Charm++: Migratable Objects + Active Messages + Adaptive Runtime =
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Charm++ is an elegant, general-purpose parallel programming model backed by an adaptive runtime system. Our implementation of FFT performs a complex 1D FFT
This combination yields portable performance and a spectrum of real-world productivity benefits that have on an NxN matrix where subsequent rows are contiguous
been demonstrated in production applications. A Charm++-based benchmark suite was submitted to HPC clementsioita complex yector, Three ali-to-all transpos:
" gy . : . : : , es are required to perform the FFT and unscramble the &
Challenge competition (which is aimed at comparing productivity); in 2011 we were co-winners, in 2012, we 1D FFT data, All-to-all operations are done via a general Charm &
were finalists. software routing library, Mesh Streamer, and external li-
braries (FFTW or ESSL) perform serial FFTs on the rows - rem—
P roductivit Port ofthe matrix. T BG/Q _
roductivity erformance 1 Serial FFT limit (BG/P)
10 | I I I I I I I I
Code C++ CI Benchmark Driver Total | Machine  Max Performance Highlight =00 C‘L‘:ig e i e
Subtotal Cores oq L Perfect ScBaclgr/]lg 777777777777777777777777777777777777 _
Required Benchmarks The global table is partitioned across the nodes in the - |
1D FFT 54 99 33 102 185 BG/P 64K 2.71 TFlop/s run.Each element of the group allocates its part of the 16
BG/Q 16K 2'31 TFlop s global table, generates random update keys, and sends .l
' L the updates to the appropriate destination. The Charm++ _
Random Access 6 15 91 47 138 BG/P 128K 43.10 GUPS Random Access Mesh Streamer library automates aggregation and rout- 1
BG/Q 16K 15.00 GUPS ing, based on network topology information provided by
0.25 |+
Dense LU 1001 316 1317 453 1770 XT5 8K 55.1 TFlop/s Charm++ Topoology Manager. | |
(65.7% peak) 00625 |- |
Additional Benchmarks 128 512 2K 8K 32K 128K
Number of cores
Molecular Dynamics 571 122 693 n/a 693 BG/P 128K 24 ms/step (2.8M atoms) 100 coretical peak on XT5 —
i Weak scaling on XT5 —a—
BG/Q 16K 44 ms/step (2.8M atoms) Our implementation provides dynamic, memory-con- EThS?retical pcle_akgon ggé e
AMR 1126 118 1244 n/a 1244 BG/Q 32k 22 steps/sec, 2d mesh, strained lookahead so that panel factorizations are over- | S
max 15 levels refinement lapped as much as memory usage limits will allow. The o "
. placement of matrix blocks on processes is independent S s e .
‘riangular Solver 04250 6 T BG/P S12 Dense LU of the main factorization routines; it s encapsulated ina 5 |

—
TTTTI T

sequential function. We use asynchronous collectives for

\‘\ﬂ‘
“‘\‘
-
= -
3 -
o -
-
—‘—\‘
'\—‘
-

pivot identification reductions so they can be overlapped

with updating the rest of the sub-panel.

0.1 L

. 1 " " " " " " " gl M M " " " " " PR ST |
a lent Features - 128 1024 8192
Number of Cores

Obj eCt—based Runtime— aSSiSted Performance on Intrepid (2.8 million atoms)
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