task distribution
to VMs, our load balancer adapts to the dynamic variations in
cloud resources. Through experimental evaluation on a private
cloud with 64 VMs using benchmarks and a real science appli-
cation, we demonstrate performance benefits up to 45%. Finally,
we analyze the effect of load balancing frequency, problem size,
and computational granularity (problem decomposition) on the
performance and scalability of our techniques.

Keywords-High Performance Computing; Cloud; load-balance;

I. INTRODUCTION

The ability to rent (using pay-as-you-go model) rather than
own a cluster makes cloud a cost-effective and timely solution
for the needs of some academic and commercial HPC users,
especially those with sporadic or elastic demands. In addition,
virtualization support in cloud allows better flexibility and cus-
tomization to specific application, software, and programming
environment needs of HPC users. Cloud providers, such as
Amazon EC2 [1], make profit due to economies of scale and
high resource utilization enabled by multi-tenancy, virtualiza-
tion, and overprovisioning of typical web-service loads.

However, despite these benefits, prior research has shown
that there is a mismatch between characteristics of cloud en-
vironment and HPC requirements [2–5]. HPC applications are
typically tightly-coupled, and perform frequent inter-processor
communication and synchronization. The insufficient network
performance is a major bottleneck for HPC in cloud, and has
been widely explored [2–5]. Two less explored challenges
are resource heterogeneity and multi-tenancy – which are
fundamental artifacts of running in cloud. Clouds evolve over
time, leading to heterogeneous configurations in processors,
memory, and network. Similarly, multi-tenancy is also intrinsic

of cloud, enhancing the business value of providing a cloud.
Multi-tenancy leads to multiple sources of interference due to
sharing of CPU, cache, memory access, and interconnect. For
tightly-coupled HPC applications, heterogeneity and multi-
tenancy can result in severe performance degradation and un-
predictable performance, since one slow processor slows down
the entire application. As an example, on 100 processors, if
one processor is 30% slower compared to the rest, application
will slowdown by 30% even though the system has 99.7% raw
CPU power compared to the case when all processors are fast.

One approach to address the above problem is mak-
ing clouds HPC-aware; examples are HPC-optimized clouds
(such as Amazon Cluster Compute [6] and DoE Magellan
project [4]) and HPC-aware cloud schedulers [7, 8]. In this
work, we explore the other approach – making HPC cloud-
aware, which is relatively less explored [9, 10].

Building on our previous work [10], our primary hypothesis
is that the challenges of heterogeneity and noise arising
from multi-tenancy can be handled by an adaptive parallel
runtime system. To validate our hypothesis, we explore the
adaptation of Charm++ [11,12] runtime system to virtualized
environment. We present techniques for virtualization-aware
load balancing to help application users gain confidence in the
capabilities of cloud for HPC. MPI [13] applications can also
benefits from our approach using Adaptive MPI (AMPI) [12].
Also, our fundamental approach is applicable to other pro-
gramming models which support migratable work/data units.

Efficient load balancing in a cloud is challenging since run-
ning in VMs makes it difficult to determine if (and how much
of) the load imbalance is application-intrinsic or caused by
extraneous factors. Extraneous factors include heterogeneous
resources, other users’ VMs competing for shared resources,
and interference by virtualization emulator process (§ II).

The primary contributions of this work are the following:
• We propose dynamic load balancing for efficient exe-

cution of tightly-coupled iterative HPC applications in
heterogeneous and dynamic cloud environment. The main
idea is periodic refinement of task distribution using
measured CPU loads, task loads, and idle times (§ IV).

• We implement these techniques in Charm++ and evaluate
their performance and scalability on a real cloud setup on
Open Cirrus testbed [14]. We achieve 45% reduction in
execution time compared to no load balancing (§ VI).



• We analyze the impact of load balancing frequency, grain
size, and problem size on achieved performance (§ VI).

II. NEED FOR LOAD BALANCER FOR HPC IN CLOUD

In the context of cloud, the execution environment depends
on VM to physical machine mapping, which makes it (a)
dynamic and (b) inconsistent across multiple runs. Hence,
a static allocation of compute tasks to parallel processes
would be inefficient. Most existing dynamic load balancing
techniques operate based exclusively on the imbalance internal
to the application, whereas in cloud, the imbalance might be
due to the effect of extraneous factors. These factor originate
from two characteristics, which are intrinsic to cloud:

1) Heterogeneity: Cloud economics is based on the cre-
ation of a cluster from existing pool of resources and
incremental addition of new resources. While doing this,
homogeneity is lost.

