Charm++: Migratable Objects + Active Messages + Adaptive Runtime =
Productivity + Performance

Laxmikant V. Kale, Anshu Arya, Nikhil Jain, Akhil Langer, Jonathan Lifflander, Harshitha Menon, Xiang Ni, Yanhua Sun, Ehsan Totoni, Ramprasad Venkataraman, Lukasz Wesolowski

Charm++ is an elegant, general-purpose parallel programming model backed by an adaptive runtime system. Our implementation of FFT performs a complex 1D FFT
This combination yields portable performance and a spectrum of real-world productivity benefits that have on an NxN matrix where subsequent rows are contiguous
been demonstrated in production applications. A Charm++-based benchmark suite was submitted to HPC clementsioita complex yector, Three ali-to-all transpos:
" gy . : . : : , es are required to perform the FFT and unscramble the &
Challenge competition (which is aimed at comparing productivity); in 2011 we were co-winners, in 2012, we 1D FFT data, All-to-all operations are done via a general Charm &
were finalists. software routing library, Mesh Streamer, and external li-
braries (FFTW or ESSL) perform serial FFTs on the rows - rem—
P roductivit Port ofthe matrix. T BG/Q _
roductivity erformance 1 Serial FFT limit (BG/P)
10 | I I I I I I I I
Code C++ CI Benchmark Driver Total | Machine Max Performance Highlight =00 C‘L‘:ig e i e
Subtotal Cores oq L Perfect ScBaclgr/]lg 777777777777777777777777777777777777 _
Required Benchmarks The global table is partitioned across the nodes in the - |
1D FFT 54 99 33 102 185 BG/P 64K 2.71 TFlop/s run.Each element of the group allocates its part of the 16
BG/Q 16K 2'31 TFlop s global table, generates random update keys, and sends .l
' L the updates to the appropriate destination. The Charm++ _
Random Access 6 15 91 47 138 BG/P 128K 43.10 GUPS Random Access Mesh Streamer library automates aggregation and rout- 1
BG/Q 16K 15.00 GUPS ing, based on network topology information provided by
0.25 |+
Dense LU 1001 316 1317 453 1770 XT5 8K 55.1 TFlop/s Charm++ Topoology Manager. | |
(65.7% peak) 00625 |- |
Additional Benchmarks 128 512 2K 8K 32K 128K
Number of cores
Molecular Dynamics 571 122 693 n/a 693 BG/P 128K 24 ms/step (2.8M atoms) 100 coretical peak on XT5 —
i Weak scaling on XT5 —a—
BG/Q 16K 44 ms/step (2.8M atoms) Our implementation provides dynamic, memory-con- EThS?retical pcle_akgon ggé e
AMR 1126 118 1244 n/a 1244 BG/Q 32k 22 steps/sec, 2d mesh, strained lookahead so that panel factorizations are over- | S
max 15 levels refinement lapped as much as memory usage limits will allow. The o "
. placement of matrix blocks on processes is independent S s e .
‘riangular Solver 04250 6 T BG/P S12 Dense LU of the main factorization routines; it s encapsulated ina 5 |

—
TTTTI T

sequential function. We use asynchronous collectives for

\‘\ﬂ‘
“‘\‘
-
= -
3 -
o -
-
—‘—\‘
'\—‘
-

pivot identification reductions so they can be overlapped

with updating the rest of the sub-panel.

0.1 L

. 1 " " " " " " " gl M M " " " " " PR ST |
a lent Features - 128 1024 8192
Number of Cores

Obj eCt—based Runtime— aSSiSted Performance on Intrepid (2.8 million atoms)

- @ LeanMD simulates the behavior of atoms based on the S R
Parallel programs in Charm++ are implemented in an object-based Once an application has been expressed as a set of overde- Lennard-Jones potential, which mimics the short-range — e diz R
paradigm. Computations are expressed in terms of work and data units composed message-driven objects, these can be mapped onto the non-bonded force calculation in NAMD and resembles % 1000 Meta LB L]
that are natural to the algorithm being implemented and not in terms of available compute resources and their executions managed by a MOle Clllal‘ miniMD in the Mantevo suite. Charm++’s fully automat- 2
physical cores or processes executing in a parallel context. This imme- runtime system. The programming model permits an execution . ed load balancing enables exceptional strong scaling. To o] B
diately has productivity benefits as application programmers can now model where the run-time system can: D ynamICS enable automatic load balancing decisions, the user sim- e 100
think in terms that are native to their domains. » maintain a queue of incoming messages, and deliver them to ply specifies a flag, +MetaLB, and the ru;1—time system = I lT
The work and data units in a program are C++ objects, and hence, entry methods on local chares. automatically identifies a load balancing period. 10
the program design can exploit all the benefits of object-oriented soft- o overlap data movement required by a chare with entry meth- 2k 4k 28k SRICKIERZ2 UEEL R
ware architecture. Classes that participate in the expression of parallel od executions for other chares. Number of cores
control flow (chares) inherit from base classes supplied by the program- observe computation / communication patterns, and move - _
ming framework. chares to balance load and optimize communi- cation. In our implementation, blocks are first-class entities that | IBM BG/Q Min_depth 5 < |
Chares are typically organized into indexed collections, known as o allow run-time composition (interleaving) of work from dif- in a collection that expands and contracts as the mesh is
chare arrays. Chares in an array share a type, and hence present a com- ferent parallel modules. refined or coarsened, without requiring synchronization. s 10}
mon interface of entry methods. A M R Refinement decisions are local to each block and propa- % |
. Processor | Processor 2 gated as far as algorithmically required. We use scalable 3;:
Message—DI' 1VECI termination detection built into our runtime to globally 2 S
N determine when all refinement decisions have been final-
Messaging in Charm++ is sender-driven and C[0,0] B[3] C[0,2] ized, reducing many overheads
asynchronous. Parallel control flow in Charm++ - ; - ’ ' " L L A
is expressed in the form of method invocations on B[3] C[0,2] Ky 256 512 1,:umb:rkof Ratis Y <
remote objects. Each chare simply uses its entry |cjo,0] “, A 4 4 SV
methods to describe its reactions when depen- i l Al2] N\ (COAL - - - - AR Al] N | oy e
dencies (remote events or receipt of remote data) i / v Ry Y. ;ﬂl S D c1.1v1ded into blocks of columns .then T " s E
are fulfilled. Once this happens, it can perform ' N yze}d to find its 1ndePendent rows for com.pt.ltatlo.n. Dense
appropriate computations and also trigger oth- ‘L Cl1.0] All] < S arse Trian ular regions below .the diagonal section are divided 1pto new z !
er events whose dependencies are now fulfilled. A[O] / AlO] Y~\ \\\ P g F)lo.cks. Each diagonal block Ste}r ts the com.p utation with é I I D T e~
e it} then becomes a collection | 1 Solver its independent parts and waits for required messages §
of objects that trigger each other via remote (or B[O] €~ ch.2l B[0] L Cl1,2] .fr om t}.le le.ft. The C(?lumn bl(?CkS are mapped rour?d-r ob- S
local) invocations by sending messages.) in, which is esseptlal for this solver and managing the |
o~ ﬁl — ﬁ l | blocks manually is burdensome for the programmer. oo
Scheduler Location Manager | Scheduler Location Manager ; . . : - - ” - - o

Number of Cores

Processor 3 Processor 4

