
Charm++: Migratable Objects + Active Messages + Adaptive Runtime =
Productivity + Performance

Charm++ is an elegant, general-purpose parallel programming model backed by an adaptive runtime system.
This combination yields portable performance and a spectrum of real-world productivity benefits that have
been demonstrated in production applications. A Charm++-based benchmark suite was submitted to HPC
Challenge competition (which is aimed at comparing productivity); in 2011 we were co-winners, in 2012, we
were finalists.

256 512 1024 2048 4096 8192 16384 32768 65536
101

102

103

104

Cores

G
Fl

op
/s

BG/P
BG/Q
Serial FFT limit (BG/P)

1D FFT

 0.0625

 0.25

 1

 4

 16

 64

128 512 2K 8K 32K 128K

G
U

P
S

Number of cores

43.10

Perfect Scaling
BG/P
BG/Q

Random Access

 0.1

 1

 10

 100

 128 1024 8192

T
o
ta

l
T

F
lo

p
/s

Number of Cores

Theoretical peak on XT5
Weak scaling on XT5

Theoretical peak on BG/P
Strong scaling on BG/P

Dense LU

 10

 100

 1000

 10000

2k 4k 8k 16k 32k 64k 128k

T
im

e
pe

r
st

ep
 (

m
s)

Number of cores

Performance on Intrepid (2.8 million atoms)

No LB
Periodic LB

Meta LBMolecular
Dynamics

 0.1

 1

 10

 100

 256 512 1k 2k 4k 8k 16k 32k

Ti
m

es
te

ps
 /

se
c

Number of Ranks

IBM BG/Q Min−depth 4
IBM BG/Q Min−depth 5

AMR

Sparse Triangular
Solver

 0.001

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128 256 512

S
o
lu

ti
o
n
 T

im
e

(s
)

Number of Cores

slu_webbase-1M
slu_helm2d03

slu_hood
slu_largebasis

SuperLU_largebasis
SuperLU_webbase-1M

SuperLU_helm2d03
SuperLU_hood

640µs

Our implementation of FFT performs a complex 1D FFT
on an NxN matrix where subsequent rows are contiguous
elements of a complex vector. Three all-to-all transpos-
es are required to perform the FFT and unscramble the
data. All-to-all operations are done via a general Charm
software routing library, Mesh Streamer, and external li-
braries (FFTW or ESSL) perform serial FFTs on the rows
of the matrix.

The global table is partitioned across the nodes in the
run.Each element of the group allocates its part of the
global table, generates random update keys, and sends
the updates to the appropriate destination. The Charm++
Mesh Streamer library automates aggregation and rout-
ing, based on network topology information provided by
Charm++ Topoology Manager.

Our implementation provides dynamic, memory-con-
strained lookahead so that panel factorizations are over-
lapped as much as memory usage limits will allow. The
placement of matrix blocks on processes is independent
of the main factorization routines; it is encapsulated in a
sequential function. We use asynchronous collectives for
pivot identification reductions so they can be overlapped
with updating the rest of the sub-panel.

LeanMD simulates the behavior of atoms based on the
Lennard-Jones potential, which mimics the short-range
non-bonded force calculation in NAMD and resembles
miniMD in the Mantevo suite. Charm++’s fully automat-
ed load balancing enables exceptional strong scaling. To
enable automatic load balancing decisions, the user sim-
ply specifies a flag, +MetaLB, and the run-time system
automatically identifies a load balancing period.

In our implementation, blocks are first-class entities that
in a collection that expands and contracts as the mesh is
refined or coarsened, without requiring synchronization.
Refinement decisions are local to each block and propa-
gated as far as algorithmically required. We use scalable
termination detection built into our runtime to globally
determine when all refinement decisions have been final-
ized, reducing many overheads.

The matrix is divided into blocks of columns then ana-
lyzed to find its independent rows for computation. Dense
regions below the diagonal section are divided into new
blocks. Each diagonal block starts the computation with
its independent parts and waits for required messages
from the left. The column blocks are mapped round-rob-
in, which is essential for this solver and managing the
blocks manually is burdensome for the programmer.

Salient Features
Object-based
	 Parallel programs in Charm++ are implemented in an object-based
paradigm. Computations are expressed in terms of work and data units
that are natural to the algorithm being implemented and not in terms of
physical cores or processes executing in a parallel context. This imme-
diately has productivity benefits as application programmers can now
think in terms that are native to their domains.
	 The work and data units in a program are C++ objects, and hence,
the program design can exploit all the benefits of object-oriented soft-
ware architecture. Classes that participate in the expression of parallel
control flow (chares) inherit from base classes supplied by the program-
ming framework.
	 Chares are typically organized into indexed collections, known as
chare arrays. Chares in an array share a type, and hence present a com-
mon interface of entry methods.

Message-Driven
	 Messaging in Charm++ is sender-driven and
asynchronous. Parallel control flow in Charm++
is expressed in the form of method invocations on
remote objects. Each chare simply uses its entry
methods to describe its reactions when depen-
dencies (remote events or receipt of remote data)
are fulfilled. Once this happens, it can perform
appropriate computations and also trigger oth-
er events whose dependencies are now fulfilled.
The parallel program then becomes a collection
of objects that trigger each other via remote (or
local) invocations by sending messages.

Runtime-assisted
	 Once an application has been expressed as a set of overde-
composed message-driven objects, these can be mapped onto the
available compute resources and their executions managed by a
runtime system. The programming model permits an execution
model where the run-time system can:
	 • maintain a queue of incoming messages, and deliver them to
entry methods on local chares.
	 • overlap data movement required by a chare with entry meth-
od executions for other chares.
	 • observe computation / communication patterns, and move
chares to balance load and optimize communi- cation.
	 • allow run-time composition (interleaving) of work from dif-
ferent parallel modules.

A[1]

A[0]

A[2]

B[3]

B[0]

C[1,0]

C[1,2]

C[0,0]

C[0,2]

C[1,4]

Processor 1 Processor 2

B[3]C[0,0]

C[1,4]

Processor 3 Processor 4

A[1]A[2]

C[0,2]

C[1,0]
C[1,2]

A[0]

B[0]

Location ManagerSchedulerLocation ManagerScheduler

Laxmikant V. Kale, Anshu Arya, Nikhil Jain, Akhil Langer, Jonathan Lifflander, Harshitha Menon, Xiang Ni, Yanhua Sun, Ehsan Totoni, Ramprasad Venkataraman, Lukasz Wesolowski