2) Multi-tenancy: Cloud providers run a profitable business
by improving utilization of underutilized resources. This
is achieved at cluster-level by serving large number
of users, and at server-level by consolidating VMs of
complementary nature (such as memory- and compute-
intensive) on same server. Hence, multi-tenancy can be
at resource-level (memory, CPU), node-level, rack-level,
zone-level, or data center level.

In such environment, application performance can severely
degrade, especially for tightly-coupled applications where the
application progress is governed by the slowest processor. To
demonstrate its severity, we conducted a simple experiment
where we ran a tightly-coupled 5-point stencil benchmark,
referred to as Stencil2D (2K × 2K matrix), on 8-VMs, each
with a single virtual core (VCPU), pinned to a different
physical core of 4-core nodes. More details of our exper-
imental setup and benchmarks are given in Section V. To
study the impact of heterogeneity, we ran this benchmark in
2 cases - first, we used two physical nodes of same fast (3.00
GHz) processor type (Figure 1a) and second, we used two
physical nodes with different processor types – fast (3.00 GHz)
and slow (2.13 GHz) (Figure 1b). We used Projections [15]
performance analysis tool. Figure 1 shows one iteration of
these runs. Each horizontal line represents the timeline for a
VM (or VCPU). Different colors (shades) represent time spent
executing application tasks whereas white represents idle time.
The length of timelines represent the iteration execution time,
after which the next iteration can begin. In Figure 1a, the
small idle time on VM#1-7 is present because the first process
performs a small co-ordination work. In Figure 1b, there is lot
more idle time (hence wastage of CPU cycles) on first four
VMs compared to the next four, since VMs#4-7 running on
slower processors take longer to finish same amount of work.

Similar effect is also observed when there is an interfering
VM. Figure 1c shows the case when we ran all VMs on
fast processors but there is an interfering VM which shares
the physical core with one of the VMs from our parallel job
(VM#3). The interfering VM runs sequential NPB-FT (NAS
Parallel Benchmark – Fourier Transform) Class A [16]. In this
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Fig. 1: Experimental setup (on right) and timeline of 8
VMs showing one iteration of Stencil2D: white portion =
idle time, colored portions = application functions.
case, the Projections timelines tool includes the time spent
executing the interfering task in the time spent for executing
tasks of the parallel job on that processor because it can not
identify when the operating system switches context. This gets
reflected in the fact that some of the tasks hosted on VM#3
take significantly longer time to execute than others (longer
bars in Figure 1c). Due to this CPU sharing, it takes longer
for the parallel job to finish the same tasks. Moreover, the
tightly-coupled nature of the application means that no other
process can start the next iteration unless all processes have
finished the current iteration (idle times on rest of the VMs).

If the VMs do not share physical core but share the multi-
core physical node, the contention for limited shared cache
capacity and memory controller subsystem can manifest itself
as another source of interference (Figure 1e). Here. we ran
the 8 VMs on 3 fast nodes, with first three VMs on one node,
next three VMs on second node, and last two VMs on third
node. On second node, we placed another VM mapped to the
unused core and ran NPB-LU Class B benchmark on it. The
unused cores on first and third nodes are left idle. Figure 1e
shows that VM#5 is taking longer time than the rest compared
to the case with exactly same configuration but no interfering
VM (Figure 1d). It can also be noted that the time in Figure
1d is slightly better than Figure 1a. This can be attributed to
the fact that the shared resources in the 4-core node are shared
between 4 processes in Figure 1a, but by only 3 in Figure 1d.

The distribution of such interference is fairly random and
unpredictable in a cloud. Hence, we need a mechanism to
adapt to the dynamic variation in the execution environment.



