
Charm++: Migratable Objects + Active Messages + Adaptive Runtime = 
Productivity + Performance

Charm++ is an elegant, general-purpose parallel programming model backed by an adaptive runtime system. 
This combination yields portable performance and a spectrum of real-world productivity benefits that have 
been demonstrated in production applications. A Charm++-based benchmark suite was submitted to HPC 
Challenge competition (which is aimed at comparing productivity); in 2011 we were co-winners, in 2012, we 
were finalists.
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Our implementation of FFT performs a complex 1D FFT 
on an NxN matrix where subsequent rows are contiguous 
elements of a complex vector. Three all-to-all transpos-
es are required to perform the FFT and unscramble the 
data. All-to-all operations are done via a general Charm 
software routing library, Mesh Streamer, and external li-
braries (FFTW or ESSL) perform serial FFTs on the rows 
of the matrix.

The global table is partitioned across the nodes in the 
run.Each element of the group allocates its part of the 
global table, generates random update keys, and sends 
the updates to the appropriate destination. The Charm++ 
Mesh Streamer library automates aggregation and rout-
ing, based on network topology information provided by 
Charm++ Topoology Manager.

Our implementation provides dynamic, memory-con-
strained lookahead so that panel factorizations are over-
lapped as much as memory usage limits will allow. The 
placement of matrix blocks on processes is independent 
of the main factorization routines; it is encapsulated in a 
sequential function. We use asynchronous collectives for 
pivot identification reductions so they can be overlapped 
with updating the rest of the sub-panel.

LeanMD simulates the behavior of atoms based on the 
Lennard-Jones potential, which mimics the short-range 
non-bonded force calculation in NAMD and resembles 
miniMD in the Mantevo suite. Charm++’s fully automat-
ed load balancing enables exceptional strong scaling. To 
enable automatic load balancing decisions, the user sim-
ply specifies a flag, +MetaLB, and the run-time system 
automatically identifies a load balancing period.

In our implementation, blocks are first-class entities that 
in a collection that expands and contracts as the mesh is 
refined or coarsened, without requiring synchronization. 
Refinement decisions are local to each block and propa-
gated as far as algorithmically required. We use scalable 
termination detection built into our runtime to globally 
determine when all refinement decisions have been final-
ized, reducing many overheads.

The matrix is divided into blocks of columns then  ana-
lyzed to find its independent rows for computation. Dense 
regions below the diagonal section are divided into new 
blocks. Each diagonal block starts the computation with 
its independent parts and waits for required messages 
from the left. The column blocks are mapped round-rob-
in, which is essential for this solver and managing the 
blocks manually is burdensome for the programmer.

Salient Features
Object-based
	 Parallel programs in Charm++ are implemented in an object-based 
paradigm. Computations are expressed in terms of work and data units 
that are natural to the algorithm being implemented and not in terms of 
physical cores or processes executing in a parallel context. This imme-
diately has productivity benefits as application programmers can now 
think in terms that are native to their domains.
	 The work and data units in a program are C++ objects, and hence, 
the program design can exploit all the benefits of object-oriented soft-
ware architecture. Classes that participate in the expression of parallel 
control flow (chares) inherit from base classes supplied by the program-
ming framework. 
	 Chares are typically organized into indexed collections, known as 
chare arrays. Chares in an array share a type, and hence present a com-
mon interface of entry methods.

Message-Driven
	 Messaging in Charm++ is sender-driven and 
asynchronous. Parallel control flow in Charm++ 
is expressed in the form of method invocations on 
remote objects. Each chare simply uses its entry 
methods to describe its reactions when depen-
dencies (remote events or receipt of remote data) 
are fulfilled. Once this happens, it can perform 
appropriate computations and also trigger oth-
er events whose dependencies are now fulfilled. 
The parallel program then becomes a collection 
of objects that trigger each other via remote (or 
local) invocations by sending messages.

Runtime-assisted
	 Once an application has been expressed as a set of overde-
composed message-driven objects, these can be mapped onto the 
available compute resources and their executions managed by a 
runtime system. The programming model permits an execution 
model where the run-time system can:
	 • maintain a queue of incoming messages, and deliver them to 
entry methods on local chares.
	 • overlap data movement required by a chare with entry meth-
od executions for other chares.
	 • observe computation / communication patterns, and move 
chares to balance load and optimize communi- cation.
	 • allow run-time composition (interleaving) of work from dif-
ferent parallel modules.
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