III. BACKGROUND: CHARM++ AND LOAD BALANCING

Charm++ [11,12] is a message-driven object-oriented paral-
lel programming system, which is used by large-scale scientific
applications such as NAMD [17]. In Charm++, the program-
mer needs to decompose (or overdecompose) the application
into large number of medium grained pieces, referred to as
Charm++ objects or chares. By overdecomposition, we mean
that the number of objects or work/data units is greater than
the number of processors. Each object consists of a state and
a set of functions, including local and entry methods, which
execute only when invoked from a local or remote processor
through messages. The runtime system maps these objects
onto available processors and they can be migrated across pro-
cessors during execution. This message-driven execution and
overdecomposition results in automatic overlap of computation
and communication, and helps in hiding the network latency.

MPI [13] applications can leverage the capabilities of
Charm++ runtime using the adaptive implementation of MPI
(AMPI [12]), where MPI processes are implemented as user-
level threads by the runtime.

The overdecomposition of application into migratable ob-
jects (or threads) facilitates dynamic load balancing, a concept
central to our work. The runtime system instruments the
application execution, and measures various statistics, such as
computation time spent in each object, process time, and idle
time. Using this measured data, the load balancer periodically
re-maps objects to processors using a load balancing strategy.
There is an inherent assumption that future loads will be
almost same as the measured loads (principle of persistence)
– which is true for most iterative applications.

IV. CLOUD-AWARE LOAD BALANCER FOR HPC
In a cloud, the application user has access only to virtualized

environment which hides the underlying platform heterogene-
ity. Hence, for heterogeneity-awareness, we estimate the CPU
capabilities for each VCPU, and use those estimates to drive
the load balancing. An accurate performance prediction will
depend on the application characteristics, such as FLOPS,
number of memory accesses, and I/O demands. In this paper,
we demonstrate the merits of heterogeneity-awareness using
a simple estimation strategy, which works well in conjunc-
tion with periodic refinement of load distribution. We use a
simple compute-intensive loop (Figure 2) to measure relative
CPU frequencies, which are then used by the load balancing
framework. Also, we assume that VMs do not migrate during
runtime, and VCPUs are pinned to physical CPUs. We believe
that these assumptions are valid for HPC in cloud since live
migration leads to further noise and migration costs, and pin-
ning VCPUs to physical CPUs results in better performance.

Other then the static heterogeneity, we need to address inter-
fering tasks of other VMs, which can start and finish randomly.
Hence, we propose a dynamic load balancing scheme which
continuously monitors the loads for each VCPU and reacts to
any imbalance. Our scheme uses task migration which enables
the runtime to keep equal loads on all VCPUs. It is based
on instrumenting the time spent on each task, and predicts

for(i=0; i < iter_block; i++) {
double b=0.1 + 0.1 * *result;
*result=(int)(sqrt(1+cos(b * 1.57)));

}

Fig. 2: Computation loop: Estimating relative CPU speeds
future load based on the execution time of recently completed
iterations. However, to incorporate the impact of interference,
we need to instrument the load external to the application
under consideration, referred to as the background load. For
maintaining balanced loads, we need to ensure that all VCPUs
have load close to the average load (Tkavg) defined as:

Tkavg =

∑P
p=1((

∑Np

i=1 ti +Op) ∗ fp)
P

(1)

where P is the total number of VCPUs, Np is the number
of tasks assigned to VCPU p, ti is the CPU time consumed
by task i running on VCPU p, fp is the frequency for VCPU
p estimated using the loop in Figure 2, and Op is the total
background load for VCPU p. Notice that in Equation 1,
we normalize the execution times to number of ticks by
multiplying the execution times for each task and the overhead
to the estimated VCPU frequency. The conversion from CPU
time to ticks is performed to get a processor-independent
measure of task loads, which is necessary for balancing load
across heterogeneous configuration, where the same task can
take different time when executing on a different CPU. The
task CPU time (ti) are measured using CPU timers from inside
the VCPU, and recorded in Charm++ load balancing database.
Op is given by:

Op = Tlb −
Np∑
i=1

ti − tpidle (2)

where Tlb is the wall clock time between two load balancing
steps, ti is the CPU time consumed by task i on VCPU p
and tpidle is the idle time for VCPU p since the previous load
balancing step. We extract tpidle from the VM’s /proc/stat
file. Our objective is to keep the load for each VCPU close to
the average load while considering the background load (Op)
and heterogeneity. Hence, we formulate the problem as:

∀p ∈ P,
Np∑
i=1

(ti ∗ fmk−1
i

) +Op ∗ fp − Tkavg < ε (3)

where P is the set of all VCPUs, ti is the CPU time consumed
by task i, Op is the total background time for VCPU p, fp is
the estimated frequency of VCPU p, fmk−1

i
is the frequency of

VCPU where task i ran in previous, that is (k−1)th iteration,
and ε is the permissible deviation from the average load.

Algorithm 1 summarizes our approach with the definition of
each variable given in Table I. The main idea is to do periodic
checks on the state of load balance and migrate objects from
overloaded VCPUs to underloaded VCPUs such that Equa-
tion 3 is satisfied. Our approach starts with categorizing each
VCPU as overloaded/underloaded (lines 2-7). To categorize a
VCPU, our load balancer compares the sum of ticks assigned
to a VCPU (including the background load) to the average
number of ticks for the entire application i.e. Tkavg (lines



TABLE I: Description for variables used in Algorithm 1

Variable Description

P number of VCPUs
Tkavg average ticks per VCPUs
ti CPU time of task i
mk

i VCPU number to which task i
is assigned during step k

overHeap heap of overloaded VCPUs
Op background load for VCPUs p
fp estimated frequency of VCPU p
underSet set of underloaded VCPUs

Algorithm 1 Refinement Load Balancing for Cloud
1: On Master VCPU on each load balance step
2: for p ∈ [1, P ] do
3: if isHeavy(p) then
4: overHeap.add(p)
5: else if isLight(p) then
6: underSet.add(p)
7: end if
8: end for
9: createOverHeapAndUnderSet()

10: while overHeap NOT NULL do
11: donor = deleteMaxHeap(overHeap)
12: (bestTask, bestCore) = getBestCoreAndTask(donor, underSet)
13: mk

bestTask = bestCore
14: updateHeapAndSet()
15: end while

16: procedure isHeavy(p) {isLight(p) is same except that the condition at
line 21 is replaced by by Tkavg − totalT icks > ε}

17: for i ∈ [1, Np]
18: totalT icks+ = ti ∗ fp
19: end for
20: totalT icks+ = Op ∗ fp
21: if totalT icks− Tkavg > ε
22: return true
23: else
24: return false
25: end if
26: end procedure

16-26). If current VCPU load is greater than Tkavg by a
value greater than ε, we mark that VCPU as overloaded and
add it to the overHeap (line 4). Similarly, if the VCPU load
(assigned ticks) is less than Tkavg by a value greater than ε,
we categorize it as underloaded and add it to the underSet
(line 6). Due to space constraints, we omit the algorithm for
method isLight. It is the same as isHeavy other then the change
in condition at line 21 mentioned earlier. Once we have built
the underloaded set and overloaded heap of VCPUs, we have
to transfer tasks from the overloaded VCPUs i.e. overHeap,
to the underloaded VCPUs i.e. underSet, such that there are
no VCPUs left in the overHeap (lines 10-15).

To decide the new task mapping for balanced load,
our scheme removes the most overloaded VCPU from
overHeap i.e. donor (line 11), and the procedure
getBestCoreAndTask selects the bestTask, which is the
largest task currently placed on donor such that it can be
transferred to a core from underSet without overloading it
(line 12). getBestCoreAndTask also selects the bestCore,
which is a VCPU from underSet, which will remain under-
loaded after being assigned the bestTask. After the bestTask
and bestCore are determined, we update the mapping of the

task (line 13), the loads of both the donor and bestCore, and
the overHeap and underSet with these new load values (line
14). This process is repeated till the overHeap gets empty i.e.
no overloaded VCPUs are left.

We note that different VM technologies can expose different
time semantics to the guest – virtual vs. real. Hence, the CPU
times of tasks (ti) (and hence Op) can be inaccurate on the
VCPUs which incur interference because they may include
the time spent in background tasks. In this work, we used
KVM hypervisor where CPU time (ti) measurements include
the time stolen by the interfering VM. Still, periodic migration
of tasks from overloaded to underloaded VCPUs ensures that
good load balance is achieved after a few steps, illustrating
the wide applicability of our approach (Section VI).

V. EVALUATION METHODOLOGY

We setup a cloud using OpenStack [18] on Open Cirrus
testbed at HP Labs site [14]. We created our own cloud to
have control over the VM placement strategy, which enabled
us to get specific configurations to test the correctness and
performance of our techniques. This testbed has inherent
heterogeneity since it consists of 3 types of physical servers:

• 4 × Intel Xeon E5450 (12M Cache, 3.00 GHz) – Fast
• 4 × Intel Xeon X3370 (12M Cache, 3.00 GHz) – Fast
• 4 × Intel Xeon X3210 (8M Cache, 2.13 GHz) – Slow
We will refer to the first two processors types as Fast and the

third one as Slow. These nodes are connected using commodity
Ethernet – 1Gbps internal to rack and 10Gbps cross-rack.

We used KVM [19] for virtualization, since past research
has suggested that KVM is a good choice as a hypervisor for
HPC clouds [20]. We experimented with different network vir-
tualization drivers – rtl8139, eth1000, and virtio-net, and chose
virtio-net since it resulted in best network performance [21].
We present results with VMs of type m1.small (1 core, 2 GB
memory, 20 GB disk), up to 64 VMs. It should be noted
that these choices do not affect the generality of our results.
Since there is one VCPU per VM, we use VCPU and VM
interchangeably in Section VI. To get best performance, we pin
the virtual cores to physical cores using vcpupin command.

To evaluate the load balancer in presence of interfering
VMs, we run the sequential NPB-FT (NAS Parallel Bench-
mark - Fourier Transform) Class A [16] in a loop to generate
load on the interfering VM. The interfering VM is pinned to
one of the cores that the VMs of our parallel runs use. The
choice of NPB-FT is random and does not affect the generality
of results. For experiments involving heterogeneity, we use one
Slow node and rest Fast nodes.

The HPC benchmarks and application used are:
• Stencil2D – A computation kernel which iteratively aver-

ages values in a 2-D grid using 5-point stencil. It is widely
used in scientific simulations and numerical algebra.

• Wave2D – A tightly coupled benchmark which uses
finite differencing to calculate pressure information over
a discretized 2D grid, for simulation of a wave motion.

• Mol3D – A 3-D molecular dynamics simulation applica-
tion. We used the Apoa1 dataset (92K atoms).



We used the net-linux-x86-64 machine layer of
Charm++ with –O3 optimization level. For Stencil2D, we used
problem size 8K × 8K. For Wave2D, we used problem size
12K × 12K. Each object size is kept 256× 256, unless oth-
erwise specified. These parameters were determined through
experimental analysis as discussed later.

VI. EXPERIMENTAL RESULTS

To understand the effect of our load balancer under hetero-
geneity and interference, we ran 500 iterations of Stencil2D
on 32 VMs (8 physical nodes – one Slow, rest Fast), and
plotted the iteration time (execution time of an iteration) vs.
iteration number in Figure 3. In this experiment, we started the
job in interfering VM after 100 iterations of parallel job had
completed. Load balancing was performed after every 20 steps,
which manifests itself as spikes in the iteration time every
20th step. We report execution times averaged across three
runs and use wall clock time, which includes the time taken
for object migration. The LB curve starts to show benefits
as we reach 100 iterations, due to heterogeneity-aware load
balancing. After 100 iterations, interfering job starts. When the
load balancer kicks in, it restores load balance by redistributing
tasks among VMs according to Algorithm 1. Now, there is a
large gap between the two curves demonstrating the benefits
of our refinement based approach, which takes around 3 load
balancing steps to gradually reduce the iteration time after
interference appears. The interfering job finishes at iteration
300 and hence the NoLB curve comes down. There is little
reduction in LB curve, since the previous load balancing steps
had reduced the impact of interference to a very small amount.
The difference between the two curves after that is due to
heterogeneity-awareness in load distribution.

To confirm that the achieved benefit is due to better load bal-
ance, we used Projections [15] tool for performance analysis.
Figure 4 shows the improvement in CPU (VCPU) utilization
with load balancing for Stencil2D on 32 VMs, all running
on Fast nodes in this case, with one interfering VM. In this
Figure, y-axis represents CPU utilization, x-axis is (virtual)
CPU number, with first bar as average. White portion (at
top) represents idle time and colored portions (shaded) depict
application functions. Black portion (below white) is overhead
(see last processor in Figure 4a). The CPUs (x-axis) are sorted
by the idle time using extrema analysis techniques. Observing
Figure 4a, it is clear that there are 3 different clusters –
50%, 70%, and 90% utilization level. The difference between
first two is due to the use of 2 types of processors. Though
they have same processor frequency, the actual performance
achieved is significantly different. There is very little load
imbalance among processors in the same cluster, indicating
that the distribution of work to processors is equal. The third
cluster belongs to the VM which incurs interference. Figure 4b
balances load. Here the idle time is due to the communication
time, and is uniform across all CPUs. Overall, the average
utilization increased from 60% to 82% using load balancing.

Next, we analyze the effect of few parameters on load bal-
ancer performance followed by results for various applications.
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A. Analysis using Stencil2D

To achieve better understanding, we experimented with
Stencil2d on 32 VMs (Fast processors, one interfering VM),
and ran 500 iterations. We varied grain size, load balancing
frequency and problem size. Here, we present our findings.

1) Effect of Grain Size and Overdecomposition: Grain size
refers to the amount of work performed by a single task (object
in Charm++ terminology). For Stencil2D, it can be represented
by the matrix size of an object. Figure 5a shows the variation
in execution time with object sizes. First, consider the NoLB
case. As we decrease the grain size, hence increasing number
of objects per processor, execution time decreases due to
the benefits of overdecomposition: (a) better cache reuse by
exploiting temporal locality and (b) hiding network latency
through automatic overlap of computation and communication.
After a threshold, time starts increasing, due to the overhead
incurred by the scheduler and runtime for managing large
number of objects. Hence, as we make objects very fine
grained, performance degrades. Here, best performance is
obtained with grain size = 512× 512 elements.

The LB case (load balancing every 20 steps) introduces
additional factors – (a) time spent in load balancing and (b)
load balancing quality, which affect the overall performance.
From Figure 5a, we see that the total load balancing time (LB
time), which includes time to make migration decisions and
time spent in migrating objects, is negligible compared to the
total time. However, LB time will be important as the compu-
tation time decreases (e.g. strong scaling), and the ratio of LB
time to compute time increases. For (b), we calculate aver-
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Fig. 5: Impact of various parameters on load balancing and overall performance of Stencil2D, 500 iterations
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age Residual Imbalance = Max Compute (+Background) Load

Avg Compute (+Background) Load
over all iterations and plot it on the same figure, with the
right y-axis being the legend. We see that we get better
load balance as we decrease object size, achieving residual
imbalance of 1.09 for 128×128. However, the best execution
time is achieved for object size 256×256 due to the impact of
additional factors, such as overhead. In general, we observed
good load balance with degree of decomposition (ratio of
objects to processors) > 20.

2) Effect of Load Balancing Frequency: Next, we vary
the load balancing frequency in the same setup, with fixed
grain size of 256× 256 based on the results above. Figure 5b
shows that the there is an optimal load balancing period. Very
frequent load balancing (small LB period) results in most of
the time being spent in making task migration decisions and
migrating the data associated with objects, which degrades
application performance. Moreover, it also results in lack of
enough instrumented data for the load balancer to make intelli-
gent decisions, leading to large residual imbalance. With very
infrequent load balancing, such as LB period = 100 iterations,
load balancer will be slow to adapt to the dynamic variations,
leading to large residual imbalance. Hence, we settle for LB
period = 20 iterations (which equals approximately 2 seconds
here) except for runs on 64 VMs, where we used a period =
50 iterations. The optimal LB period depends on the iteration
time and should be larger for small iteration time so that the
gains achieved by improved load balance are not offset by
time spent in balancing load.

3) Effect of Problem Size: Finally, we analyze the per-
formance benefits for different problem sizes of same ap-
plication – Stencil2D in the same setup, with fixed grain

size of 256 × 256 and LB period = 20. Figure 5c shows
that the benefits increase with increasing problem size. With
larger problem size, the computation granularity increases,
reducing communication-to-computation ratio. Hence, any im-
provement in computation time through load balancing will
result in higher impact on the total execution time. Also, we
get better load balance quality as we increase problem size –
for 16K × 16K matrix, we get residual imbalance of 1.05.

Application which are less communication-intensive are the
most cloud-friendly one and are expected to be run in the cloud
most because of better scalability. Also, the model expected to
work better in cloud is weak scaling (same problem size per
core with increasing cores) rather than strong scaling (same
total problem size with increasing cores) [22]. In that context,
our approach will be extremely useful for HPC in cloud.

B. Performance and Scalability of Three Applications

To evaluate the robustness and efficacy of our load balancer
in actual cloud scenario, we study three different cases (shown
in Figure 6) – (a) Interference - one interfering VM, all Fast
nodes, (b) Heterogeneity – one Slow node, hence four Slow
VMs, rest Fast and (c) Heterogeneity and Interference – one
Slow node, hence four Slow VMs, rest Fast, one interfering
VM (on a Fast core) which starts at iteration 50. We ran 500
iterations for Stencil2D and Wave2D and 200 iterations for
Mol3D, with load balancing every 20th step. We kept same
problem size while increasing number of VMs (strong scaling).

Figure 6 shows that we achieve significant % reduction (=
TNoLB−TLB

TNoLB
× 100) in execution time using load balancing

compared to the NoLB case, for different applications and
different number of VMs under all three configurations. With
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Fig. 7: Scaling curves with and without load balancing in presence of interference and/or heterogeneity for three
different applications, strong scaling
an interfering VM, we achieve up to 45% improvement in
execution time (Figure 6a). The amount of benefits is different
for different applications, especially in Figure 6b. We studied
this behavior using Projections tool and found that our load
balancer is distributing tasks well for all applications, but the
difference in achieved benefits is due to the different sensitivity
of these applications to CPU type and frequency. It can be
inferred from Figure 6b that Mol3D is the most sensitive to
CPU frequency, having most scope for improvement. Next,
Figure 6c shows that our techniques are also effective in the
presence of both the effects – the inherent hardware hetero-
geneity and the heterogeneity introduced by multi-tenancy.

Another observation from Figure 6 is the variation in the
achieved benefits with increasing number of VMs. This is
attributed to the tradeoff between two factors: (1) Since there
is only one VM sharing physical CPU with interfering VM,
running on larger number of VMs implies distributing the work
of the overloaded VM to an increasing number of underutilized
VMs, which results in larger reduction in execution time (e.g.
Figure 6a Mol3D, 8 VM vs. 16 VM). (2) As we scale, the
average compute load per VM decreases. Hence, other factors,
such as communication time, dominate the total execution
time. This implies that even with better load balance and
higher % reduction in compute time, overall benefit is small,
since communication time is unaffected. Hence, as we scale
further, benefits decrease, but they still remain substantial.

Moreover, as we scale, benefits can actually be more impor-
tant because we save across larger number of processors. As
an example, from Figure 6b Stencil2D, we save 18.8% over 32
VMs, with absolute savings = 32 × 0.188 × 48.09 = 289.28
CPU-seconds, where application took 48.09 seconds on 32
VMs. Juxtaposing this with 20.5% reduction in time over 16
VMs which results in absolute savings = 16×0.205×86.77 =
284.32 CPU-seconds, where application took 86.77 seconds on
16 VMs, we see that the overall savings are more for 32 VM
case compared to 16 VMs. Also, since we achieve higher %
benefits with larger problem sizes (Section VI-A3, Figure 5c),
the benefits will be even higher for weak scaling compared to
strong scaling as the impact of factor 2 above is minimized.

The primary objective of running in parallel is to get reduced
execution time with increasing compute power. However, it is
not clear from Figure 6 whether we achieve that goal. Hence,
we plot execution time vs. number of VMs for same experi-

ments, as shown in Figure 7. For the purpose of comparison,
we also include the runs without any interfering VMs, with all
VMs mapped to Fast nodes (Homo curve in Figure 7). Figure 7
shows that our load balancer brings the NoLB curves down
and close to the Homo curve. At some data points, the LB
curves are below the homo curve, since even the Homo curves
can benefit from load balancing (shown earlier in Figure 4
that application performance on two types of Fast processors
is somewhat different). The superlinear speedup achieved in
some cases can be attributed to better cache performance.

The scale of our experiments was limited by the availability
of nodes in our cloud setup since we needed administrative
privileges from provider perspective. However, we believe that
our techniques will be equally applicable to larger scales since
the effectiveness of similar load balancing strategies have been
demonstrated on large-scale supercomputer applications [23].

VII. RELATED WORK

There have been several studies on evaluation of HPC in
cloud (mostly on Amazon EC2 [1]) using benchmarks (such
as NPB) and real world applications [2–5]. These studies have
concluded that even though cloud can be potentially more
cost-effective than supercomputers for some HPC applications,
there are challenges that need to be addressed to enable effi-
cient use of clouds for HPC. Some challenges are insufficient
network and I/O performance in cloud, resource heterogeneity,
and unpredictable interference arising from other VMs.

The approaches taken to reduce the gap between traditional
cloud offerings and HPC demands can be classified into two
broad categories – (1) those which aim to bring clouds closer
to HPC and (2) those which want to bring HPC closer to
clouds. Examples of (1) include HPC-optimized clouds such
as Amazon Cluster Compute [6] and DoE’s Magellan [4]. An-
other area of research in (1) is making cloud schedulers (VM
placement algorithms) aware of the underlying hardware and
the nature of HPC applications. Examples include the work by
Gupta et al. [8] and OpenStack community towards making
OpenStack scheduler architecture-aware [7]. Related work on
modifying the scheduling in virtualization layer include VM
prioritization and co-scheduling of co-related VCPUs [24].
The latter approach (2) has been relatively less explored. Fan
et al. proposed topology aware deployment of scientific appli-
cations in cloud, and mapped the communication topology of
an HPC application to the VM physical topology [9].



In this work, we took the latter approach and explored
whether we can make HPC applications more cloud friendly
using a customized parallel runtime system. We built upon our
earlier work [10] where we proposed similar load balancing
for addressing background loads. This work extends previous
work in multiple ways – First, in [10], we assumed that we can
get accurate compute time for tasks, that is independent of the
background load. However, in cloud, it may not be possible to
separate the time taken by background load from application
load since virtualization hides the presence of time-sharing
of physical nodes among VMs. Secondly, we make the load
balancer aware of both – hardware heterogeneity and multi-
tenancy in cloud. Thirdly, we evaluate our techniques on an
actual cloud with VMs whereas in the earlier work, we did not
consider effects of virtualization. Brunner et al. [25] proposed
a load balancing scheme similar to ours but in the context of
workstations. Our work differs from theirs in the same ways
as above. Moreover, our scheme uses a refined load balancing
algorithm that reduces number of task migrations.

VIII. CONCLUSIONS, LESSONS AND FUTURE WORK

In this paper, we presented a load balancing technique which
accounts for heterogeneity and interfering VMs in cloud and
uses object migration to restore load balance. Experimental
results on actual cloud showed that we were able to reduce
execution time by up to 45% compared to no load balancing.
The lessons learned and insights gained are summarized as:

• Heterogeneity-awareness can lead to significant perfor-
mance improvement for HPC in cloud. Adaptive parallel
runtime system are extremely useful in that context.

• Besides the static heterogeneity, multi-tenancy in cloud
introduces dynamic heterogeneity, which is random and
unpredictable. The overall effect being poor performance
of tightly-coupled iterative HPC applications.

• Even without the accurate information of the nature and
amount of heterogeneity (static and dynamic but hidden
from user as an artifact of virtualization), the approach
of periodically measuring idle time and migrating load
away from time-shared VMs works well in practice.

• Tuning the parallel application for efficient execution in
cloud is non-trivial. Choice of load balancing period and
computational granularity can have significant impact on
performance but the optimal values depend on application
characteristics, size, and scale. Runtime systems which
can automate the selection and dynamic adjustment of
such decisions will be increasingly useful in future.

We believe that some of our approaches and analysis can
also be leveraged for future exascale applications and runtimes.
According to an exascale report, one of the Priority Research
Direction (PRD) for exascale is to “develop tools and runtime
systems for dynamic resource management” [26].

In future, we plan to extend our load balancer such that data
migration is performed only if we expect gains that can offset
the cost of migration. Also, we will explore the use of VM
steal cycles, where supported. We have demonstrated that our
techniques work well with iterative applications, and when the

external noise is quite regular. In future, we plan to explore
the cases when the interference is irregular, such as fluctuating
loads of web applications. Finally, we plan to evaluate our
techniques on a larger scale – on an actual cloud, if available
in future, or through simulated or emulated environment.
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